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Abstract—We present a method for learning potential-based
policies from constrained motion data. In contrast to previous
approaches to direct policy learning, our method can combine ob-
servations from a variety of contexts where different constrains
are in force, to learn the underlying unconstrained policy in form
of its potential function. This allows us to generalise and predict
behaviour where novel constraints apply. As a key ingredient, we
first create multiple simple local models of the potential, and align
those using an efficient algorithm. We can then detect and discard
unsuitable subsets of the data and learn a global model from a
cleanly pre-processed training set. We demonstrate our appro&c
on systems of varying complexity, including kinematic data from
the ASIMO humanoid robot with 22 degrees of freedom.

I. INTRODUCTION

A wide variety of everyday human skills can be framed iEg?lyléndA(ijm%iggﬂ;aggg,r;téoéi&eﬁ;t?gf %/gd'\g:‘(:%nh(ﬁ”ng of a &mat-
terms of performing some task subject to constraints inghose )
by the physical environment. Examples include opening R§oduced the movement under the constraint [5]. However we

In a more generic setting, constraints may take a mué® find a good approximation of the underlying policy given
wider variety of forms. For example, in climbing a ladderoPservations under the right conditions. We take advanthge
the constraint may be on the centre of mass or the tilt of thgcent work in local dimensionality reduction [6] to propas
torso of the climber to prevent over-balancing. Alternelyyin  Method that (i) given observations under a sufficiently seh
problems that involve control of contacts such as manimgat ©f constraints reconstructs the fully unconstrained pol{@)
objects, the motion of fingers is constrained by the preser@¥en observations under an impoverished set of conssraint
of the object [1]. In systems designed to be highly compete'ﬁtams a pohc_y that generalises yveII to constraints _of alarm
and adaptive, such as humanoid robots (Fig. 1), behavid@ss. and; (iii) given ‘pathological’ constraints willde a
may be subject to a wide variety of constraints [2], usualljolicy that at worst reproduces behaviour subject to theesam
non-linear in actuator space and often discontinuous. i@ens constraints. Our algorithm is fast, robust and scales topbexn
running on uneven terrain: The leg movements of the runri@igh-dimensional movement systems. Furthermore it cah dea
are constrained by the impact of the feet on the ground inV_\ﬁth constraints that are botton-linear and discontinuous in
dynamic, discontinuous and unpredictable way. time and space.

The focus in this paper is on modelling control policies Il. PROBLEM EORMULATION
subject to a certain class of constraints on motion, with the ) ' i i ]
aim of finding policies that camgeneralise between different Following [3], we consider the learning of autonomous kine-
constraints. We take a direct policy learning approach (DPLinatic policies
[3] _whereby we attempt to learn non-parametric models _of the (1) = w(x(t) x:R"— R", 1)
policy from motion data (e.g. from human demonstrations).

While DPL has been studied for a variety of control problemgherex € IR"™ is some appropriatelychosen state-space and
in recent years (for a review, see [4] and references thgreik ¢ IR" is the desired change in state. The goal of DPL is
crucially these problems involvednconstrained policies or to approximate the policy (1) as closely as possible [3]slt i
policies subject tddentical constraints in every observation usually formulated as a supervised learning problem where i
(in which case the constraints can be absorbed into tiseassumed that we have observationsc@f), x(¢) (often in
policy itself). The difference here is that we consider ohse

vations from policies subject to a set of dynamic, non-linea it should be noted that in all DPL approaches the choice désipace
constraints, and that these constraints may change betweeler PEeCle B B0 et oot imitator. For example 1 we
observations, Or_ even durlng _the COUI’_S(? of an obs_ervatl ish toeliparn the policy a human demonstrator uses to wash mwli)rmhd

In general, learning (unconstrained) policies from caxigtrd transfer that behaviour to an imitator robot, an appropriaigce ofx would
motion data is a formidable task. This is due to fon.  be e Canesin conrnaes o he b, sonecpon Stent efectr
convexity of .Observat'ons 'nduced by the. constraints, and; ('ggaces, for example if demonstrator and imitator have diftmmbgdiments,
degeneracy in the set of possible policies that could haveés also possible by defining appropriate state-action neeffit:
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Fig. 2. lllustration of two apparently different behavieuirom the same
policy: (a) unconstrained movement (b) movement constrainell that the
fingertip maintains contact with a surface (black box) (c) timeonstrained
(red) and constrained (black) policy over two joints of thegér.

the form of trajectories), and from these we wish to lea
the mappings. In previous work this has been done b
fitting parametrised models in the form of dynamical syste
[8], non-parametric modelling [9], and probabilistic Bajan
approaches [10].

