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Robust Constraint-consistent Learning

Matthew Howard, Stefan Klanke, Michael Gienger, Christiamerick and Sethu Vijayakumar

Abstract— Many everyday human skills can be framed in
terms of performing some task subject to constraints imposg
by the environment. Constraints are usually unobservable
and frequently change between contexts. In this paper, we
present a novel approach for learning (unconstrained) corbl
policies from movement data, where observations are recort
under different constraint settings. Our approach seamlesly
integrates unconstrained and constrained observations bper-
forming hybrid optimisation of two risk functionals. The fir st
is a novel risk functional that makes a meaningful comparisa
between the estimated policy and constrained observation¥he
second is the standard risk, used to reduce the expected erro
under impoverished sets of constraints. We demonstrate our gjg 1. Anthropomorphic DLR light-weight arm used in our exments.
approach on systems of varying complexity, and illustrate ts

utiIity for transfer learning of a car washing task from human In this paper we address the problem of modelling control
motion capture data. S : . .

policies in a way that is consistent with the fact that they
may be subject to generic (environmental or task-based)
constraints on motion. Our approach is inspired by direct

Many human motor skills involve performing some taskP0licy learning (DPL) [15] whereby we attempt to learn a
subject to constraints imposed either by the environmdpt [gcontinuous model of the policy directly from motion data.
the task [3] or, more commonly, both. For example, whehiowever, our method differs from standard DPL in that
opening a door, the door acts as an environmental constrale consider observations from policies projected into the
that restricts the movement of one’s hand along the openirty/lspace of a set of dynamic, non-linear, or even discon-
arc of the door. When stirring soup in a saucepan, the siddBuous constraints, and that these constraints may change
of the pan prevent the spoon moving beyond the radius gptween_observatl_ons, or even _durlng the course of a s_mgle
the pan. Many tasks require self-imposed task constraing®servation. In doing this we aim to illustrate how existing
to be fulfilled in order to achieve adequate performancd’PL approaches (e.g. Dynamic Movement Primitives [13]
For example when pouring water from a bottle to a cu@nd other dynamical system-based approaches [6]) that cur-
the orientation of the bottle must be constrained so that tHgNtly rely on traditional supervised learning techniqeas
stream of water falls within the mouth of the cup. Wher€ extended to cope with the effect of motion constraints in
wiping a window, one’s hand must be constrained to maintaithe data. _ _
contact with the wiping surface [9]. In previous work we proposed a reformulation of the risk

A promising approach to rapidly providing robots with functional used for learning by introducing a projection of

skills such as opening doors and washing windows (re?he estimated policy onto the observations before calicigat

Fig. 1), is to take examples of motion from existing system0rs [5]. This allowed us to effectively reconstruct pas
such as humans, and attempt to learn a control policy thPm constrained movements without eXp‘“_c't knowlqu_e
somehow captures the essence of the desired behavi@irthe constraints, provided the data was ‘rich enough’ in
[1], [7], [15]. Such techniques offer (i) a simple, intuigiv terms of the different constraints contained in that datas T

interface for programming robots, (ii) effective methodsVas found to be highly effective for learning from data

for motion recognition and segmentation [7], and; (iii) ac-tontaining high variability in the constraints, even forye

celerated optimisation of movements by seeding learnigjdh dimensional systems such as 22-DOF ASIMO joint
from demonstrations [12]. However, while a wide variety ofSPace data. However, in its basic form the method presented
approaches for learning and representing movements haliel®] t€nds to prefer to explain variations in observatiass
been proposed in recent years (for a review, see [1] any@riations in constraints instead of as variations in thicpo

references therein), few have explicitly considered ttieces  1tSelf. This can result in poor performance when learning
of constraints on motion and ways to cope with these iRn unconstrained data or data where constraints are highly
learning. correlated between observations.

In this paper we propose an extension to that method to
M. Howard, S. Klanke and S. Vijayakumar are with the Instingt d€@l With these problems. As a key ingredient, we partition
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our model optimisation into two parts. The primary part usedepending on their orientations in the work space. Finally,
the constraint-consistency objective function proposefb] there is adegeneracy problem due to the fact that, under any
to deal with the effect of the constraints in the data. We thegiven constraint and for any set of observations, there may
perform a secondary optimisation to tighten the fit on thadabe multiple policiesw that could be projected to produce
in regions where there is little variation in the constrairBy  those observations.
extending the method in this way, we are able to seamlesslyWhile these issues prove problematic for methods that
integrate constraint-consistent learning with optimaatof do not take into account the effect of constraints, it was
more standard risk functionals. We demonstrate the utilityecently shown that an effective strategy for dealing with
of our approach for learning a car washing task from humathis is to seek the underlyingnconstrained policy, 7, rather
demonstration data. than directly trying to fit the raw (constrained) data [4],
[5]. In previous work we proposed methods to do this for

