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Abstract— Many everyday human skills can be framed in
terms of performing some task subject to constraints imposed
by the environment. Constraints are usually unobservable
and frequently change between contexts. In this paper, we
present a novel approach for learning (unconstrained) control
policies from movement data, where observations are recorded
under different constraint settings. Our approach seamlessly
integrates unconstrained and constrained observations byper-
forming hybrid optimisation of two risk functionals. The fir st
is a novel risk functional that makes a meaningful comparison
between the estimated policy and constrained observations. The
second is the standard risk, used to reduce the expected error
under impoverished sets of constraints. We demonstrate our
approach on systems of varying complexity, and illustrate its
utility for transfer learning of a car washing task from huma n
motion capture data.

I. I NTRODUCTION

Many human motor skills involve performing some task
subject to constraints imposed either by the environment [8],
the task [3] or, more commonly, both. For example, when
opening a door, the door acts as an environmental constraint
that restricts the movement of one’s hand along the opening
arc of the door. When stirring soup in a saucepan, the sides
of the pan prevent the spoon moving beyond the radius of
the pan. Many tasks require self-imposed task constraints
to be fulfilled in order to achieve adequate performance.
For example when pouring water from a bottle to a cup
the orientation of the bottle must be constrained so that the
stream of water falls within the mouth of the cup. When
wiping a window, one’s hand must be constrained to maintain
contact with the wiping surface [9].

A promising approach to rapidly providing robots with
skills such as opening doors and washing windows (ref.
Fig. 1), is to take examples of motion from existing systems,
such as humans, and attempt to learn a control policy that
somehow captures the essence of the desired behaviour
[1], [7], [15]. Such techniques offer (i) a simple, intuitive
interface for programming robots, (ii) effective methods
for motion recognition and segmentation [7], and; (iii) ac-
celerated optimisation of movements by seeding learning
from demonstrations [12]. However, while a wide variety of
approaches for learning and representing movements have
been proposed in recent years (for a review, see [1] and
references therein), few have explicitly considered the effects
of constraints on motion and ways to cope with these in
learning.
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Fig. 1. Anthropomorphic DLR light-weight arm used in our experiments.

In this paper we address the problem of modelling control
policies in a way that is consistent with the fact that they
may be subject to generic (environmental or task-based)
constraints on motion. Our approach is inspired by direct
policy learning1 (DPL) [15] whereby we attempt to learn a
continuous model of the policy directly from motion data.
However, our method differs from standard DPL in that
we consider observations from policies projected into the
nullspace of a set of dynamic, non-linear, or even discon-
tinuous constraints, and that these constraints may change
between observations, or even during the course of a single
observation. In doing this we aim to illustrate how existing
DPL approaches (e.g. Dynamic Movement Primitives [13]
and other dynamical system-based approaches [6]) that cur-
rently rely on traditional supervised learning techniquescan
be extended to cope with the effect of motion constraints in
the data.

In previous work we proposed a reformulation of the risk
functional used for learning by introducing a projection of
the estimated policy onto the observations before calculating
errors [5]. This allowed us to effectively reconstruct policies
from constrained movements without explicit knowledge
of the constraints, provided the data was ‘rich enough’ in
terms of the different constraints contained in that data. This
was found to be highly effective for learning from data
containing high variability in the constraints, even for very
high dimensional systems such as 22-DOF ASIMO joint
space data. However, in its basic form the method presented
in [5] tends to prefer to explain variations in observationsas
variations in constraints instead of as variations in the policy
itself. This can result in poor performance when learning
on unconstrained data or data where constraints are highly
correlated between observations.

In this paper we propose an extension to that method to
deal with these problems. As a key ingredient, we partition

1To clarify the terminology used, we refer to DPL as the supervised
learning of policies from given data. This is in contrast to the learning
of policies directly from cost/reward feedback without theuse of a value
function, which is also sometimes referred to as DPL.
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our model optimisation into two parts. The primary part uses
the constraint-consistency objective function proposed in [5]
to deal with the effect of the constraints in the data. We then
perform a secondary optimisation to tighten the fit on the data
in regions where there is little variation in the constraints. By
extending the method in this way, we are able to seamlessly
integrate constraint-consistent learning with optimisation of
more standard risk functionals. We demonstrate the utility
of our approach for learning a car washing task from human
demonstration data.