Consider now learning a simple policy to extend a jointe,

constraints (wheré < n)

A(x, )% =0 @)

the policy is projected into the nullspace of those constsai
X(t) = N(x, t)mw(x(t)) (©)

whereA (x,t) e IR**" is some (ranki) matrix describing the
constraintN(x,t)=(I - ATA) € R"*" is in general a non-
linear, time-varying projection operator alids IR"*" is the
identity matri¥. Constraints of the form (2) commonly occur
in interactions with solid objects, e.g. when manipulatiogls
[1], [11] and are also common in the control of redundant
degrees of freedom (DOFs) in high-dimensional manipusator
[12], [13]. As an example: Setting to the Jacobian that maps
from joint-space to end-effector position allows any motin
joint-space provided that the end-effector remains statip

If the policy is constrained (2)-(3), the best policy repmes
tation of the movements is the unconstrained poticysince
this is givesmaximal information about the behaviour. Know-

g 7, or finding a good approximation of it, we can generalise
Yver constraints (cf. Fig. 2(a)-(b)) simply by applying the
Mfsired constraint. However, learning the unconstraimidyp

from observations of constrained movement is a non-trivial
task due to two analytical restrictions on what information
n be recovered from the available data: The problems of

finger under variable constraints, such as when differestasb non-convexity and degeneracy [5].

cles lie in the path of the finger. In Fig. 2(a) the finger is un-

The non-convexity problem comes from the fact that be-

constrained and the policy simply moves the joints towahes ty\een observations, or even during an observation, contstra
zero (outstretched) position. On the other hand, in F|g),2(k?nay change. For example in Fig. 2(c) any given observation

an obstacle lies in the path of the finger, constraining it t
it moves along the surface. The vector field representation
the two behaviours is shown in Fig. 2(c).

may come from the set of constrained (black) or unconstdaine
(Ped) vectors. At any given point ir there may be multiple
observationsx under the different constraints. This causes

Given this learning task, the standard approach to DRl.ohlems for supervised leaming algorithms, for example

would be to perform regression on the vector field produc

g(;rectly training on these observations may result in model

in the two settings [3], [8]. This would mean that, assumingveraging.

the observations were labelled with respect to the comstral

The degeneracy problem stems from the fact that for any

(position and orientation of the obstacle), one could l&amyien constrained observation, there exist multiple petic
(separate) policy model for each of the settings. Cleary thhai could have produced the movement. This is due to the

is unsatisfactory since each model would only be valid f

Yrojection eliminating components of the unconstrainelitpo

the specific setting, and we would need increasing numbersyefi 4re orthogonal to the image ®(x,t) so that they

models given observations under new constraints (e.gerdift
obstacles at different positions and orientations).

However, on closer inspection, we can avoid the need f]

multiple policy models, by making two observations. Fistl

are undetermined by the observation. In effect we are not
iven sufficient information about the unconstrained potic
gﬁarantee that it is fully reconstructed.
However, despite these restrictions, we wish to do the best

we notice that some features of the policy are consist§b can with the data available. In this paper we propose a

across observed trajectories (here, the goal of the mowsM&Rehod to deal with these problems, for the important specia
— ‘extend the finger’ — appear similar). Secondly, one cgl;qg ofpotential-based policies.

see that in different trajectories the movementréstricted

in different ways (here, contact with the obstacle prevenB Potential-based Policies
the finger from moving in certain directions). Based on thesg potential-based policy is defined as the gradient of a scala

observations then, we might reasonably suppose that the'mopYotentiaI functions

ment stems from somsngle underlying policy and that this
policy has been sampled unddifferent constraints. Viewed

like this, instead of learning separate policies for eadtiijc

constraint, we would rather learn a policy tigeheralises over

constraints.