Il LEARNING FROM CONSTRAINED POLICIES the special case of potential-based policies [4], and later
Here, we briefly characterise the problem of direct policyextended this to learning generic policies [5]. For effeti
learning when constraints are applied to motion. Followingearning the latter required rather high variability in the
[15], [11], we consider the learning of the autonomous golicconstraints, and its performance sometimes suffered from
mapping a tendency to misinterpret variability in the policy (as a

u(t) = w(x(1)) , R > R 1) function ofx) with variability in the constrai_nts, particularly
in case the observations were not constrained at all.

wherex € IR" andu € IR? are some appropriately chosen Here we further develop the method proposed in [5] in
state and action vectdtsWe consider policies that are order to (i) improve robustness by avoiding the misinter-
constrained in such a way that there are hard restrictioqgetation problem, and (ii) seamlessly integrate constrai
on movement. Analytically [16], this means that, under a setonsistent learning with more standard learning apprasaiche
of k-dimensional constraints We turn to the details of the approach in the next section.

Ax,t)u=0 (2) I1l. METHOD

the policy is projected into the nullspace of those constsai Our method works on data that is given as tuples, u,)
of observed states and constrained actions. We assume that

u(x,t) = N(x,t)mw(x(t)), (3) all commandsu are generated from the same underlying

where N(x,#) = (I — ATA) € R¥? is in general a policy 7 (x), yvhich for a particular observation might have
been constrained, thatis, = N,, 7 (x,,) for some projection

non-linear, time-varying projection operataand A (x,t) € ) - ;
R**¢ is some matrix describing the constraint. Constraintg?"’m')<4 N;,. We assume that the projection matrix for any

of this form are common in scenarios where manipulatorg'ven observation is not explicitly known, i.e. our data is

interact with the environment, for example when graspin nlabelled with respect to the active constraints at thes tim
a tool or turning a crank or pedal. They are also commo fqbservatlon. Our goal s to appfoxmate the unconstdalne

%‘ohcy w(x,) as closely as possible. In the following we
t

in controlling of redundant degrees of freedom [10], wher¢e . f ! h i be d b fimisati ‘

policies such as (3) are used, for example, to aid joi refly review ‘how this can be done Dy optimisation o

stabilisation under task constraints. e constraint-consistency objective function [5], anénth
propose an extension to this method through a secondary

In general, the goal of DPL is to approximate the policy LN
as closely as possible given observations (often in the for tl.mlsatlon. approach. We then use the e_xtended method to
erive learning rules for two example policy models, based

of trajectories) of the states and actian@), x(¢). Here, the i d local li !
fact that the observed action is constrained (3) complinatém parametric and local finear regression.

learning in several ways [4], [5]. First there is the facttthaa Optimisation of the Inconsistency

commonly the constraim (x, ¢) (and thereforédN (x, t) also . .

is not exp){icitly known ant(:i mglé be ambiguous(. Fo)r exar)npllen [.5] a_reformul_atlf) n of the_ stand_ard rlsI_< was proposed for
when opening a door one might not know the exact radiu%sumat'ng a pollcy_n-(-) that Isconsistent with our observed
or opening arc of the door, or might not observe an obstacl& knowing that it may be constrained (projected) by an

behind the door, blocking it. Second, the data set mayd unknown constraint. For this a key observation is to note

convex (from the point of view of standard DPL approachesi.hat’ in order to uncover the unconstrained policy we must

. . . nd a policy model that can bgrojected in such a way that
in the sense that there may be multiple observations maﬂjee observed actions are recovered. That is. we require
at any given point under different constraints. For exampl ' ' q

when observing wiping on several surfaces, the constraints u(x) := Pm(x)

(and therefore the observag will differ between surfaces ) o ) )
for an appropriate projection matriR, that either projects

2For example in kinematic control, the state vector could e jpint  onto the same space as the (unknowh)(i.e. the image

angles,x = q, and the action could be the velocitias= ¢, or in dynamic of N) or an (even smaIIer) Subspace of that. Sileis
control a suitable state might bg,= q, ¢, with actions corresponding to ’ ’

applied torquesn = . unknown, we must seek an alternative projectiBnthat
SHere and throughout the papext denotes the Moore-Penrose pseu-

doinverse of the matrixA andI denotes the identity matrix of appropriate  “Note that unconstrained observations are incorporatem this formu-

dimension. lation as special case whelé = 1.



