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Abstract— Considerable research effort has gone into the
design of variable passive stiffness actuators (VSAs). A number
of different mechanical designs have been proposed, aimed at
either a biomorphic (i.e., antagonistic) design, compactness, or
simplified modelling and control. In this paper, we propose a
(model-based) unified control methodology that is able to exploit
the benefits of variable stiffness independent of the specifics
of the mechanical design. Our approach is based on forming
constraints on commands sent to the VSA to ensure that the
equilibrium position and stiffness of the VSA are tracked to
the desired values. We outline how our approach can be used
for tracking stiffness and equilibrium position both in joint and
task space, and how it may be used in the context of constrained
local optimal feedback control. In our experiments we illustrate
the utility of our approach in the context of online teleoperation,
to transfer compliant human behaviour to a variable stiffness
device.

I. I NTRODUCTION

In recent years, considerable research effort has gone into
the design of variable passive stiffness actuators (VSAs).A
number of designs have been proposed, directed at different
applications, each with their own benefits and disadvantages.
For example, several designs have focused on imitating
the human musculoskeletal system [11], often resulting in
antagonistic actuation systems. These have the benefit that
transferring behaviour from human to robot is relatively
simple (e.g., by drawing a correspondence between EMG
signals and actuator commands), but the disadvantage that
they have complex dynamics and can be hard to build into
multi-joint devices. Other proposed designs have focused on
simplifying the dynamics (and thereby the control) [5] or
improving scalability, e.g., with joint-internal VSA designs
[15]. These often have several benefits, such as compactness,
but the difficulty then lies in finding appropriate controllers,
especially when trying to mimic the capabilities of humans
[4] and exploit the benefits of variable stiffness.

In general, the final choice of VSA mechanism for a
particular robotic device will depend on many different
factors related to the specific application. However, if we
can find an appropriately general control framework that can
be applied to a number of different designs, we can ease
this design decision. In other words, we would like to find
a unified control methodology, that is able to exploit the
benefits of variable stiffness independent of the specifics of
the mechanical design.

In previous work, several approaches have been suggested
to achieve this goal. For example, De Luca et al. [10]
proposed using inverse dynamics and feedback linearisation
in order to cancel out non-linearities and track joint stiffness
and equilibrium position profiles. They showed that, assum-
ing sufficiently smooth reference trajectories (differentiable
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up to 4th order), and assuming a diagonal stiffness matrix,
these profiles can be tracked in a similar way to that used
for position and torque control. Albu-Schaeffer et al. [1] used
a similar approach with the introduction of torque feedback
terms to improve disturbance rejection, with demonstrations
of the method on a 7-axis robot arm.

More recently, Tahara et al. [13] suggested an approach
for resolving redundancy in the actuation of antagonistically
actuated systems, with a view to understanding the control
of the human musculoskeletal system. Their approach was
based on defining Cartesian-space force controllers with
virtual spring dynamics, and using the inverse mapping from
Cartesian space to joint space, and then on to the muscle
space, in order to find appropriate muscle activations to
realise the desired movement. In this case, stiffness was
implicitly controlledaccording to the choice of the redundant
internal forces.

In this paper, we propose a novel constraint-based frame-
work that allows us to control equilibrium position and
stiffness of an arbitrary VSA, given appropriate information
about the actuator dynamics. The approach is similar to
popular constraint-based schemes in kinematic [9], or torque
control [12], but is applicable to redundantly actuated robotic
VSA devices to give accurate, closed loop tracking of desired
stiffness and position profiles. In addition, our approach
allows us to design (i) hierarchical controllers where actu-
ation redundancy can be explicitly resolved in a prioritised
framework, (ii) controllers in which constraints on stiffness
can be imposed (e.g., enforcing a particular stiffness profile
for safety reasons). Furthermore, our approach can also be
used for assessing the benefits of VSAs over conventional
fixed-stiffness actuators, as we will show in the context of
constrained optimal feedback control. In our experiments
we test our approach for tracking pre-specified equilibrium
position and stiffness profiles on a number of different
simulated VSAs, and in an online teleoperation task on
hardware using a MACCEPA joint [5].