A. Constraint Model

(%)

7T(X) = _Vx¢(x)' (4)
Such policies can be thought of as greedily optimising the
potential function at every time step [14] and thus encode

attractor landscapes where the minima of the potential cor-
respond to stable attractor points; in the finger example, th

In I.thls pz(ijper, l\)Ne explore. the bprOblem hOf dDPL Whgn the 2Throughout the paper denotes the identity matrix of appropriate dimen-
policy under observation Is subject to hard constraints QR andAt denotes the (unweighted) Moore-Penrose pseudoinverdeeof t

motion. Mathematically, we say given a set/eflimensional

matrix A.



x = 0 point would correspond to such a minimum. Other ex- Note that an arbitrary constant can be added to the poten-
amples include reaching movements which may be representiatl function without changing the policy. Therefore, ‘&t
by a potential, defined in hand space, with a minimum at tipetentials that we estimate along different trajectoriesch
target. Furthermore decision-based behaviours may beledcoto be aligned in a way that their function value matches
as potentials with multiple minima. For example the decisian intersecting regions. We turn to this problem in the next
of a which hand to use for reaching may be represented sgction.
a potential with two minima, one corresponding to reaching
with the right hand, the other to reaching with the left. ThB. Constructing the global potential function
hand used would then be determined by relative offset of th@t ys assume we havé trajectoriesX ,=(
minima (e.g. right-handedness would imply a lower minimu
for that hand). Potential-based policies are also extehsi
used for null-space control of redundant manipulators.[14]
If the policy under observation is potential-based, an
egant solution to solving the non-convexity and degeneral
problems is to model the policyjgotential function [5] rather
than modelling it directly. The advantage of this is twofold
Firstly, under the projection operatd (x,¢) the potential-
based policy (4) can be locally estimated using numerica! i
integration [5]. Secondly, the potential function is a scal Since we wish to combine the models to a global potential
function and thus gives a compact representation of theyolifunction, we need to define some function for weighting the
This means that the non-convexity problem of reconcilingutputs of the different models. For the NN algorithm, we
conflicting n-dimensional vector observations is reduced teaclulate responsibilitieg,(x) using Gaussian kernels, i.e.,

X1y XEk2 - - X’gNk)
rHrJd corresponding point-wise estimates of the potedtig-
(Pr1, Pr2 - - - P, ), @s provided from the Euler integration just
e(ii_e:scribed. In a first step, we fit a function modig(x) of the
tential to each tupléXy, ®;), such thatfy(x;) ~ og;.
ere, to keep things simple, we use nearest-neighbour (NN)
regression, i.e.,

fe(x) = Ppi» , iF =arg miin Ix — x;“-||2. (8)

finding a functioné(x) where the [-dimensional) prediction wy (x)
is consistent at any given poist w(x)= =% 9)
> e WilX)
I11. L EARNING NULLSPACE POLICIES THROUGHLOCAL 1
MODEL ALIGNMENT wi(x) = exp —ﬁmiHIIX—XMIF ) (10)
g )

A. Estimating the potential along single trajectories

As has been described in [5], it is possible to model theading to a (naive) global predictiqf”(x):zle @k (%) fr(x)

potential along sampled trajectories using a form of lingf the potential ak. However, as aiready stated, the potential
integration. We assume that we have recorded trajectorigsonly defined up to an additive constant, and most impor-
x(t),%x(t) of lengthT" sampled at some sampling rat¢ét tantly this constant can vary from one local model to another

Hz. This results in a tuple of pointX) = xy1,..., Xk 76t This means that we first have to shift the models by adding
for each trajectory, which, for sufficiently high samplirgte, some offset to their estimates of the potential, such that all
are related through the linear approximation local models arén good agreement about the global potential

(5) at any number of states.
Fortunately, a similar problem has already been tackled
Using (5) we can integrate along trajectories using an ajr the literature: In the field of non-linear dimensionality
propriate numerical integration scheme. An example of suglduction, Verbeek et al. have shown how to align multiple
a scheme is Euler integration, which involves the first ord@gcal PCA models into a common low-dimensional space [6].
approximation In particular, they endowed each local PCA model with an
1 additional affine mappingy (z)=Az+by, which transformed
d(xiy1) = d(xi) + E(XH-I —x;)"N;Vxo(x;). (6) the coordinatesz, of a data pointwithin the k-th PCA
model into the desired global coordinate system. The asthor