Fig. 2. lllustration of our learning scheme. Left: Directat#-squares

regression on constrained commands, uz results in averaging of the )

observationsi in a way that cannot explain the observed actions. RightFig. 3. lllustration of the model degeneracy problem. Shawe three

The projection of the correct policyt onto the observations matches thosedifferent models with equal inconsistency with respectie bbservation

observations. u;. Left: Given observations under different constraintg, e, the incon-
sistency error disambiguates between the three candidatkelmselecting

approximates it. One such projection, which we know tdhat Whic_h is consisten_t with both opservatio_ns (ﬁq._). R_igt_n: G_-iven only
i ithin this subspace. is the 1-D broiection onto th observaylons under a single constraint there |s_amb|gnn7yh|ch |s_the _best
e wi p ! T proj ’ . €model since we cannot be sure about the policy componenteirartical
observed command itself, thatis= aa* (ref. Fig. 2, right).  dimension.
Furthermore, since is given, we have all the information we
need to calculate this projection and use it for learningtiye
side-stepping the need to explicitly model the full constra
matrix N.

With this as motivation, it was proposed [5] to minimise
the inconsistency, defined as the functional

inconsistency (4) clearly determines the best model given
the available data: In this case we would choase since
this has the lowest inconsistency errdk;,[71] < E;[@s] <
E;i[73).

However, when there is less variability in the constraints,
for example we only see an observation under a single

N constraint (Fig. 3, right) there may be little differencetive
Ex] = Z |, — a0l 7(x,)|? inconsistency for the three models (hdj}g[ﬁ-l] = E;[7q] =
n=1 E;[#3]) resulting in ambiguity as to which model to choose.
N ) This is a critical problem, since if we select the wrong model
= Z (rn — ﬁffr(xn)) e.g. s, then it may significantly degrade performance both
n=1 in terms of prediction of the unconstrained policy (compare
with 7, = [Ju,|, G,= Un (4) ™ andzsin Fig. 3) and also the constrained policy (consider
Tn the projection offrs onto the vertical plane, and compare

Note that this reformulated risk functional avoids the modewith uz). Note also that this is a manifestation of the fact that
averaging that would result from using the standard leadt: is & lower bound on both the unconstrained policy error

squares fit to the datéx,,, u,) (cf. Fig. 2, left) [5]. (UPE) and the constrained policy error (CPE) [5], since it is
S _ precisely these components of the policy that are projected
B. Secondary Optimisation of the Standard Risk out in the calculation of the inconsistency error that lead t

Optimisation of the inconsistency (4) has been demonstratée degeneracy in the models. .

to be effective when learning from data containing high In order to deal with this problem, our proposal is to
variability in the constraints for systems of varying sizePerform an additionakecondary optimisation to select be-
and complexity [5]. However, in the simple form outlinedfWeen models. For this, we propose to optimise the secondary
so far, it can suffer from the problem of degeneracy in th@bjective N

set of models that are optimal with respect to (4). Because - - 9

the observations influence the estimated policy in a more Eplm] = Z ln — 7 (n ) ®)
complex way than in direct regression, small variations in , n=t

the observations may result in large variations of the leardinder the constraint that

policy®, which can become catastrophic when the method is 7 € argmin {E;[x']} . (6)
given data with insufficient variability in the constrairts =
disambiguate the best policy models. That is, we propose to optimise the standard réskject

To illustrate the problem, Fig. 3 shows three candidatto the model being consistent with the constrained observa-
policy models 7, 7> and 7; as well as data under a tions®.
single constraint (right) and two different constraintsft. By performing this additional secondary optimisation we
Consider that we have to select one of these candidates as tighten our fit to the available data and avoid models that are
policy model based on the available data. For the multiple

. . . . Lo 6 i inci i
(|.e. varlable) constraint case (Flg. 3, Ieft), opt|m|S|rtge It should also be noted that in principle we may choose alterm

secondary optimisation functions depending on the apjicaFor example,
we may wish to bias solutions toward a particular dynamic aétur,

5In machine learning terms, the pure inconsistency-baséithaer has e.g. stabilising movements, subject to consistency with demonstrated
high variance. observations.



not strongly supported by the inconsistency. For example, However, this would ignore degeneracy in the solutions
Fig. 3 (right), optimisation of (5) will result in modek,; and may result in over-fitting. To avoid this we instead
being chosen since this has the lowey. Since we have no only optimise on elements of the weight vector that make
information about the vertical component of the policy herea significant contribution toF;. For this we perform an
choosing this model is more appropriate since there i littleigendecomposition for the inversion
support for@; or 73 based on the available data. In effect T
this acts to regularise our model and improve safety in its w1 =ViAVig (7)
performance: In the case that observations are given undghere A is a diagonal matrix containing the large eigenval-
an impoverished set of constraints, the model will at worsfies of H (i.e. eigenvalues above some minimum threshold
reproduce the behaviour under those same constfaints X\ > ),) and the columns ofV; are the corresponding
Finally, it should be noted that in practice, the harckigenvectors.
constraint (6) may need to be softened to improve robustnessin the part of the parameter space spanned by the re-
and avoid numerical instabilities. For this reason, in thenaining small eigenvectotg\ < )\;) we then perform the
following sections we describe how this can be done bgecondary optimisation. For the parametric model, we wish