II. PROBLEM DEFINITION

Our aim is to derive joint stiffness and equilibrium position
controllers for VSAs, independently of the mechanism used
for varying stiffness. For example, we may have a control
law determining a stiffness profile for one VSA, (e.g., the
MACCEPA, Fig. 1(b)) and wish to transfer it to a second,
different VSA (e.g., the Edinburgh SEA, Fig. 1(c)) for com-
parison. Alternatively, we may wish to transfer the stiffness
from a human, measured during some task, to reproduce the
same compliant behaviour on a robotic device.

Specifically, we assume that the VSA that we wish to
control has statex ∈ R

p (e.g., joint positionsq ∈ R
n and

velocitiesq̇ ∈ R
n), and applying commandu ∈ R

m results
in a joint torque of the form
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τ = τ (x,u) (1)

which, for a variable stiffness actuator, may be re-writtenin
the form

τ (x,u) = −K(x,u)(q− q0(x,u)) (2)

where K(x,u) ∈ R
n×n is the joint stiffness matrix and

q0(x,u) ∈ R
n are the equilibrium positions of the joints.

Note that both of these quantities may, in general, have non-
linear dependence onx andu, depending on the design of
the mechanism.

Our goal is to derive appropriate commandsū that realise
a desired stiffnessKd and equilibrium positionq0,d. These
may be given either as fixed values (e.g., enforcing a fixed
stiffness for the joint) or as variables to be tracked (e.g.,
in online tracking of equilibrium position and stiffness ina
teleoperation task). Alternatively, we may wish to prioritise
control of the position over that of stiffness. For example,in
a punching task, we may want a high stiffness at the time
of impact (for a hard punch), but since the first priority is
to hit the target, we may have to sacrifice some stiffness in
order to achieve that goal. The extent to which this sacrifice
needs to be made will depend on the design of the variable
stiffness mechanism, and any coupling that exists between
position and stiffness. In the next section, we clarify these
issues with reference to different example implementations
of variable stiffness actuation.

Example: Ideal VSA, MACCEPA and Edinburgh SEA

To illustrate the influence that different mechanical designs
have on the control of stiffness and equilibrium position, we
consider three possible designs for a single-joint VSA.

The first and simplest of the three, is the idealised VSA
(see Fig. 1(a)), in which we assume that the stiffness and
equilibrium position are directly controllable in the command
vector, i.e.,u = (q0, k)

T . In this case, the control of equi-
librium position and stiffness is exactly orthogonal, enabling
use to select any combination of position and stiffness. This
is illustrated in Fig. 1(a), right panel, where, for example,
moving along they-axis (corresponding tou2) adjusts the
stiffness, but has no effect on the equilibrium position, and
vice versa. Unfortunately, in real mechanisms it is rarely
possible to achieve such ideal behaviour.

In contrast, consider the MACCEPA [5] and the Edinburgh
SEA [11] as examples of actuators of competing designs, that
have both been realised in hardware. For the MACCEPA, the
applied joint torque (2) is given by

τ(x,u) = κBC sinα

(

1 +
ru2 − (C −B)√

B2 + C2 − 2BC cosα

)

(3)
wherex = (q, q̇)T , α = u1 + q, κ is the spring constant,
B andC are the distances illustrated in Fig. 1(b) andr is
the radius of the winding drum (mounted on the servo that
extends the spring). Note that, due to the multiplication of
terms dependent onu1 and u2, there exists a coupling be-
tween equilibrium position and stiffness. In particular, while
the equilibrium position is only influenced by controlling
the angle of the lever arm (u1), away from equilibrium
the stiffness is influenced both by the pre-tensioning of
the spring (u2) as well as the lever arm angle (u1). To
illustrate this, we may make a similar plot of the equilibrium

position and stiffness as a function of motor commands as
for the ideal VSA (ref Fig. 1, middle row). In this case
we can see that, though the equilibrium position is only
influenced by the position of the first motor (u1), there is
a rather complex, non-linear relationship between the motor
commands and joint stiffness, making independent control
of stiffness difficult.