II. L EARNING FROM CONSTRAINED POLICIES

Here, we briefly characterise the problem of direct policy
learning when constraints are applied to motion. Following
[15], [11], we consider the learning of the autonomous policy
mapping

u(t) = π(x(t)) , π : IRn 7→ IRd (1)

wherex ∈ IRn andu ∈ IRd are some appropriately chosen
state and action vectors2. We consider policies that are
constrained in such a way that there are hard restrictions
on movement. Analytically [16], this means that, under a set
of k-dimensional constraints

A(x, t)u = 0 (2)

the policy is projected into the nullspace of those constraints

u(x, t) = N(x, t)π(x(t)), (3)

where N(x, t) ≡ (I − A†A) ∈ IRd×d is in general a
non-linear, time-varying projection operator3 andA(x, t) ∈
IRk×d is some matrix describing the constraint. Constraints
of this form are common in scenarios where manipulators
interact with the environment, for example when grasping
a tool or turning a crank or pedal. They are also common
in controlling of redundant degrees of freedom [10], where
policies such as (3) are used, for example, to aid joint
stabilisation under task constraints.

In general, the goal of DPL is to approximate the policyπ

as closely as possible given observations (often in the form
of trajectories) of the states and actionsu(t), x(t). Here, the
fact that the observed action is constrained (3) complicates
learning in several ways [4], [5]. First there is the fact that
commonly the constraintA(x, t) (and thereforeN(x, t) also)
is not explicitly known and may be ambiguous. For example
when opening a door one might not know the exact radius
or opening arc of the door, or might not observe an obstacle
behind the door, blocking it. Second, the data set may benon-
convex (from the point of view of standard DPL approaches)
in the sense that there may be multiple observations made
at any given point under different constraints. For example
when observing wiping on several surfaces, the constraints
(and therefore the observedu) will differ between surfaces

2For example in kinematic control, the state vector could be the joint
angles,x ≡ q, and the action could be the velocitiesu ≡ q̇, or in dynamic
control a suitable state might be,x ≡ q, q̇, with actions corresponding to
applied torques,u ≡ τ .

3Here and throughout the paperA† denotes the Moore-Penrose pseu-
doinverse of the matrixA andI denotes the identity matrix of appropriate
dimension.

depending on their orientations in the work space. Finally,
there is adegeneracy problem due to the fact that, under any
given constraint and for any set of observations, there may
be multiple policiesπ that could be projected to produce
those observations.

While these issues prove problematic for methods that
do not take into account the effect of constraints, it was
recently shown that an effective strategy for dealing with
this is to seek the underlyingunconstrained policy, π, rather
than directly trying to fit the raw (constrained) data [4],
[5]. In previous work we proposed methods to do this for
the special case of potential-based policies [4], and later
extended this to learning generic policies [5]. For effective
learning the latter required rather high variability in the
constraints, and its performance sometimes suffered from
a tendency to misinterpret variability in the policy (as a
function ofx) with variability in the constraints, particularly
in case the observations were not constrained at all.

Here we further develop the method proposed in [5] in
order to (i) improve robustness by avoiding the misinter-
pretation problem, and (ii) seamlessly integrate constraint-
consistent learning with more standard learning approaches.
We turn to the details of the approach in the next section.

III. M ETHOD

Our method works on data that is given as tuples(xn,un)
of observed states and constrained actions. We assume that
all commandsu are generated from the same underlying
policy π(x), which for a particular observation might have
been constrained, that isun = Nnπ(xn) for some projection
matrix4 Nn. We assume that the projection matrix for any
given observation is not explicitly known, i.e. our data is
unlabelled with respect to the active constraints at the time
of observation. Our goal is to approximate the unconstrained
policy π(xn) as closely as possible. In the following we
briefly review how this can be done by optimisation of
the constraint-consistency objective function [5], and then
propose an extension to this method through a secondary
optimisation approach. We then use the extended method to
derive learning rules for two example policy models, based
on parametric and local linear regression.

A. Optimisation of the Inconsistency

In [5] a reformulation of the standard risk was proposed for
estimating a policỹπ(·) that isconsistent with our observed
un, knowing that it may be constrained (projected) by an
unknown constraint. For this a key observation is to note
that, in order to uncover the unconstrained policy we must
find a policy model that can beprojected in such a way that
the observed actions are recovered. That is, we require

u(x) := Pπ(x)

for an appropriate projection matrixP, that either projects
onto the same space as the (unknown)N (i.e. the image
of N), or an (even smaller) subspace of that. SinceN is
unknown, we must seek an alternative projectionP that

4Note that unconstrained observations are incorporated into this formu-
lation as special case whereN = I.