looking at eigenvalues derived from gradientsigf to minimise
The proposed approach can be used in conjunction with N
many standard regression techniques. However, for the ex- Ey(W) = Z 1, — Wh(x,)||? (8)

periments in this paper, we restrict ourselves to two cksse
of function approximator (i) simple parametric models with

n=1

subject to the solution being optimal with respect to the

fixed basis functions (Sec. 1lI-C), and (ii) locally linear: : :
models (Sec. I1I-D). In the following we describe how thes |r(;(r:rcr>1n3|stency. We therefore look for a solution that has the

two models can be reformulated to take advantage of the o
w =w; + Vaz. (9)
new approach.
where the columns o¥> contain the remaining eigenvectors
of H and z is a vector. Using a solution of this form
means that our optimisation of the model with respect to the
secondary objective does not affect the primary optinosati
of the inconsistency error.

Rearranging (8), we have

C. Parametric policy models

A convenient policy model is given byt(x) = Wb(x,é;
whereW ¢ R**M is a matrix of weights, and(x) € R

is a vector of fixed basis functions. This notably includes th
case of (globally) linear models where we dsix) = x =
(xT,1)T, or the case of normalised radial basis functions

(RBFs) b;(x) = % calculated from Gaussian E2(W) =» ulu,—2> ulWb,+> [Wb,|? (10)
j=1 X—=Cj
kernels K(-) around M pre-determined centres;, i = " " "

1...M. With this model, theinconsistency error from (4) Which can be written in terms of as

becomes By(w) = Y ulu,—2> (by®ul)w
N
E(W) = Y (r.— 0 Whb(x,))’
n=1 +w? b, bl @1 |w 11
- | (Swoter)s
= Z (Tn - VSW) = El(w)a = EO,2 — 2mTW + WTMW.

n=1

_ T — T __

where we definétw =vec(W) andv,, = vec(,b(x,)7) = where Eg, = >, upun, m = 37 (b, ® w,)" =

vec(UBT) andM = (3, b,b? ® 1) = BB” @ I.

b(x,) ® 1, in order to retrieve a simpler functional form. n ) g .
(xn) ® D Substituting (9) and differentiating, we can then retrieve

Since our objective function is quadratic iw, we can

rearrange to give the optimalz:
Ei(w) = Y ra=2) mviw+w' Y vuviw 2 = (VZMV2)"'V3 (m — Mw,). (12)
n n n We then combine (7) and (12) to find the optimal weights
= FEy—2g"w+w/Hw for our model
with H=Y" v,vl andg =, r,v,. Now, to solve for woPt = Vi A 'VTg 4 VPt (13)

the optimal weight vector, we could take the direct inverse_. , ) . ,
Finally, in order to automatically select the minimum eigen

. —1 . .
wi = argmin E;(w) = H'g. value threshold\; we perform a line search, repeating the
"This is similar to the minimum performance guarantee regubiit [4] above optimisation for a series of valuesf on a subset

for the special case of potential-based policies, now eiterto the leaming Of the data, and picking th&; which minimises the quantity
of any arbitrary policy. 5 N 5

8To clarify notation: We denote the vector version of a matAx € E\[7] = Ei[n] + aks[7w].
R™™™ asvec(A) = a € RY™™ where the vectora is formed by
stacking the columns oA on top of one another. Additionally, the notation ~ °Note that in the limit that\; = 0, (6) acts as a hard constraint on the
A ® B is used to denote the Kronecker product of the two matrikesnd  secondary optimisation so that it only effects on model conents that are
B. strictly undetermined by the primary optimisation B .



Here « is a weighting factor that reflects our prior belief on IV. EXPERIMENTS

whether the data contains variable constraints. For ex@mp}, this section we report experiments exploring the perfor-

variance in the constraints. systems of varying complexity and size. First, in order to
] ) illustrate the concepts involved, we apply our method t@dat
D. Locally linear policy models from a simulated 2-D toy system. We then test the scalability

The basis function approach quickly becomes nonviab@ the method to higher dimensional systems with more
in high-dimensional input spaces. Alternatively, we can fiEomplex constraints using data from the joint-space of the 7
multiple locally weighted linear models,, (x) = B,,x = DOF D_LR lightweight arm (Fig. 1). Elnally we demqnstrate
B,.(x7,1)T to the data, learning each local model indethe utility of our approach for learning a car-washing task
pendently [14]. For a linear model centred @, with an  from human motion capture data.