Since. the _effect of the time constadt is simply. to scale_ 6] retrieved the parameters of the optimal mappirgsby
the discretised policy vectors, we can neglect it by scali inimising the objective function

time units such thavt = 1. This comes with the proviso
that for implementation on the imitator robot, the learnt 1 L EE 9
policy may need to be scaled back to ensure the correct time E= 9 Z Z ZQk'mQjm”gkm — gimll”, (11)
correspondence is kept. For steps— x;,; that follow the m=1k=1j=1
projected policy (3) we can rearrange (5) with the scale@ timyhere o, denotes the coordinate of the-th data vector,
coordinates, and substitute into (6) to yield as mapped through thé-th PCA model, andg,, is the

D(xit1) ~ O(x;) — ||xiz1 — xi||%, (7) correspong:ling responsibility of.that model. The objectiam

) ) ) easily be interpreted as the ‘disagreement’ between any two

where the negative sign reflects our assumption (as expresggydels, summed up over all data points, and weighted by the
in (4)) that attractors are minima of the potential. We usgsponsibilities of two models each. That is, the disagezgm
this approximation to generate estimatés;) of the potential for any combination ofn, & and j only really counts, if the
along any given trajectory;, x. ... xx in the following way: responsibility of both thé-th and thej-th model is sufficiently
We setg; = ¢(x;) to an arbitrary value and then iterativelyhigh for the particular query point.
assigng; 1 := ¢; — ||xi+1 — x;||? for the remaining points in  In analogy to the PCA-alignment method [6], we augment
the trajectory. our local potential modelg () by a scalar offsef;, and define

Xi+1 =~ X; + 5tN771'1



the corresponding objective function as be poor, and this becomes a problem when using the output of
MoK K the optimisation (15) to learn a global model of the poténtia
E(b bic) = 1 Z ZZ (5m)0; (Xm) X To avoid mte_rference_, we or_1|y mclu_de trajectories if we ar
1---0K) =5 A%\ Xm )45\ Xm sure that their offset is consistent with the rest of the data
Fortunately, outliers in this sense can be detected automat
((fr(%m) + br) = (f;(km) + b))%, (12) ically by looking for small eigenvalues dff: In the same
. . way as adding the same offset to all trajectories leads to
or, in a slightly shorter form, a zero eigenvalue, further very small eigenvalues and the
1 9 corresponding eigenvectors indicate indifference towaad
E(b) =5 D @km@im (fom + bk = fim = ;)" (13) ghift of some subset of trajectories versus the rest of the
m.k,j set. In practice, we look for eigenvaluas< 10~%, and use
denotes a summation over the complete data s@técursive bi-partitioning algorithm in a way that is very
similar to spectral clustering. We then discard all trajeets
apart from those in the largest ‘connected’ group.

m=1 k=1 j=1

Here,> " .
that is, over all points from all trajectoried{ = Zszl Ny).
Using the symmetry iy < k and}_, qr, = 1, we split (13)
into terms that are constant, linear, or quadratit;inyielding D. Learning the global model

E(b) = Ey +2a”b + b”Hb. (14) After calculating optimal offsetd,,; and cleaning the data
set from outliers, we can learn a global modélk) of the
Here, we introduced as a shortcut for the terms independergotential using any regression algorithm. Here, we choase L
of b, the vectora € IR" with elements;, = > m @m fem —  cally Weighted Projection Regression (LWPR) [15] because it
> m.; QemTjm fm, and the Hessian matrild € RE*K with performs well in cases where the data lies on low-dimensiona
elementshi; = 6;; 3, Gim — ., dimQjm. The objective manifolds in a hlgh-d|menS|onaI space, which _matches our
function is quadratic irb, so we retrieve the optimal solutionproblem of learning the potential from a set of trajectaries
by setting the derivatives to zero, which yields the equatidhe training data for LWPR, we use all non-outlier trajecsri
Hb = —a. and their estimated potentials as given by the Euler intiegra
However, note that a common shift of all offsdts does Plus their optimal offset, that is, the input-output tuples

not change the objective (12), which corresponds to the R opt
shift-invariance of the global potential. Therefore, thector {(kaﬁbkn +o07) [ kekKnedl... Nk}}v (16)
(1,1,...,1)T spans the nullspace &f, and we need to use

the pseudo-inverse @ to calculate the optimal offset vectorWhereX denotes the set of indices of non-outlier trajectories.