Fig. 2. Illustration of our learning scheme. Left: Direct least-squares
regression on constrained commandsu1,u2 results in averaging of the
observations̄u in a way that cannot explain the observed actions. Right:
The projection of the correct policyπ onto the observations matches those
observations.

approximates it. One such projection, which we know to
lie within this subspace, is the 1-D projection onto the
observed command itself, that isP = ûûT (ref. Fig. 2, right).
Furthermore, sinceu is given, we have all the information we
need to calculate this projection and use it for learning, neatly
side-stepping the need to explicitly model the full constraint
matrix N.

With this as motivation, it was proposed [5] to minimise
the inconsistency, defined as the functional

Ei[π̃] =

N
∑

n=1

‖un − ûnûT
n π̃(xn)‖2

=
N
∑

n=1

(

rn − ûT
n π̃(xn)

)2

with rn = ‖un‖, ûn =
un

rn

. (4)

Note that this reformulated risk functional avoids the model
averaging that would result from using the standard least
squares fit to the data(xn,un) (cf. Fig. 2, left) [5].

B. Secondary Optimisation of the Standard Risk

Optimisation of the inconsistency (4) has been demonstrated
to be effective when learning from data containing high
variability in the constraints for systems of varying size
and complexity [5]. However, in the simple form outlined
so far, it can suffer from the problem of degeneracy in the
set of models that are optimal with respect to (4). Because
the observationsu influence the estimated policy in a more
complex way than in direct regression, small variations in
the observations may result in large variations of the learnt
policy5, which can become catastrophic when the method is
given data with insufficient variability in the constraintsto
disambiguate the best policy models.

To illustrate the problem, Fig. 3 shows three candidate
policy models π̃1, π̃2 and π̃3 as well as data under a
single constraint (right) and two different constraints (left).
Consider that we have to select one of these candidates as our
policy model based on the available data. For the multiple
(i.e. variable) constraint case (Fig. 3, left), optimisingthe

5In machine learning terms, the pure inconsistency-based estimator has
high variance.

Fig. 3. Illustration of the model degeneracy problem. Shownare three
different models with equal inconsistency with respect to the observation
u1. Left: Given observations under different constraints, e.g. u2, the incon-
sistency error disambiguates between the three candidate models selecting
that which is consistent with both observations (i.e.π̃1). Right: Given only
observations under a single constraint there is ambiguity in which is the best
model since we cannot be sure about the policy components in the vertical
dimension.

inconsistency (4) clearly determines the best model given
the available data: In this case we would chooseπ̃1, since
this has the lowest inconsistency error,Ei[π̃1] < Ei[π̃2] <
Ei[π̃3].

However, when there is less variability in the constraints,
for example we only see an observation under a single
constraint (Fig. 3, right) there may be little difference inthe
inconsistency for the three models (here,Ei[π̃1] = Ei[π̃2] =
Ei[π̃3]) resulting in ambiguity as to which model to choose.
This is a critical problem, since if we select the wrong model,
e.g. π̃3, then it may significantly degrade performance both
in terms of prediction of the unconstrained policy (compare
π andπ̃3 in Fig. 3) and also the constrained policy (consider
the projection ofπ̃3 onto the vertical plane, and compare
with u2). Note also that this is a manifestation of the fact that
Ei is a lower bound on both the unconstrained policy error
(UPE) and the constrained policy error (CPE) [5], since it is
precisely these components of the policy that are projected
out in the calculation of the inconsistency error that lead to
the degeneracy in the models.

In order to deal with this problem, our proposal is to
perform an additionalsecondary optimisation to select be-
tween models. For this, we propose to optimise the secondary
objective

E2[π̃] =

N
∑

n=1

‖un − π̃(xn)‖2 (5)

under the constraint that

π̃ ∈ arg min
π

′

{Ei[π
′]} . (6)

That is, we propose to optimise the standard risksubject
to the model being consistent with the constrained observa-
tions6.

By performing this additional secondary optimisation we
tighten our fit to the available data and avoid models that are

6It should also be noted that in principle we may choose alternative
secondary optimisation functions depending on the application. For example,
we may wish to bias solutions toward a particular dynamic behaviour,
e.g. stabilising movements, subject to consistency with the demonstrated
observations.



not strongly supported by the inconsistency. For example, in
Fig. 3 (right), optimisation of (5) will result in model̃π2

being chosen since this has the lowerE2. Since we have no
information about the vertical component of the policy here,
choosing this model is more appropriate since there is little
support forπ̃1 or π̃3 based on the available data. In effect
this acts to regularise our model and improve safety in its
performance: In the case that observations are given under
an impoverished set of constraints, the model will at worst
reproduce the behaviour under those same constraints7.

Finally, it should be noted that in practice, the hard
constraint (6) may need to be softened to improve robustness
and avoid numerical instabilities. For this reason, in the
following sections we describe how this can be done by
looking at eigenvalues derived from gradients ofEi.