A similar argument applies to control of the Edinburgh
SEA [11], for which the torque relationship is

τ(x,u) = −ẑT (a× F1 − a× F2) (4)

where ẑ is the unit vector along the joint rotation axis,
a = (a cos q, a sin q, 0)T , Fi = κ(si − s0)

si
si

, i ∈ {1, 2}
are the forces due to the two springs (both with spring
constantκ), s1 = (−h−L sinu1,−d+L cosu1, 0)

T +a and
s2 = (h+L sinu2,−d+L cosu2, 0)

T −a are the extensions
of the two springs, and all other quantities are illustrated
in Fig. 1(c). In this case, due to the antagonistic actuation,
there is a strongly coupled, non-linear relationship between
the motor commands and the joint equilibrium position and
stiffness (as illustrated in Fig. 1(c), right) making it difficult
to control these quantities directly.

As illustrated by these examples, it is clear that even
for relatively simple VSA designs, there is considerable
difficulty in directly regulating the position and stiffness.
At first glance, it would seem that, in order to exploit the
dynamic properties of these actuators, it would be necessary
to develop specialised controllers for each design. However,
in the next section we will outline a general method for con-
trolling arbitrary VSAs with a constraint-based framework.

III. M ETHOD

Motivated by the examples in the preceding section, here we
outline our method for constraint-based control of equilib-
rium position and stiffness. We will first outline the basic
approach, and then illustrate how such an approach can be
used in the context of constrained local optimal feedback
control.

A. Model-based Equilibrium and Stiffness Prediction

Our approach is a model based control scheme in which we
assume that we have knowledge of the relationship between
the robot statex ∈ R

p (e.g., x = (q, q̇)T ∈ R
2n), the

command vectoru ∈ R
m, and the resultant joint torque

τ (x,u), either in closed form or as a non-parametric model
(e.g., from non-parametric regression). Note that, in general,
variable stiffness actuators are redundantly actuated (since
they have at least one additional degree of freedom per joint
for changing the stiffness), som>n.

Given (1) we can derive an expression for the equilibrium
position vector as a function of state and command

q0 = q0(x,u) ∈ R
n (5)

by solvingτ (x,u)=0 for q. This may be derived analyti-
cally, or calculated numerically with a root-finding algorithm
(e.g., the Newton-Raphson method).

Also using (1), we can derive the joint stiffness matrix

K = K(x,u) = −∂τ (x,u)

∂q

∣

∣

∣

q
∈ R

n×n (6)

Again, in many cases we may obtain (6) in closed analytical
form, or alternatively use numerical finite differences. For
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Fig. 1. Left: Geometry, dynamics and hardware implementation ofthe 1-link variable stiffness actuators used in the experiments. Right: Equilibrium
position and stiffness as a function of commandsu (evaluated atq = 0, q̇ = 0).

convenience, we can write the stiffness in vector form as
k(x,u) = vec(K(x,u)) ∈ R

n2

.
Note that in general (5) and (6) are non-linear functions

of the state and commands. Note also that, depending on
the system, the dimensionality ofk(x,u) may vary. For
example, the stiffness of each joint may be coupled so that
K is symmetric, or, alternatively, the stiffness of individual
joints may be independent (e.g., as would be the case in a
chain of MACCEPA actuators). In the latter case,K reduces
to a diagonal matrix and we can omit the off-diagonal
elements, resulting ink ∈ R

n.

B. Resolved Equilibrium and Stiffness Tracking Control

Having derived (5) and (6) for estimating the equilibrium
position and stiffness, we are now in a position to design
constraint-based controllers. We note that, in general, for
VSAs with an actuation relationship of the form (2), we
cannot find a linear, orthogonal decomposition in the direct
control space since the multiplication of stiffness with equi-
librium position introduces a quadratic dependence onu. For
this reason, we must instead move to the command velocity
space for control.