isotropic Gaussian receptive field with variancg we can 5 Toy Example

write the inconsistency error ! .
Our first experiment demonstrates the robustness of our

N ) approach for learning unconstrained policies from vagabl
E;(B,,) = anm (rn - ﬁZBmxn) constraint data. For this we set up a simple toy example
n=1 consisting of a two-dimensional system with discontinupus

N ) switching motion constraints. As an example policy, we used
= Z Wnm (Tn — Vi by)” = Ei(by,) a limit cycle attractor of the form
n=1 . .
(14) P =r(p—1r?), 0=w (18)

wherer, § are the polar representation of the Cartesian state
space coordinates (i.e:; = rsind, x5 = rcosf), p is the

S|m|IarI3{ to the p.’;\ram(_atrlc case. The factots,, radius of the attractor anél is the angular velocity. For the
exp(— 5,7 [|Xn —cm||?) weight the importance of each Obser'experiments we seb =05 m andw = 1 rad s—1 with a

vatl_on (Xn, ), giving more weight to nearby samples_. Thesampling rate of 50 Hz. Data was collected by recording 40
optimal slopesB,,, with respect to (14) are again retrieved

) iqend ition: trajectories with random start states, of length 40 timpste
using an eigendecomposition. generated by (i) the unconstrained policy and (ii) the polic
b1 = arg min Ej(by,) = Vl,mA;IV{mgm (15) subject to random 1-D constraints. The latter had the form

A(x,t) = (a1,02) =« (19)

where we defined,, = vec(B,,) andv,, = vec(i,x.)

where A,,, and V, ,,, are the large eigenvalues and corre-
sponding eigenvectors of the HessHpR, = >, WV VL where thea; » were drawn from a normal distribution,, =
for themth local model ang,,, = ", wymrnv,. We select N(0,1). The constraints (19) mean that motion is constrained
the number of eigenvalues used for the primary optimisatioi the direction orthogonal to the vecter in state space.
of the inconsistency using a subset-validation approach si These were randomly switched by generating a netwice
ilar to the parametric case. at regular intervals during the trajectory, inducing shianms
The secondary objective for this model is in the trajectories as can be seen in Fig. 4.
We used a parametric model to learn the policy through the
N hybrid optimisation approach as described in section lII-C
Ey(Byn) = Z W [0y — B X2 For this toy problem, we chose our function model as a set of
n=1 36 normalised RBFs centred orba 6 grid, and we simply
= FEop»—2m!b, +b] M,b,, =Ex(b,) fixed the kernel width to yield suitable overlap. We repeated
this experiment on 100 data sets and evaluated the normalise
UPE and CPE (i.e. the prediction error with no constraints,
and that under the training data constraints [4], [5]) and
the inconsistendy, divided by the number of data points
and the variance of the policy,, on a subset held out for
ot T ot testing. For comparison, we repeated the experiment using
by = Vim Ay Vi m8m + Vamzy (16) (i) direct regression on the observations (i.e. minimising
with standard risk) and (ii) optimisation of the inconsistenlyne
(i.e. minimising the functional (4) without the secondary
7Pt = (VngMmVQ,m)*lVng(mm —M,,b1). (A7) optimisation step) with the same RBF model.
' ’ Table | shows the results of learning with the different
Finally, for predicting the global policy, we combine the& methods under the different constraint settings. Lookihg a
linear models using the convex combination the first row, we see that the direct regression approach is
effective for learning on unconstrained data, but performs

whereEps = >, Wnmulu,, My, = > W (X, @ ul)T
andM,,, = (Zn WnmZnXnl @ I). Similar to the parametric
case, we look for a solution of the fort,, = by, +
V2 m2zm. This yields optimal weights

M _

ZmZI memX . — 2

M 7 Wm = eXp | — 952 [x —cml” ). 10Actually, for u € IR? the inconsistency is exactly equivalent to the
Zm:l W CPE, since both necessarily involve the same 1-D projection

w(x) =



where &, = ax/||ax|, ar = R(0)w(x) andR(0) is a
rotation matrix with rotation anglé. The latter was drawn
uniform randomly with increasing angular range, that is
0 ~ U[-6™** g™**] for increasingd™**. This constraint
was chosen since it allows us to smoothly vary the effect of
the constraints on the observations. For examplepfer 0
\ the direction of the constraint is exactly orthogonal to the
policy at that point so that the resultant projection has no
effect on the policy. As the range @f increases however,
the observations of the unconstrained policy are increfsin
corrupted by the projections induced by the constraints.
Fig. 5 depicts how the UPE and CPE evolve with increas-
ing constraint variance (i.e. increasifg“®) for the direct,
pure inconsistency and hybrid optimisation approaches. Fo
the direct approach, the UPE and CPE are low when the
constraint variance is low, but rapidly increase as theavaré
grows due to increased model-averaging. In contrast, the pu
inconsistency approach deals well with constraints of high
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Fig. 4. Policy learnt with the direct approach (blue) andepimconsis-
tency approach (red) when training on unconstrained (kfijl randomly
constrained (right) data. The true policy (thin black arspvand training
data (grey trajectories) are overlaid.