The proposed approach can be used in conjunction with
many standard regression techniques. However, for the ex-
periments in this paper, we restrict ourselves to two classes
of function approximator (i) simple parametric models with
fixed basis functions (Sec. III-C), and (ii) locally linear
models (Sec. III-D). In the following we describe how these
two models can be reformulated to take advantage of the
new approach.

C. Parametric policy models

A convenient policy model is given bỹπ(x) = Wb(x),
whereW∈ IRd×M is a matrix of weights, andb(x)∈ IRM

is a vector of fixed basis functions. This notably includes the
case of (globally) linear models where we setb(x) = x̄ =
(xT , 1)T , or the case of normalised radial basis functions
(RBFs) bi(x) = K(x−ci)

P

M
j=1

K(x−cj)
calculated from Gaussian

kernels K(·) around M pre-determined centresci, i =
1 . . .M . With this model, theinconsistency error from (4)
becomes

Ei(W) =

N
∑

n=1

(

rn − ûT
nWb(xn)

)2

=

N
∑

n=1

(

rn − vT
n w
)2

= Ei(w),

where we defined8 w≡vec(W) andvn≡vec(ûnb(xn)T )=
b(xn) ⊗ ûn in order to retrieve a simpler functional form.
Since our objective function is quadratic inw, we can
rearrange to give

Ei(w) =
∑

n

r2
n − 2

∑

n

rnvT
n w + wT

∑

n

vnvT
n w

= E0 − 2gTw + wT Hw

with H =
∑

n vnvT
n andg =

∑

n rnvn. Now, to solve for
the optimal weight vector, we could take the direct inverse

w1 = argmin Ei(w) = H−1g.

7This is similar to the minimum performance guarantee reported in [4]
for the special case of potential-based policies, now extended to the learning
of any arbitrary policy.

8To clarify notation: We denote the vector version of a matrixA ∈

IRn×m as vec(A) = a ∈ IR1×nm where the vectora is formed by
stacking the columns ofA on top of one another. Additionally, the notation
A⊗B is used to denote the Kronecker product of the two matricesA and
B.

However, this would ignore degeneracy in the solutions
and may result in over-fitting. To avoid this we instead
only optimise on elements of the weight vector that make
a significant contribution toEi. For this we perform an
eigendecomposition for the inversion

w1 = V1Λ
−1VT

1 g (7)

whereΛ is a diagonal matrix containing the large eigenval-
ues ofH (i.e. eigenvalues above some minimum threshold
λ ≥ λt) and the columns ofV1 are the corresponding
eigenvectors.

In the part of the parameter space spanned by the re-
maining small eigenvectors9 (λ ≤ λt) we then perform the
secondary optimisation. For the parametric model, we wish
to minimise

E2(W) =
N
∑

n=1

‖un − Wb(xn)‖2 (8)

subject to the solution being optimal with respect to the
inconsistency. We therefore look for a solution that has the
form

w = w1 + V2z. (9)

where the columns ofV2 contain the remaining eigenvectors
of H and z is a vector. Using a solution of this form
means that our optimisation of the model with respect to the
secondary objective does not affect the primary optimisation
of the inconsistency error.

Rearranging (8), we have

E2(W) =
∑

n

uT
nun−2

∑

n

uT
nWbn +

∑

n

‖Wbn‖
2 (10)

which can be written in terms ofw as

E2(w) =
∑

n

uT
nun − 2

∑

n

(bn ⊗ uT
n )w

+wT

(

∑

n

bnbT
n ⊗ I

)

w (11)

= E0,2 − 2mTw + wT Mw.

where E0,2 =
∑

n uT
nun, m ≡

∑

n(bn ⊗ uT
n )T =

vec(UBT ) andM ≡
(
∑

n bnbT
n ⊗ I

)

= BBT ⊗ I.
Substituting (9) and differentiating, we can then retrieve

the optimalz:

zopt = (VT
2 MV2)−1VT

2 (m − Mw1). (12)

We then combine (7) and (12) to find the optimal weights
for our model

wopt = V1Λ
−1VT

1 g + V2z
opt. (13)

Finally, in order to automatically select the minimum eigen-
value thresholdλt we perform a line search, repeating the
above optimisation for a series of values ofλt on a subset
of the data, and picking theλt which minimises the quantity

Eλ[π̃] = Ei[π̃] + αE2[π̃].

9Note that in the limit thatλt = 0, (6) acts as a hard constraint on the
secondary optimisation so that it only effects on model components that are
strictly undetermined by the primary optimisation ofEi.