Once we have learnt the mod¢lx) of the potential, we
b,y = —H'a. (15) can take derivatives to estimate the unconstrained policy

o 7(x) = —Vxf(x). For convenience, the complete procedure
Compared to aligning PCA models, the case we handle hgg&ummarised in Algorithm 1.

is simpler in the sense that we only need to optimise for scala

offsetsb,, instead of affine mappings. On the other hand, OWSorithm 1 PolicyAlign
local potential models are non-linear, have to be estimateufg

from relatively little data, and therefore do not extrapela 1: EstimateXy, &;,{k =1... K} using Euler integration.

well, as will be discussed in the following section. 2: Alignment:
. . . « Calculate prediction and responsibility of each local
C. Over-smoothing and Outlier Detection model f;, on each data point,,, m = 1... M:
Since we restrict ourselves to using simple NN regression fom = Fr(Xm)i om = wip(Xm)/ > wi(Xm)
for the local potential models in this paper, the only open « ConstructH, a with elements
parameter of our algorithm is?, i.e., the kernel parameter hij =055 > o Qim — Do GimTim
used for calculating the responsibilities (9). Too largéaice Ak =D Qe flom — D j GomTjm fim
of this parameter will over-smooth the potential, becalne t « Find optimal offsets,,; = —Hfa

NN regression model basically predicts a locally constan
potential, but at the same time trajectories will have nedy
high responsibilities for even far apart pointdn state space.
On the other hand, too small a value @f might lead to
weakly connected trajectories: If a particular trajectory does
not make any close approach to other trajectories in the set, IV. EXPERIMENTS
the quick drop-off of its responsibility implies that it wihot To explore the performance of our algorithm, we performed
contribute to the alignment error (based on pairs of siganific experiments on data from autonomous kinematic controt poli
responsibility), which in turn implies that its own alignme- cies [3] applied to different plants, including the whole body
the value of its offset — does not matter much. motion controller (WBM) of the humanoid robot ASIMO [2].
The same reasoning applies to groups of trajectories that &ar this section, we first discuss results from an artificigl to
close to each other, but have little connection to the rest of
the set. For the remainder of the paper, we will refer to such?Partitioning the set into separate groups can be stoppedasas there
trajectories as ‘outliers’, since like in classical stitis we ' fg.'y O”izero'?'gf”r:’a'“e left, ldate th bach
need o remove these ffom the training Set: If their influengg, Sncs b oz orie SSTTENS wes 1o valdete the proveprbach
on the overall alignment is negligible, their own alignmeah paper we apply our method to human motion capture data.

L. Discard outliers H eigenvalues) < 1078).
4: Train global model on data tuple$xy,, ¢x, + bzpt)




problem controlled according to the same generic framework
to illustrate the key concepts. We then discuss an exampl
scenario in which the algorithm is used to enable ASIMO 6,

learn a realistic bi-manual grasping task from observatioh
a constrained demonstrator. Finally we briefly discuss how o |
algorithm scales to policies in very high dimensional syste |
such as the 22 DOF of the ASIMO WBM controller [2]. '

A. Sdlection of smoothing parameter
For simplicity, in all our experiments we used the samé’|
heuristics for selecting the smoothing parametérto match .|
the scale of typical distances in the data sets. In particu-
lar, we first calculated the distances between any two tray
jectories k,j € {1...K} as the distances between their >
closest pointsdy; = min{||x, —Xjm|? | n,me{l...N}}, ~
and also the distances to the closest trajectdfy” = (&)
min {dx; | j # k} .We then consider three choices fof,
which we refer to as ‘narrow’, ‘wide’ and ‘medium’:

O'gar med?an {dy, | ke{l...K}} ' (17) . 0‘:‘ :‘::‘::0::.‘: p |\ \“\\\\8“::“:‘:‘:‘:::::%, y
oo = median {djk | jke{l...K},j#k} (18) N “‘.‘0‘0'.‘,‘,"0,' i 7 \\wﬁ“m‘&,%m’%/
Nt { 77 e 7
2 — ]2 42 \ / N
UnLed - Onarawid' (19) \ ‘e\{\’"""' \}\\\\\‘\\“t{;‘:’:}'
N\A ) 77
B. Toy Example R ( 2