Method]| Constr. nUPE nCPE Norm. Incon. ; . Ly g
Direct | None | 0.034F 0.044 | 0.034 = 0.044 | 0.026 £0.039 variance since this increases the span of the observatmns,
Rand. | 58.338 + 9.556 | 8.596+ 2.813|8.596+2.813 sulting in most of the components of the policy being picked
Incon. | None | 26.640 £ 52.737 | 26.640 £ 52.737 | 0.014 £ 0.031 ; ; i
Rand. | 0118+ 0162 0007+ 5010 | 0.007 £0.010 up by the_|ncon5|stency error. Howe\_/er wh_en the variance
Hybrid | None | 0.065E 0.268 | 0.065E 0.268 | 0.042 £0.143 In constraints deCfeaSQS, the pure |nCOﬂS|Stency approach
Rand.| 0.373+ 1.109| 0.011+ 0.017|0.01140.017 misinterprets the remaining variability in the observato
TABLE | (due to variation in the policy) as variation in the consitsj

causing an increase in error. Finally, the proposed hybrid
approach achieves consistently low errors irrespective of
the variance in the constraints, by automatically finding th
direct least-squares fit for low-variance in the constsgint
and increasingly using the constraint-consistent fit fghhi

- . ... . variance constraints.
poorly on data containing random constraints. This is ie lin

with expectations since for the former the data is unaffiécteB. Higher Dimensional Policies and Constraints
by constraints and is thus already consistent (i.e. a uniqyg, goal of our second set of experiments was to evaluate

output is observed at each point in the input space), Whereﬁ;.|se labili : : :
A X ty of th h to higherd I
for the latter the variability in the constraints causes alod scalability of the approach to higher dimensional syste

. | trast. 100ki tth d with constraints of varying dimensionality. This is impamt
averaging. In contrast, looking at the second row we Sgg, ., considering systems where the number of constraints
that (_)ptlmlsanon of thg |ncon5|§tency IS hlghly_eﬁgctm . is near to the number of degrees of freedom of the system,
'?a”?'”g the unconstra|ned policy when there is h!gh varag, example constraining the position and orientation & th
tion in the constraints. However, on the unconstramed,datgnd_eﬁector0f a manipulator such as an anthropomorphic 7-
though. the normalised |ncon3|stency (5th co!umn) IS lo OF arm. It is also the case that with increasing numbers of
the policy errors are relatively .Iar.ge..The pure inconsise ;o ngions there are increasing numbers of ways in which
?‘Pproa"h misinterprets t_he variation in the policy as VBT 4o system can be constrained, in terms both of the different
in th_e constraints, and fits an incorrect model (shown in ref:ilimensionalities of the constraints (i.e. rank of the craist
in Fig. 4). _ ) matrix) and the ways in which constraints can be combined.

In contrast, the proposed hybrid approach achieves very g or experiment, we used a kinematic simulation of the
low errors both on the unconstrained and the constrainedpor pLR lightweight robot (LWR-IIl). The experimental
data. With this approach we get the best of both of thgocequre was as follows: We generated a random initial

other approaches: For data that is already self-consistefisre by drawing 7 joint angles uniformly from half the
it benefits from the tight fit offered by direct least-square ange of each joint, that is; ~ U[—0.5z74%; 0,527

regression. Conversely if data contains variable com#sai \ynare for exampler7"** = 170°. We set up a joint limit

a model that is consistent with the observations under thg,,iqance type policy as(x) = —0.05V®(x), with the

different constraints is learnt. . otential given by®(x) =>"7_, |;|'*®. We then generated
To further test this, we repeated the experiment on dakng trajectories with 100 points each following the policy

containing several levels of variability in the constrairffor |\ ,nder 6 different constraints of differing dimensionality

this we again sampled a set &f = 40 trajectories of length \yhjch we refer to as 1, 1-2, 1-2-3, etc. Here, the numbers de-

N =40 points from thellimit cycle policy, however this time ,ote which end-effector coordinates in task sphoee kept

we applied the constraints fixed, that is, 1-2-3 means we constrained the end-effector