Hereα is a weighting factor that reflects our prior belief on
whether the data contains variable constraints. For example
one would choose a very lowα for data containing very high
variance in the constraints.

D. Locally linear policy models

The basis function approach quickly becomes nonviable
in high-dimensional input spaces. Alternatively, we can fit
multiple locally weighted linear models̃πm(x) = Bmx̄ =
Bm(xT , 1)T to the data, learning each local model inde-
pendently [14]. For a linear model centred atcm with an
isotropic Gaussian receptive field with varianceσ2, we can
write the inconsistency error

Ei(Bm) =

N
∑

n=1

wnm

(

rn − ûT
nBmx̄n

)2

=

N
∑

n=1

wnm

(

rn − vT
n bm

)2
= Ei(bm)

(14)

where we definedbm = vec(Bm) and vn ≡ vec(ûnx̄T
n )

similarly to the parametric case. The factorswnm =
exp(− 1

2σ2 ‖xn−cm‖2) weight the importance of each obser-
vation (xn,un), giving more weight to nearby samples. The
optimal slopesBm with respect to (14) are again retrieved
using an eigendecomposition:

b1,m = argminEi(bm) = V1,mΛ−1
m VT

1,mgm (15)

whereΛm and V1,m are the large eigenvalues and corre-
sponding eigenvectors of the HessianHm =

∑

n wnmvnvT
n

for themth local model andgm =
∑

n wnmrnvn. We select
the number of eigenvalues used for the primary optimisation
of the inconsistency using a subset-validation approach sim-
ilar to the parametric case.

The secondary objective for this model is

E2(Bm) =
N
∑

n=1

wnm‖un − Bmx̄n‖
2

= E0,2 − 2mT
mbm + bT

mMmbm = E2(bm)

whereE0,2 =
∑

n wnmuT
nun, mm ≡

∑

n wnm(x̄n ⊗ uT
n )T

andMm ≡
(
∑

n wnmx̄nx̄n
T ⊗ I

)

. Similar to the parametric
case, we look for a solution of the formbm = b1,m +
V2,mzm. This yields optimal weights

bopt
m = V1,mΛ−1

m VT
1,mgm + V2,mzopt

m (16)

with

zopt
m = (VT

2,mMmV2,m)−1VT
2,m(mm − Mmb1,m). (17)

Finally, for predicting the global policy, we combine the local
linear models using the convex combination

π̃(x) =

∑M

m=1 wmBmx̄
∑M

m=1 wm

; wm = exp

(

−
1

2σ2
‖x − cm‖2

)

.

IV. EXPERIMENTS

In this section we report experiments exploring the perfor-
mance of the new approach when learning on data from
systems of varying complexity and size. First, in order to
illustrate the concepts involved, we apply our method to data
from a simulated 2-D toy system. We then test the scalability
of the method to higher dimensional systems with more
complex constraints using data from the joint-space of the 7-
DOF DLR lightweight arm (Fig. 1). Finally we demonstrate
the utility of our approach for learning a car-washing task
from human motion capture data.

A. Toy Example

Our first experiment demonstrates the robustness of our
approach for learning unconstrained policies from variable-
constraint data. For this we set up a simple toy example
consisting of a two-dimensional system with discontinuously
switching motion constraints. As an example policy, we used
a limit cycle attractor of the form

ṙ = r(ρ − r2), θ̇ = ω (18)

wherer, θ are the polar representation of the Cartesian state
space coordinates (i.e.x1 = r sin θ, x2 = r cos θ), ρ is the
radius of the attractor anḋθ is the angular velocity. For the
experiments we setρ = 0.5 m and ω = 1 rad s−1 with a
sampling rate of 50 Hz. Data was collected by recording 40
trajectories with random start states, of length 40 time steps,
generated by (i) the unconstrained policy and (ii) the policy
subject to random 1-D constraints. The latter had the form

A(x, t) = (α1, α2) ≡ α (19)

where theα1,2 were drawn from a normal distribution,αi =
N(0, 1). The constraints (19) mean that motion is constrained
in the direction orthogonal to the vectorα in state space.
These were randomly switched by generating a newα twice
at regular intervals during the trajectory, inducing sharpturns
in the trajectories as can be seen in Fig. 4.

We used a parametric model to learn the policy through the
hybrid optimisation approach as described in section III-C.
For this toy problem, we chose our function model as a set of
36 normalised RBFs centred on a6× 6 grid, and we simply
fixed the kernel width to yield suitable overlap. We repeated
this experiment on 100 data sets and evaluated the normalised
UPE and CPE (i.e. the prediction error with no constraints,
and that under the training data constraints [4], [5]) and
the inconsistency10, divided by the number of data points
and the variance of the policyπn on a subset held out for
testing. For comparison, we repeated the experiment using
(i) direct regression on the observations (i.e. minimisingthe
standard risk) and (ii) optimisation of the inconsistency alone
(i.e. minimising the functional (4) without the secondary
optimisation step) with the same RBF model.