The toy example consists of a two-dimensional system with a
policy defined by a quadratic potential, subject to discunti @

ously switching constraints. Specifically, the potentgal i
— _ T _ Fig. 3. Top: (a) Toy data (trajectories (2-D) and contour roetpotential.
gb(x) (X XC) W(X XC) (20) Estimated potential along the trajectories before (b) aner &€) alignment.

i inhti ; ; rajectories detected as difficult to align ‘outliers’ arewn by light crosses.
where W is a square weighting matrix which we set t(%ottom: Learnt (d) and true (e) potential function afterriiag on the aligned

0.05I andx, is a vector defining the location of the attractofrajectories.
point, here chosen to bg. = 0. Data was collected by
recording trajectories generated by the policy from a st%
state distributionX. During the trajectories the policy was
subjected to random constraints

pd need to be discarded before learning the global model.

inally, Fig. 3(d) shows the global modg(x) of the potential

that was trained on the aligned trajectories, which is tfear

good approximation of the true parabolic potential shown in

A(x,t) = (a1, ) =« (21) Fig. 3(e). For a more thorough evaluation, we repeated this

experiment on 100 data sets and evaluated

« the nMSE of the aligned potential, which measures the
difference betweewy,, + by and the true potentiab,

« the nMSE of the learnt potential, measuring the difference
betweenf(-) and ¢(-),

where thea; » were drawn from a normal distribution,; =
N(0,1). The constraints mean that motion is constrained in the
direction orthogonal to the vecter in state space. To increase
the complexity of the problem, the constraints were rangoml
switched during trajectories by re-sampliagtwice at regular . the normalised unconstrained policy error ("UPE), quan-
intervals during the trajectory. This switches the diractin tifying the difference betweeﬁEnyandﬂ——Wp 4
which motion is constrained as can be seen by sharp turns iq the n%rmalised constrained poﬁcy error (nC_PE) ,WhiCh is
the trajectories. Figure 3 shows an example of our algordhm the discrepancy betweéN# and N, and finall '

work for a set ofK'=40 trajectories of lengthV =40 for the the percenta eyof trajectories disca'rded as ou){[Iiers

toy system. The raw data as a set of trajectories through thé P 9 J . .
two-dimensional state space is shown in panel (a), Wheri}%a subsample of the data held out for testing. We did so
panel (b) additionally depicts the local potential modess 4°' °Ur three different choices of* given in (17-19). We also
estimated from the Euler integration prior to alignmentclia repeated the experiment using a sinusoidal potential iomct
local model has an arbitrary offset against the true paknti ¢s(x) = 0.1sin(z1) cos(z2) (22)

so there are inconsistencies between the predictions femim e
local model. Figure 3(c) shows the trajectories after afignt,

already revealing the structure of the parabola. tra}r%%l%rlﬁzu?;rlﬁgﬁg\g t:héor(()a;%tg algir;s(zlatawsee::.an see that the
At this point, the outlier detection scheme has identified : y:

S > > ;
three trajectories as being weakly connected to the rerrgatiniv‘”de choice for o> leads to large error values which are

set. In Fig. 3(a) we can see that the outliers are indeed tiye oﬂr*ixﬁoe?x)er;-zrtnt?\cétggls%o??jlig?::;rh deinnarruoiktxé ;VI% {ﬁﬂ?ggg’gy
trajectories that do not have any intersection with neigining 94 | '

trajeCto_rieS- At the ‘narrow’ length scale determ_ined bg th SPlease note that we discard the outliers both for training @raluating
smoothing parameter (17), they are hard to align propertye error statistics.

with the same amount of data, and then usiig= 100



Setup o2 Alignment nMSE | Potential NMSE nUPE nCPE Discarded (%)
Parabola | narrow | 0.0047 & 0.0026 | 0.0052 £ 0.0024 | 0.0486 £ 0.0211 | 0.0235 £ 0.0092 | 17.55 £+ 15.96
K =40 medium | 0.0204 £ 0.0211 | 0.0195 4 0.0203 | 0.0859 4 0.0486 | 0.0224 + 0.0074 048 £1.11
N =40 wide 0.3542 £ 0.1089 | 0.3143 +0.1045 | 0.5758 £+ 0.2726 | 0.1135 £ 0.0371 0+£0