In particular, we can take the time derivative of (5) and
(6) to find the linearised forward impedance dynamics

q̇0 = Jq0
(x,u)u̇+Pq0

(x,u)ẋ, (7)

k̇ = Jk (x,u)u̇+Pk (x,u)ẋ, (8)

where q̇0, k̇ are the change in equilibrium position and
stiffness with respect to time,̇u ∈ R

n is the rate of change
of motor commands,Jq0

∈ R
n×m and Jk ∈ R

n2×m are
the Jacobian of the equilibrium position and the stiffness

with respect to motor commands, whilePq0
∈ R

n×p and
Pk ∈ R

n2×p are the corresponding Jacobian with respect to
the state.

To simultaneously control equilibrium position and stiff-
ness, we can invert this relationship to yield1

u̇ = J†ṙ+ (I− J†J)u0 (9)

where ṙ = (q̇0 − Pq0
ẋ, k̇ − Pkẋ)

T ∈ R
n+n2

, J =
(Jq0

,Jk)
T is the combined Jacobian,I is the identity matrix,

J† denotes the Moore-Penrose pseudoinverse ofJ and u0

is an arbitrary vector. The latter can be used to resolve
any further redundancy in the actuation (such as additional
actuators used for varying damping [8]).

Application of (9) requires state derivatives, provided by
feedback, or calculated from the analytical model of the
system dynamics. To avoid the requirement on analytical
modelling, and also to circumvent the noise and phase-
lag issues related with the feedback onẋ, we employ on-
line feedback about the current stiffness and equilibrium
states, i.e., we choosėr according to the difference in the
desired and actual equilibrium and stiffness valuesṙ =
(q̇∗

0 − q̇0, k̇
∗ − k̇)T . This solution is similar to Closed-Loop

Inverse Kinematic (CLIK) control [3], and also mitigates
instabilities due to constraint drift [2]. For this, since we
cannot directly measure the stiffness and equilibrium position
on-line, we use (5) and (6) to estimate the current values
based on the current estimate of the state.

1We omit the dependence onx andu for readability.



C. Equilibrium and Stiffness Tracking in Task Space

The approach described so far can also be extended to
equilibrium and stiffness tracking in task (e.g., end-effector)
space coordinates. In task space, the restoring force in
response to a perturbation is

Fs = −Ks(x,u)δs ∈ R
q (10)

where s ∈ R
q is a vector of task space coordinates and

Ks ∈ R
q×q is the task space stiffness. This force is related

to the joint torques through the relationship

τ = W(q)TFs (11)

where W(q) ∈ R
q×n is the Jacobian from joint to task

space2: δs = Wδq. Substituting this and (10) into (11), we
find

τ = −WTKsWδq = −Kδq.

Assuming thatW is square and full-rank (i.e.,q = n), by
elimination we can then identify the task space stiffness

Ks = (WT )−1KW−1. (12)

Similar to the case of joint space stiffness tracking, we can
conveniently writeks = vec(Ks) ∈ R

q2 and then derive the
task space stiffness JacobianJks

∈ R
q2×m with respect to

the motor commandsu.
The task space equilibrium positions0 can be found by

solving
Fs = (WT )−1

τ = 0. (13)

For non-redundant robots3, if we have the expression (5), we
can calculates0 directly by mapping the joint space equilib-
rium positionq0 through the forward kinematics function,
since at this pointτ = 0, which impliesFs = 0 through
(13). Again the JacobianJs0 ∈ R

q×m may be derived either
in closed form or numerically through finite differences.

For equilibrium position and stiffness tracking in task
space, we then take a similar approach to that described in
Sec. III-B, replacingJq0

,Jk with Js0 ,Jks
in (9).

D. Optimal Control with Constrained Stiffness

Finally, we briefly describe how the framework developed
so far can be used in combination with optimal control
techniques to place constraints on the change in stiffness.