Table I shows the results of learning with the different
methods under the different constraint settings. Looking at
the first row, we see that the direct regression approach is
effective for learning on unconstrained data, but performs

10Actually, for u ∈ IR2 the inconsistency is exactly equivalent to the
CPE, since both necessarily involve the same 1-D projection.



Fig. 4. Policy learnt with the direct approach (blue) and pure inconsis-
tency approach (red) when training on unconstrained (left)and randomly
constrained (right) data. The true policy (thin black arrows) and training
data (grey trajectories) are overlaid.

Method Constr. nUPE nCPE Norm. Incon.
Direct None 0.034± 0.044 0.034± 0.044 0.026± 0.039

Rand. 58.338± 9.556 8.596± 2.813 8.596± 2.813
Incon. None 26.640± 52.737 26.640± 52.737 0.014± 0.031

Rand. 0.118± 0.162 0.007± 0.010 0.007± 0.010
Hybrid None 0.065± 0.268 0.065± 0.268 0.042± 0.143

Rand. 0.373± 1.109 0.011± 0.017 0.011± 0.017

TABLE I

ERROR FOR THE DIRECT, INCONSISTENCY AND HYBRID OPTIMISATION

APPROACHES WHEN LEARNING ONK = 40 TRAJECTORIES OF LENGTH

N = 40 POINTS, SAMPLED FROM THE LIMIT CYCLE POLICY. ALL

VALUES GIVEN AS (MEAN±S.D.)×10−2

poorly on data containing random constraints. This is in line
with expectations since for the former the data is unaffected
by constraints and is thus already consistent (i.e. a unique
output is observed at each point in the input space), whereas
for the latter the variability in the constraints causes model
averaging. In contrast, looking at the second row we see
that optimisation of the inconsistency is highly effectivefor
learning the unconstrained policy when there is high varia-
tion in the constraints. However, on the unconstrained data,
though the normalised inconsistency (5th column) is low,
the policy errors are relatively large. The pure inconsistency
approach misinterprets the variation in the policy as variation
in the constraints, and fits an incorrect model (shown in red
in Fig. 4).

In contrast, the proposed hybrid approach achieves very
low errors both on the unconstrained and the constrained
data. With this approach we get the best of both of the
other approaches: For data that is already self-consistent
it benefits from the tight fit offered by direct least-squares
regression. Conversely if data contains variable constraints
a model that is consistent with the observations under the
different constraints is learnt.

To further test this, we repeated the experiment on data
containing several levels of variability in the constraints. For
this we again sampled a set ofK = 40 trajectories of length
N = 40 points from the limit cycle policy, however this time
we applied the constraints

A(x, t) = I − α̂
T
π
α̂π (20)

where α̂π ≡ απ/‖απ‖, απ ≡ R(θ)π(x) and R(θ) is a
rotation matrix with rotation angleθ. The latter was drawn
uniform randomly with increasing angular range, that is
θ ∼ U [−θmax, θmax] for increasingθmax. This constraint
was chosen since it allows us to smoothly vary the effect of
the constraints on the observations. For example, forθ = 0
the direction of the constraint is exactly orthogonal to the
policy at that point so that the resultant projection has no
effect on the policy. As the range ofθ increases however,
the observations of the unconstrained policy are increasingly
corrupted by the projections induced by the constraints.

Fig. 5 depicts how the UPE and CPE evolve with increas-
ing constraint variance (i.e. increasingθmax) for the direct,
pure inconsistency and hybrid optimisation approaches. For
the direct approach, the UPE and CPE are low when the
constraint variance is low, but rapidly increase as the variance
grows due to increased model-averaging. In contrast, the pure
inconsistency approach deals well with constraints of high
variance since this increases the span of the observations,re-
sulting in most of the components of the policy being picked
up by the inconsistency error. However when the variance
in constraints decreases, the pure inconsistency approach
misinterprets the remaining variability in the observations
(due to variation in the policy) as variation in the constraints,
causing an increase in error. Finally, the proposed hybrid
approach achieves consistently low errors irrespective of
the variance in the constraints, by automatically finding the
direct least-squares fit for low-variance in the constraints,
and increasingly using the constraint-consistent fit for high-
variance constraints.