Sinusoidal | narrow | 0.0017 +0.0022 | 0.0026 +0.0019 | 0.1275 4+ 0.1125 | 0.0535 4+ 0.0353 | 50.18 &+ 14.37
K =40 medium | 0.0534 + 0.0647 | 0.0522 +0.0645 | 0.1399 4 0.0422 | 0.0376 4 0.0097 1.03 £+ 3.99
N =40 wide 0.6259 +0.1330 | 0.5670 +0.1363 | 0.8373 £ 0.2188 | 0.2464 £ 0.0638 0£0

Sinusoidal | narrow | 0.0005 4 0.0002 | 0.0014 £ 0.0004 | 0.0657 £+ 0.0142 | 0.0308 + 0.0065 | 25.46 4+ 11.42

K =100 | medium | 0.0011 £ 0.0017 | 0.0019 £ 0.0017 | 0.0628 + 0.0089 | 0.0284 + 0.0044 1.25+3.33

N =100 wide 0.2892 +£0.1198 | 0.2137 £0.1000 | 0.4262 4+ 0.1367 | 0.1554 4 0.0483 040

TABLE |
ERROR AND OUTLIER STATISTICS(MEAN+STD.DEV. OVER 100 DATA SETS) FOR THE EXPERIMENT ON2-D TOY DATA.

and the medium choice seems to strike a reasonable balance
especially with respect to the nUPE and nCPE statistics.

Secondly, when comparing the results for the parabolic and
sinusoidal potentials, we can see that the latter, more mp
potential (with multiple sinks) requires much more datathwi
only 40 trajectories and 40 points each, most of the data sets
are too disrupted to learn a reasonable potential model.eNhil
at the narrow length scale (4th row), on average more thdn hal
of the data set is discarded, even the medium length scdle (5t
row) over-smooths the subtleties of the underlying poéénti

Finally, the nCPE is always lower than the nUPE, which
follows naturally when training on data containing thoseyve
constraints. Still, with a reasonable amount of data, eten t
unconstrained policy is modelled with remarkable accuracyrig. 4. Experimental set-up for the ball grasping experim8itrting with

hands at the sides, the teacher robot reaches between thlersdar grasp the
C. Grasping a Ball ball.
The two goals of our second set of experiments were (i) to
characterise how well the algorithm scaled to more complex
realistic constraints and policies and (ii) to assess hoWwW w
the learnt policies generalised over different constsaifror
this we set up a demo scenario in which a set of trajectorfé
demonstrating the task of reaching for a ball on a table wi X e
given. Furthermore, it was assumed that trajectories wefgctora was clipped where necessary to avoid joint limits and
recorded in contexts where different constraints appligue self collisions. ) i
goal was to uncover a policy that both accurately reproduced*Ve used our algorithm to perform learning & such data
the demonstrated behaviour and generalised to novel dsnte€tS using the ‘narrow’ choice of smoothing parameterFor
with unseen constraints. comparison, we also repeated the experiment on the same data

For this, we set up an ‘expert’ demonstrator from whicHSINg & naive approach that leatt: x — x € R" — IR" by
observations were recorded. For ease of comparison with fffining directly on the tuplegx;, x;),i = 1,... K x N using
2-D system, the expert's policy was defined by the sa PR. This is in contrast to the proposet_j allgnm.ent scheme
quadratic potential (20) this time with the target poia where we learn the 1-d|mensu_)nal potential _functlon_ and use
corresponding to a grasping position, with the two hand@e grad_lent of the Iearnt_functlon_as the policy predl_ctlon
positioned on either side of the ball. The state-space of theFor this task, our algorithm achieved a very low alignment
policy was defined as the Cartesian position of the two han@for of6.95+0.09x10~* and an nMSE in the learnt potential
corresponding to 6 DOFs in state and action space (herﬁaﬁr7.85i0.56 x 10~% with 0.4840.84% trajectorl_es discarded .
the ‘task space’). The task space policy motion was realiséfeants.d. over 50 data sets). In Table Il we give the errors in
using the ASIMO WBM controller (see [2] for details). predicting the policy subject to (i) the training data coasits,