In general, the optimal control problem is to find a
commandsu∗ that minimise a cost function of the form

J = h(x(T )) +

∫ T

0

l(x,u, t) dt ∈ R (14)

under dynamics of the form

ẋ = f(x,u) ∈ R
p. (15)

In many cases, we may wish to constrain the optimisation,
subject to higher priority considerations, for example, by
seeking the optimal controls subject to maintaining a par-
ticular stiffness profile for safety reasons. We can impose

2We omit the dependence onq for readability.
3Note that, for redundant robots, a similar analysis applies but with the

inverses in (12)-(13) replaced by pseudo-inverses. This has the implication
that there may exist multiple joint-space equilibriaq0 for a given task space
equilibrium s0.

such a constraint using our framework by reformulating the
above problem in the command velocity domain.

Specifically, we use the augmented statey = (y1,y2)
T =

(x,u)T ∈ R
p+m, and commandv = u̇ ∈ R

m and seek the
optimal controlsv∗ in command velocity space with respect
to (14) under theconstraineddynamics

ẏ = g(y,v) =

(

f(y1,y2)

J
†
kṙ(y1,y2) + (I− J

†
kJk)v

)

∈ R
p+m

(16)
whereJk is the stiffness Jacobian,ṙ= k∗− k(y1,y2) and
k∗ is the desired stiffness. Reformulating the problem in
this way ensures that the control sequence is optimised in
the null-spaceof the stiffness Jacobian. This means that
whatever control sequence that comes out of the optimisation
will have no effect on the stiffness profile. In the experiments
we briefly illustrate how such an optimisation can be used in
the context of establishing the benefits of variable stiffness
designs over a fixed stiffness actuator.

IV. EXPERIMENTS

In this section, we report numerical simulations and experi-
ments applying our method to the control of several variable
stiffness devices. We first illustrate the basic tracking capa-
bility of our method on three simulated, singe-joint VSAs
given desired equilibrium position and stiffness profiles.We
then test the scalability to plants of higher-dimensionality
in the context of task-space position and stiffness tracking.
We illustrate our method’s use in online, interactive control
of stiffness in a teleoperation task in hardware. Finally, we
illustrate how our method can be applied in the optimal
control setting, for analysing the benefits of variable stiffness
actuation over traditional fixed-stiffness devices.

A. Basic Tracking Behaviour

We first test the tracking quality achieved when applying
our approach to a number of different VSAs with differing
designs in simulation. For this, we apply the approach
outlined in Sec. III-B to control the three single-joint VSAs
described in Sec. II, namely, the Ideal VSA, the MACCEPA
and the Edinburgh SEA to track simple, pre-specified joint
equilibrium position and stiffness trajectories. Specifically,
the task here is to track a desired stiffness profile of the
form

k∗(t) =
1

2
Ak(sin(ωk t) + 1) + bk (17)

and equilibrium position

q∗0(t) =
1

2
Aq0(sin(ωq0 t) + 1) + bq0 (18)

where the amplitudeAk = kmax−kmin corresponds to the
full range of stiffness values (between minimum stiffness
kmin and maximum stiffnesskmax for the specific actuator)
and similarlyAq0 =q0,max−q0,min is the amplitude for the
equilibrium position. The offsetsbk=kmin andbq0 =q0,min

ensure that the desired trajectories stay within the admissible
limits of the VSAs. We arbitrarily selectedωk=2 andωq0 =
3 rad/s. The trajectories were tracked for4 s, with control
at a rate of50Hz.

In Fig. 2, we show the tracking performance in terms of
the equilibrium position and stiffness, the command sequence
generated with the tracking controller (9), and the resultant
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Fig. 2. Simultaneous tracking of sinusoidal equilibrium position and stiff-
ness profiles on the three single-joint VSAs. Top row: desired equilibrium
positionq∗

0
(light red), realised equilibrium positionq0 (dashed black) and

actual joint positionq (medium grey). Middle row: desired stiffnessk∗ (light
red) and realised stiffnessk (dashed black). Bottom row: Motor commands
u1 (solid black) andu2 (dashed black).