ERROR FOR THE DIRECTINCONSISTENCY AND HYBRID OPTIMISATION
APPROACHES WHEN LEARNING ONK = 40 TRAJECTORIES OF LENGTH
N = 40 POINTS, SAMPLED FROM THE LIMIT CYCLE POLICY. ALL
VALUES GIVEN AS (MEAN=S.D.)x 102

Ax,t) =1—alan, (20) The numbers can also be read as row indices ofithdacobian matrix.
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Fig. 5. Normalised UPE and CPE versus variance in the contsrior learning with the direct (left), pure inconsistgn@entre) and hybrid optimisation
(right) approaches.

position, but allowed arbitrary changes in the orientation Method fons"' s 9”4le302 5 ggig =
Similarly, 1-2-3-4 means we constrained the end-effector Direct | 1-2 7051+ 222 | 5724066
position and the orientation around thexis, while allowing 1-2-3 | 80.70+ 1.59 | 4.09+0.33
movement around thg and z axes. For all constraint types, 1-...-4| 86.63f 1.36| 4.66+£0.44
we estimated the policy from a training subset and evaluated i 2 gé-‘?"gi 8-3; iggi 8-2‘7’
the normalised CPE on test data from the same constraint, : : - :
; 1 1830+ 5.46 | 14.53+5.08
as well as the normalised UPE. incon. | 1-2 653+ 290 | 1.04+0.37
For learning in the 7-D state space, we selected locally 1-2-3 6.93+ 2.79| 0.50+0.11
linear models as described in Sec. 1lI-D, where we chose 1-...-4 457+ 249 | 0.27+£0.02
rather wide receptive fields (fixing? = 3) and placed the 1-..-5| 528+ 3.40| 0.16+0.02
centres{c,,} of the local models such that every training 1-..-6] 233.374136.97) 0.04+0.01
X o ) 1 10.54+ 4.56| 6.98+3.90
sample(x,, u,) was weighted within at least one receptive Hybrid | 1-2 585+ 194 | 1.00+030
field with w,,, (x,) > 0.7. On average, this yielded about 50 1-2-3 | 1817+ 8.00| 0.55+0.14
local models. 1-...-4| 8.04+ 4.16| 0.284+0.03
The results are shown in Table Il where we can see the 1-..-5| 898+ 525, 0.18+0.03
1-...-6| 41.30+ 3.93| 0.05+0.01

following trends. First, as the constraint dimension iRses,
learning with the direct approach yields increasingly poor TABLE Il

perform.ance in terms of UPE ‘?md roughly ConSiSt_ent perf(_)r- NORMALISEDUPEAND CPEFOR THE THREE METHODS WHEN
ma_‘nce in terms of CPE. Th!S Is to be_ expected since, bengAINING ON DATA FROM THE DLR ARM. ALL ERRORS NORMALISED
naive to the effect of constraints, the direct approachgits

to find the closest fit to the constrained observations. learth
as the number of constraints increases the difference lpetwe
the constrained and unconstrained policy vectors inceeasgee that performance (especially in terms of CPE) increases
(since the number of components of the unconstrained poligyith constraint dimensionality which can be explained by th
projected out by the constraints increases). As a result th@proximation of the projection (as discussed in Sec. lll-
directly learnt model, while fitting the constrained policyA) becoming increasingly accurate. In fact, for the 6-D
closely, performs increasingly poorly in terms of UPE. constraint the approximation is exact.

Second, for the pure inconsistency approach, we see thatHowever, for this latter constraint, we see an explosion in
the CPE is worse for the 1-D constraint compared to thgPE for the pure inconsistency approach which is not seen
direct approach, but much better for the higher dimensiongr the hybrid approach. We attribute this to the combined
constraints. We also see much better performance in termggatial variation in the policy and the constraints in this
of the UPE for the intermediate constraints, but very larggarticular case, to which the inconsistency approach isipve
errors for the 6-D constraint. For the hybrid approach theensitive. On inspection we noted that the Hessian matrices
UPE is uniformly better, and the CPE lower in all but theof the local models had become ill-conditioned in this case.
1-D constraint case. The secondary optimisation in the hybrid approach avoids

The improved UPE performance for these methods may QRis problem and emphatically outperforms the two other
surprising given that the same constraint is applied foheagpproaches.

observation. This would suggest that certain components of ) _

the policy are undetermined by the observations since thdy Car WWashing Experiment

are never unconstrained. However, here the constrainixnatHaving validated our approach on data where the ground

(i.e the Jacobian) is state-dependent, yielding sepatial  truth (true unconstrained policy) was known, in this sattio

variability in the constraints, and thereby sufficient infor-we report experiments on learning from human demonstra-

mation to improve the reconstruction of the unconstrainetions for seeding the robot motion. For this experiment

policy. we chose to investigate the problem of learning to wash a
Looking at the inconsistency and hybrid approaches, wear. This is an example of a task which can be intuitively