The policy was constrained by placing barriers on the tab{#) no constraints, and (iii) a novel, unseen constrailot. fhe
between the robot and the ball, so that the robot had to redgHer, a barrier was placed centrally between the robottaed
through a gap in the barriers to get the ball. These acted@l, so the robot had to reach around the barrier to grasp it.
constraints on the hands restricting motion in the directio The remarkably low alignment error can be attributed to the
normal to the barrier surface if a hand came too close (dfct that in most of the observations grasping was achieved
[16]). The constraints are nonlinear in the state space asidccessfully despite the constraints forcing the handske t
have discontinuously switching dimensionality when thedsa alternative routes to the ball. This meant many of the ttajec
approach or recede from the barriers. The constraints wéi@s closely approached the minimum of the potential, m@kin
varied by randomly changing the width of the gap for eadhe alignment easier around this point. This is furthercatid
trajectory. The gap widths were sampled from a distributiddy the low percentage of trajectories discarded.
dgap ~ N(lgap, Ogap) Where pigq, = 0.25m, o4qp = 0.1m The key result, however, can be seen by examining the
and the diameter of the ball was15m. Fig. 4 shows the policy errors (ref. Table Il). Comparing the two approaches
experimental set-up. both achieve a similar nCPE, with the naive approach in fact

Data was collected by recording = 100 trajectories of
hgth N = 100. Start states were sampled from a Gaussian
istribution over joint configurationg ~ N(qo, 0.1I) (where
corresponds to the default standing position) and calcu-
ing the hand positions using forward kinematics. Thatjoi



the smoothing parameter the algorithm achieved an alighmen
error of 1.6 £ 0.3 x 1073, an nMSE in the learnt potential
of 1.5 £ 0.4 x 10~3, nCPE 0f0.0654 4 0.0140 and nUPE of
0.1568 + 0.0474, with just 0.02 + 0.14% of the trajectories
discarded. We consider this to be remarkably good perfor-
mance given the high dimensionality of the input space and
the relatively small size of the data set.

V. CONCLUSION

We have proposed a novel approach to direct learning of
potential-based policies from constrained motion datar Ou
method is fast and data-efficient, and it scales to complex
constraints in high-dimensional movement systems. The cor
ingredient is an algorithm for aligning local models of the
potential, which leads to a convex optimisation problem.
Under the analytical limitations of what can be learnt in
this setting, our method performs remarkably well. Given an

Naive
m— Align.
= = = Expert

Fig. 5. Unconstrained reaching movement of the expert politgck) and
policies learnt with the naive approach (green) alignmegorithm (red).

Constraint Naive PolicyAlign h . . . .

Training 0.1208 £ 0.0113 | 0.1691 = 0.0289 impoverished set of motion observations from a patholdgica
Unseen Barrier| 0.5108 +0.0327 | 0.2104 +0.0357 set of constraints, one can never hope to recover the fully
Unconstrained | 0.8766 +0.0589 | 0.2277 4+ 0.0386

unconstrained policy. However, using our method, moticia da
under different constraints can be combined to learn a fiaten
that is consistent with the observations. With a reasonably
rich set of constraints, we can recover the policy with high

. . o accuracy, and we can generalise to predict behaviour under
performing slightly better. This indicates that the two hoats differentyconstraints. g P

both do equally well in modelling the constrained movements \work is currently ongoing to transfer our results to the

to approximately the same level of accuracy. However, Whel ;MO hardware and also to apply our method to learning
comparing the errors for the unconstrained policy, and tB& 1 human motion capture data.

policy subject to the unseen constraint, a different petur
emerges. Using the model learnt by the alignment approach,
the unconstrained policy predictions, and the predictionder
the unseen constraint, maintain a similar level of errothtat t
of the constrained policy. In stark contrast to this, theveai [2]
approach fares very poorly, with a large jump in error when
predicting the policy under the new barrier constraint angg]
predicting the unconstrained behaviour.

This difference is highlighted if we compare trajectories[4]
generated by the two policies. In Fig. 5 example unconstrhin

TABLE Il
CONSTRAINED POLICY NMSE FOR UNSEEN CONSTRAINTS ON THE
BALL -GRASPING TASK VALUES ARE MEANZS.D. OVER 50 DATA SETS.
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