RMSE(q0, q∗0) RMSE(k, k∗)
Ideal 1-link VSA 0.000000 0.000000

MACCEPA 0.000000 0.000218
Edinburgh SEA 0.000132 0.000308

TABLE I
ERROR IN TRACKED EQUILIBRIUM POSITION AND STIFFNESS FOR THE

THREE SIMULATED SINGLE-JOINT VSAS.

trajectory of the joint, for the three VSAs. Looking at the
command sequence (top row), we note that the controller
generates a different sequence of commands for each of
the three VSAs. However, when we look at the equilibrium
position (middle row) and stiffness profiles (bottom row)
we see that there is good agreement between the realised
trajectories (q0, k) and the desired (q∗0 , k∗) in all cases. This
is confirmed further by the figures for the RMSE between
the desired and actual trajectories estimated over the duration
of the movement (ref. Table I), which are uniformly low.

It is also interesting to note how, due to the different
dynamics of the three plants, the actual position of the
joint q lags or oscillates around the commanded equilibrium
position, especially when the joint stiffness is very low
(around2 s into the movement). This is to be expected since
in the low gain control realised here, the response of the
system comes as a combined effect of the plant dynamics
and the control actions.

B. End-effector Stiffness Tracking on Multi-link Systems

Our second numerical investigation tests the scalability of
our approach for end-effector stiffness tracking (cf. Sec.III-
C) on two higher-dimensional VSA systems. For this, we
used (i) an ideal 2-link VSA, and (ii) a biologically plau-
sible model of the human arm with muscle-like actuators
(schematic diagrams are provided in Fig. 3). The former can
be considered a generalisation of the ideal single-joint VSA,
in which the joint torques due to the controls are given by

τ = −K(q− q0) (19)

and the equilibrium position and stiffness are directly con-
trollable, i.e.,u = (q0, vec(K))T . The latter is controlled
through a system of 6 muscles with Kelvin-Voigt muscle
dynamics [7]. Specifically, the control vectoru∈R

6 repre-
sents muscle activations with a non-linear relationship tothe
applied torques

τ = −ATT(q, q̇,u) (20)

(a) Ideal 2-link VSA. (b) 6-muscle arm model.

Fig. 3. Dynamics models for the two 2-link variable stiffness actuators.
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Fig. 4. Tracking of equilibrium position and stiffness profiles in end-
effector space on the Ideal 2-DOF VSA (top), and 6-muscle arm model
(bottom). Shown are: (a) & (d) Desired end-effector equilibrium positions
s∗
0

(light red), realised end-effector equilibrium positionss0 (dashed black)
and actual end-effector positionss (grey) during the movement, (b) & (e)
Desired end-effector stiffnessks

∗ and realised end-effector stiffnessks,
(c) & (f) stroboscopic plots of the resultant behaviour withthe end-effector
path shown in light grey.

whereA∈R
2×6 is a matrix of moment arms andT∈R

6 are
the muscle tensions (for space reasons, we refer the reader
to [7] for full details of the model).

The desired equilibrium position trajectorys∗0(t) ∈ R
2

is a figure-8 in end-effector space, while the desired end-
effector stiffnessK∗

s(t) was designed to switch from low-
to high-stiffness in thex-direction, and from high to low
in the y-direction (ref. Fig. 4). Note that, only thediagonal
elementsof Ks were controlled (i.e.,ks= diag(Ks)∈R

2),
the remaining redundancy4 was resolved through a null-space
policy u0=−α(u−ud) whereu is the active command,ud

is a default command vector (selected for each of the plants
individually) andα is scaling factor. The trajectories were
tracked for12 s at a control rate of150Hz.

The results are shown in Fig. 4. As can be seen, for
the ideal 2-link VSA there is excellent agreement between
the desired and tracked equilibrium positions and stiffness
(compare light red and dashed black trajectories in Fig. 4(a)-
(b)). The tracking for the muscle model is also fairly accurate
(Fig. 4(d)-(e)), although there are some ‘perturbations’ away
from the desired profiles. Upon examination, we found this
to be due to the controller hitting command limits (in the
muscle model the commands are constrained such thatu ≥

4Note that, here the full control dimensionality of the two actuators under
consideration isu∈R

6, however we only controls0∈R
2 and thediagonal

elementsks ∈ R
2 the effective control isr∗ = (s0,ks)T ∈ R

4. This
effectively leaves two dimensions of redundancy.



0, see [7]). This may be alleviated by taking command
constraints into account explicitly in the controller design
(e.g., using unilateral constraints). However, we note that
even without this, the controlled trajectory rapidly converges
back to the desired profile when the configuration moves
away from these limits.