B. Higher Dimensional Policies and Constraints

The goal of our second set of experiments was to evaluate
the scalability of the approach to higher dimensional systems
with constraints of varying dimensionality. This is important
when considering systems where the number of constraints
is near to the number of degrees of freedom of the system,
for example constraining the position and orientation of the
end-effector of a manipulator such as an anthropomorphic 7-
DOF arm. It is also the case that with increasing numbers of
dimensions there are increasing numbers of ways in which
the system can be constrained, in terms both of the different
dimensionalities of the constraints (i.e. rank of the constraint
matrix) and the ways in which constraints can be combined.

For our experiment, we used a kinematic simulation of the
7-DOF DLR lightweight robot (LWR-III). The experimental
procedure was as follows: We generated a random initial
posture by drawing 7 joint angles uniformly from half the
range of each joint, that isxi ∼ U [−0.5xmax

i ; 0.5xmax
i ],

where for examplexmax
1 = 170◦. We set up a joint limit

avoidance type policy asπ(x) = −0.05∇Φ(x), with the
potential given byΦ(x) =

∑7
i=1 |xi|

1.8. We then generated
100 trajectories with 100 points each following the policy
under 6 different constraints of differing dimensionality,
which we refer to as 1, 1-2, 1-2-3, etc. Here, the numbers de-
note which end-effector coordinates in task space11 we kept
fixed, that is, 1-2-3 means we constrained the end-effector

11The numbers can also be read as row indices of the6×7 Jacobian matrix.
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Fig. 5. Normalised UPE and CPE versus variance in the constraints for learning with the direct (left), pure inconsistency (centre) and hybrid optimisation
(right) approaches.

position, but allowed arbitrary changes in the orientation.
Similarly, 1-2-3-4 means we constrained the end-effector
position and the orientation around thex-axis, while allowing
movement around they andz axes. For all constraint types,
we estimated the policy from a training subset and evaluated
the normalised CPE on test data from the same constraint,
as well as the normalised UPE.

For learning in the 7-D state space, we selected locally
linear models as described in Sec. III-D, where we chose
rather wide receptive fields (fixingσ2 = 3) and placed the
centres{cm} of the local models such that every training
sample(xn,un) was weighted within at least one receptive
field with wm(xn) ≥ 0.7. On average, this yielded about 50
local models.

The results are shown in Table II where we can see the
following trends. First, as the constraint dimension increases,
learning with the direct approach yields increasingly poor
performance in terms of UPE and roughly consistent perfor-
mance in terms of CPE. This is to be expected since, being
naive to the effect of constraints, the direct approach attempts
to find the closest fit to the constrained observations. Further,
as the number of constraints increases the difference between
the constrained and unconstrained policy vectors increases
(since the number of components of the unconstrained policy
projected out by the constraints increases). As a result the
directly learnt model, while fitting the constrained policy
closely, performs increasingly poorly in terms of UPE.

Second, for the pure inconsistency approach, we see that
the CPE is worse for the 1-D constraint compared to the
direct approach, but much better for the higher dimensional
constraints. We also see much better performance in terms
of the UPE for the intermediate constraints, but very large
errors for the 6-D constraint. For the hybrid approach the
UPE is uniformly better, and the CPE lower in all but the
1-D constraint case.

The improved UPE performance for these methods may be
surprising given that the same constraint is applied for each
observation. This would suggest that certain components of
the policy are undetermined by the observations since they
are never unconstrained. However, here the constraint matrix
(i.e the Jacobian) is state-dependent, yielding somespatial
variability in the constraints, and thereby sufficient infor-
mation to improve the reconstruction of the unconstrained
policy.

Looking at the inconsistency and hybrid approaches, we

Method Constr. nUPE nCPE

Direct
1 26.94± 3.02 3.63± 0.54
1 - 2 70.51± 2.22 5.72± 0.66
1 - 2 - 3 80.70± 1.59 4.09± 0.33
1 -. . . - 4 86.63± 1.36 4.66± 0.44
1 -. . . - 5 91.47± 0.91 3.59± 0.39
1 -. . . - 6 96.78± 0.78 1.85± 0.27

Incon.
1 18.30± 5.46 14.53± 5.08
1 - 2 6.53± 2.90 1.04± 0.37
1 - 2 - 3 6.93± 2.79 0.50± 0.11
1 -. . . - 4 4.57± 2.49 0.27± 0.02
1 -. . . - 5 5.28± 3.40 0.16± 0.02
1 -. . . - 6 233.37± 136.97 0.04± 0.01