BY THE VARIANCE OF THE POLICY. WE REPORT(MEAN = S.D.)x 102
OVER50 TRIALS WITH DIFFERENT DATA SETS



described in terms of a simple movement policy (‘wiping’)
subject to contact constraints that vary depending on tt
different surfaces of the car to be wiped. Due to the differer
shapes and orientations of the car surfaces, complex, nc
linear contact constraints are imposed on the motion. Tt
resultant trajectories appear periodic, but are perturined

different ways by the constraints. The goal of our eXperiFig. 6. Above: Human wiping demonstrations on surfaces ofing tilt

ments was to learn a policy that captured the periodic natused rotations. A stereo vision system was used to track tbecBerdinates

of the movements, and generalised well over the constraing$ the sponge (coloured rectangles show the estimatedigusitilts of
+16° and +-27° about thez-axis are shown. Below: Reproduction of the

i.e. to unseen surfaces. movement on the DLR Lightweight arm on a training constrgfop row)
The experimental setup was as follows. Seven demonstrand an unseen test constraint (bottom row).

tions of a human wiping different surfaces with a spong L Y T

were given to the robot. To simulate observations of washi 1 1

different surfaces of the car, the wiping was performed o ‘

a perspex sheet placed at different tilts and rotations witt o

respect to the robot (see Fig. 6). Specifically, the she

was oriented to be flat (horizontal), tilte16° and +27°

about ther-axis (horizontal axis pointing directly ahead fromjg

the robot) and:16° about they-axis (horizontal right-left

axis). The three-dimensional coordinates of the sponge we

tracked by a stereo vision system at a rate of 20 frames p

second (for details on the vision system see [2]).
We selected the local linear model for learning, with a

fixed kernel width ofo? = 0.025, and centres placed so

that every data point was weighted with at least (x,,) >

0.7. For this data set this yielded about 22 local models.

i i ; wwdl] A. Billard, S. Calinon, R. Dillmann, and S. Schaal. Rolprbgram-
We tram_ed this model Wlth the three appro.aCheS on the fivé* ming by demonstration. Iiandbook of Robotics. MIT Press, 2007.
trajectories corresponding to surface rotation aboutthe 5] B. Bolder, M. Dunn, M. Gienger, H. Janssen, H. Sugiurad an

axis, holding the remaining two trajectories out for tegtin C. Goerick. Visually guided whole body interaction. IGRA, 2007.

; I3] S. Calinon and A. Billard. Learning of gestures by imitat in a
To evaluate performance we compared the pOIICy pre humanoid robot. Irimitation & Social Learning in Robots, Humans

dictions from the three models under different constraints g animals Behavioural, Social & Communicative Dimensions, 2007.
with the observed data. Specifically, since the ground trut4] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vijiy-

(including the true constraints) is unknown, we assumed Ma" Behaviour generation in humanoids by leaming paibtised
! policies from constrained motionAppl. Bionics and Biomechanics,

constraints of the form\ ; (x, t) = ii; whereii; is the normal 5:195-211. 2008.

to the jth surface, i.e. that the sponge did not penetrate, an{$] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Viiymar.
could not be lifted from the surface A novel method for learning policies from constrained motidata.
. o ) . In ICRA, 2009.
Under this approximation of the constraints, we found thatjg] A. lispeert, J. Nakanishi, and S. Schaal. Learning ettralandscapes
the policy learnt with the hybrid approach produced smooth,  for learning motor primitives. INIPS 2003.

o . . : 7] T. Inamura, |. Toshima, H. Tanie, and Y. Nakamura. Embddi
periodic trajectories when implemented on the DLR arm botl’l symbol emergence based on mimesis theniy... Robotics Research,

under the test and training constraints (see accompanying 23:363-377, 2004.

video). We regard this as remarkably good performance o8] K. Ohta, M. Svinin, Z. Luo, S. Hosoe, and R. Laboissierepti®al
this very noisy data set. trajectory formation of constrained human arm reaching enoents.

Biol. Cybern., 91:23-36, 2004.

[9] J. Park and O. Khatib. Contact consistent control fraorwfor
V. CONCLUSION humanoid robots. IHCRA, 2006.
[10] J. Peters, M. Mistry, F. Udwadia, J. Nakanishi, and She@t A uni-

In this paper, we described a method for robust learning of ste/"E)g ffﬁmg\a\/t)lrklfgrg%%%t control with redundant DOR&utonomous

.. . . T . obots J., A-12, .
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able constraint data. Although the previous approach could a. Ishiguro, and H. Witte, editorsAdaptive Motion of Animals and
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