Looking at the behaviour, (stroboscopic plots in Fig. 4(c),
(f)) we see that actual trajectory of the arm behaves like a
variable-gain controller. For example, when the stiffnessin
x is low (first 6 s of movement), tracking of the eight suffers
in this dimension (ref. light grey linesx in Fig. 4(a)), but is
then re-gained the stiffness inx returns to be high (final6 s).
The opposite trend can be observed in they dimension where
stiffness starts high and switches to low. This confirms our
expectations about the behaviour under variable end-effector
stiffness.

C. Tracking Human Impedance Profiles

In this section we illustrate how the proposed approach can
be applied to online control of VSAs in an experiment in
hardware. For this, we chose to investigate a teleoperation
task in which a human operator controls equilibrium position
and stiffness of a MACCEPA joint via recordings of his
muscle activations. The experimental setup is as follows.

The human operator was fitted with a pair of surface
EMG sensors to the wrist extensor and flexor muscles of
the forearm (see Fig. 5) that provide streaming data on
the activation of the muscles. The raw data was filtered
through a band pass filter to remove the lowest and highest
frequency components and smooth out noise. The resultant
activation dataa = (aext, aflex)

T was then pre-processed in
such a way as to predict the human-commanded equilibrium
position q∗0 and stiffnessk∗ of the wrist. Specifically, as a
measure of stiffness we used the co-contraction level

k∗ = gk min(aext, aflex) + ck, (21)

and as a measure of equilibrium positions we used the signal
difference

q∗0 = gq0(aext − aflex) (22)

wheregq0 and gk are gain parameters that scale the effect
of the EMG on the commanded stiffness and equilibrium
positions, andck = kmin is an offset parameter that ensures
the commanded stiffness never falls below the minimum
achievable stiffness for the VSA.

In Fig. 5 we show results over20 s of operation. These are
broken into three phases: (i) alternating left-right hand move-
ment with low stiffness (muscles relaxed), (ii) alternation be-
tween low and high stiffness atq = 0 (relaxed/co-contracted
muscles, respectively) and, (iii) alternating left-righthand
movement with high stiffness (muscles co-contracted). The
first and last conditions are indicated by the shaded regions
in the plots.

As can be seen, during phase (i), the EMG signals indicate
alternating activation between the two muscles, resultingin
a left-right movement of the desired equilibrium position.
The robot tracks this movement with considerable accuracy,
albeit with a slight time delay, which we attribute to the
limited speed of the servos used in the device. We also note
that there is some small level of co-activation in the EMG
signals even in this relaxed state: this is also tracked as small

increases in stiffness. During phase (ii), the hand remainsat
the rest positionq = 0 and the operator co-contracts twice.
As can be seen, this causes two spikes in the stiffness profile,
which are also accurately tracked. It is interesting to notein
the plot of the commands to the MACCEPA, the controller
primarily relies on the second (pre-tensioning) motor for this,
since there is a linear dependence betweenu2 and stiffness
at equilibrium. Finally, during phase (iii) we again see good
tracking of the equilibrium position with increased overall
stiffness, despite the relatively high noise in the recorded
EMG. The performance of the controller can be further
verified in the accompanying video.

D. Constrained-stiffness Optimal Control

In our final investigation, we briefly illustrate the use of our
approach for analysing the benefits of VSAs over traditional,
fixed-stiffness actuators. For this, we use the method de-
scribed in Sec. III-D to compare the optimal behaviour of
the three example 1-DOF VSAs described in Sec. II in a
ball-hitting task, similar to that described in [6]. The set-up
was as follows.