Hybrid
1 10.54± 4.56 6.98± 3.90
1 - 2 5.85± 1.94 1.00± 0.30
1 - 2 - 3 18.17± 8.00 0.55± 0.14
1 -. . . - 4 8.04± 4.16 0.28± 0.03
1 -. . . - 5 8.98± 5.25 0.18± 0.03
1 -. . . - 6 41.30± 3.93 0.05± 0.01

TABLE II

NORMALISED UPEAND CPEFOR THE THREE METHODS WHEN

TRAINING ON DATA FROM THE DLR ARM . ALL ERRORS NORMALISED

BY THE VARIANCE OF THE POLICY. WE REPORT(MEAN ± S.D.)×10−2

OVER 50 TRIALS WITH DIFFERENT DATA SETS.

see that performance (especially in terms of CPE) increases
with constraint dimensionality which can be explained by the
approximation of the projection (as discussed in Sec. III-
A) becoming increasingly accurate. In fact, for the 6-D
constraint the approximation is exact.

However, for this latter constraint, we see an explosion in
UPE for the pure inconsistency approach which is not seen
for the hybrid approach. We attribute this to the combined
spatial variation in the policy and the constraints in this
particular case, to which the inconsistency approach is overly
sensitive. On inspection we noted that the Hessian matrices
of the local models had become ill-conditioned in this case.
The secondary optimisation in the hybrid approach avoids
this problem and emphatically outperforms the two other
approaches.

C. Car Washing Experiment

Having validated our approach on data where the ground
truth (true unconstrained policy) was known, in this section
we report experiments on learning from human demonstra-
tions for seeding the robot motion. For this experiment
we chose to investigate the problem of learning to wash a
car. This is an example of a task which can be intuitively



described in terms of a simple movement policy (‘wiping’)
subject to contact constraints that vary depending on the
different surfaces of the car to be wiped. Due to the different
shapes and orientations of the car surfaces, complex, non-
linear contact constraints are imposed on the motion. The
resultant trajectories appear periodic, but are perturbedin
different ways by the constraints. The goal of our experi-
ments was to learn a policy that captured the periodic nature
of the movements, and generalised well over the constraints,
i.e. to unseen surfaces.

The experimental setup was as follows. Seven demonstra-
tions of a human wiping different surfaces with a sponge
were given to the robot. To simulate observations of washing
different surfaces of the car, the wiping was performed on
a perspex sheet placed at different tilts and rotations with
respect to the robot (see Fig. 6). Specifically, the sheet
was oriented to be flat (horizontal), tilted±16◦ and±27◦

about thex-axis (horizontal axis pointing directly ahead from
the robot) and±16◦ about they-axis (horizontal right-left
axis). The three-dimensional coordinates of the sponge were
tracked by a stereo vision system at a rate of 20 frames per
second (for details on the vision system see [2]).

We selected the local linear model for learning, with a
fixed kernel width ofσ2 = 0.025, and centres placed so
that every data point was weighted with at leastwm(xn) ≥
0.7. For this data set this yielded about 22 local models.
We trained this model with the three approaches on the five
trajectories corresponding to surface rotation about thex-
axis, holding the remaining two trajectories out for testing.

To evaluate performance we compared the policy pre-
dictions from the three models under different constraints
with the observed data. Specifically, since the ground truth
(including the true constraints) is unknown, we assumed
constraints of the formAj(x, t) = n̂j wheren̂j is the normal
to thejth surface, i.e. that the sponge did not penetrate, and
could not be lifted from the surface.

Under this approximation of the constraints, we found that
the policy learnt with the hybrid approach produced smooth,
periodic trajectories when implemented on the DLR arm both
under the test and training constraints (see accompanying
video). We regard this as remarkably good performance on
this very noisy data set.

V. CONCLUSION

In this paper, we described a method for robust learning of
policies from constrained observations. Building upon earlier
work [5] we introduced a two-stage optimisation approach
which seamlessly combines standard direct policy learning
with our idea of fitting a model that is consistent with vari-
able constraint data. Although the previous approach could
handle cases where demonstrated movements are subject to
variable, dynamic, non-linear and even discontinuous con-
straints, it suffered from poor performance on data containing
highly correlated constraints or purely unconstrained data.
The novel approach proposed here avoids these problems as
demonstrated in our experiments. We illustrated the utility
of our method for learning a car washing task from human
demonstration data.

Fig. 6. Above: Human wiping demonstrations on surfaces of varying tilt
and rotations. A stereo vision system was used to track the 3-D coordinates
of the sponge (coloured rectangles show the estimated position). Tilts of
±16o and +27o about thex-axis are shown. Below: Reproduction of the
movement on the DLR Lightweight arm on a training constraint(top row)
and an unseen test constraint (bottom row).
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