We used the iterative Local Quadratic Regulator (iLQR)
algorithm [14] to seek local optimal feedback controllers
(OFCs) that minimise the objective

J = w1(q(T )− q∗)2 − w2q̇(T ) +

∫ T

0

w3τ
2 dt (23)

where q∗ = 30◦ is the target angle (corresponding to the
angle of impact with the ball),τ is applied joint torque
and wi, i ∈ {1, 2, 3} are weight factors that determine the
relative importance of the three terms. These, respectively,
correspond to (i) minimising the distance to the target (ball)
at the time of impactT , (ii) maximising the angular velocity
at T , and (iii) minimising effort during the movement.

We performed the optimisation for each of the VSAs,
(i) with no constraint, and (ii) with the constraint that the
stiffness must remain fixed throughout the movement at the
initial valuek0. In the latter case, the constraint is enforced in
the manner described in Sec. III-D by specifyingk∗(t) = k0
throughout the movement.

In Fig. 6 we plot the stiffness profile, joint positions and
joint velocities generated by the OFCs for the three VSAs,
under the two conditions.

The first thing we see, looking at Fig. 6 (top row) is
that the stiffness constraint is successfully enforced with
good accuracy, albeit with some small deviation from the
desired stiffness toward the end of the movement. We at-
tribute these small errors to constraint drift, and the online
feedback not fully compensating for the non-linear dynamics
(both of which factors can be exacerbated in high velocity
movements, as here). These errors, however, are negligible
in comparison to the overall variation in stiffness seen in the
unconstrained stiffness profiles (compare light red and black
lines in Fig. 6, top row).

Looking at the behaviour (Fig. 6, middle and bottom
rows), we see that if the stiffness is allowed to vary freely
(light red lines), the OFCs exploit this additional degree of
redundancy to improve task performance compared to the
case that the stiffness is fixed (black lines). For example,
comparing the variable against the fixed stiffness behaviour
we see that (i) the variable stiffness controllers come closer



Fig. 5. Teleoperated control of equilibrium position and stiffness on the MACCEPA. Shown are human EMG signals, equilibrium position, stiffness, robot
motor commands. Light-red and black-dashed lines denote desired trajectories (predicted from the human data via (21) & (22)) and realised trajectories,
respectively.
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Fig. 6. Optimised ball hitting behaviour for the three single-joint VSAs
when stiffness is (i) fixed (constrained) to the initial value (black), and (ii)
allowed to vary freely (light red). Shown are: joint stiffness k (top row),
joint positionsq (middle row) and joint velocityq̇ (bottom row) during the
movement. The position of the target (ball) is indicated by ‘o’.

Fixed k Variablek
Ideal 1-link VSA −0.242372 −0.489173

MACCEPA −0.075511 −0.274747
Edinburgh SEA −0.076414 −0.356527

TABLE II
COST INCURRED BY OPTIMAL FEEDBACK CONTROLLERS FOR THE

THREE SINGLE-JOINT VSAS PERFORMING THE BALL-HITTING TASK

UNDER CONDITIONS OF FIXED OR VARIABLE STIFFNESS.

to the target (Fig. 6, middle row) and (ii) their end-time
velocity is greater (Fig. 6, bottom row). The benefit of
variable stiffness is further confirmed by comparing the cost
incurred during the movement under the different conditions,
which is uniformly lower when the stiffness is allowed to
vary (see Table II).

V. CONCLUSION

In conclusion, we have presented a novel model-based
method for control of variable stiffness actuators using
constraints on equilibrium positions and stiffness in task
and joint space. The proposed approach is generic by its
formulation, and can be applied to many different designs
of variable stiffness devices for accurate tracking of desired
stiffness and equilibrium position profiles. Furthermore,as
shown in simulation and experiment, it is fast to compute
and can be used with ease for online stiffness control, such
as in the teleoperation setting explored here.

In future work, we intend to exploit this method as a tool
for (i) assessing in detail the benefits of variable stiffness
actuation as compared to traditional, fixed stiffness actua-
tors, and (ii) for evaluating methods for transfer of human

impedance behaviour to artificial systems. Furthermore, we
intend to explore extensions of the method, for example,
to incorporate unilateral constraints, so that safety limits
(such as limits on the maximum admissible stiffness) may
be realised with arbitrary VSA hardware designs.
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