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Transferring Human Impedance Behavior to
Heterogeneous Variable Impedance Actuators

Matthew Howard, David J. Braun, and Sethu Vijayakumar

Abstract—This paper presents a comparative study of ap-
proaches to control robots with variable impedance actuators
(VIAs) in ways that imitate the behavior of humans. We focus
on problems where impedance modulation strategies are recorded
from human demonstrators for transfer to robotic systems with
differing levels of heterogeneity, both in terms of the dynamics and
actuation. We categorize three classes of approach that may be
applied to this problem, namely, 1) direct, 2) feature-based, and
3) inverse optimal approaches to transfer. While the first is re-
stricted to highly biomorphic plants, the latter two are shown to
be sufficiently general to be applied to various VIAs in a way that
is independent of the mechanical design. As instantiations of such
transfer schemes, 1) a constraint-based method and 2) an appren-
ticeship learning framework are proposed, and their suitability to
different problems in robotic imitation, in terms of efficiency, ease
of use, and task performance, is characterized. The approaches
are compared in simulation on systems of varying complexity, and
robotic experiments are reported for transfer of behavior from
human electromyographic data to two different variable passive
compliance robotic devices.

Index Terms—Behavior transfer, imitation learning, passive
impedance control, variable stiffness actuation.

I. INTRODUCTION

IN RECENT years, variable impedance actuation has be-
come increasingly popular in the design and control of

novel robotic mechanisms [1], [2]. Variable impedance actu-
ators (VIAs) promise many benefits for the next generation of
robots, including 1) increased safety in settings where there is
human–robot interaction [3], 2) increased dynamic range (e.g.,
when throwing, energy may be stored in spring-like VIAs, be-
fore being released explosively for the throw [4]), and 3) in-
creased robustness when interacting with the environment [5].
Despite these benefits, however, a number of challenges remain
associated with the deployment of such actuators to the current
generation of robots. One major issue is that of how to control
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such mechanisms, and in particular, how to best utilize vari-
able impedance so that the benefits (such as compliance) are
exploited, while compromise on other aspects of performance
(such as precision) is avoided.

A promising approach to finding appropriate impedance con-
trol strategies on robots is to take examples from human be-
havior and attempt to mimic it. The human musculoskeletal
system, which is actuated by antagonistic muscles with inherent
viscoelastic properties [6], represents one of the best examples
of a system controlled with variable impedance actuation. A
large body of research studying human impedance modulation
exists in the biological literature and, as such, may be a rich
source of inspiration for designing controllers for robots [7].

In order to exploit these biological insights for control of
robotic VIAs, a number of technical problems must be ad-
dressed. A problem of primary concern is the heterogeneity
in the kinematics, dynamics, and actuation between the human
musculoskeletal system and robotic VIAs. This affects the trans-
fer of impedance behavior, both in terms of the control of the
variable impedance device and strategy employed in achieving
task goals.

More concretely, control of robotic VIAs to mimic human
impedance behavior remains a challenging problem. The con-
trol of impedance in the human musculoskeletal system can be
achieved by cocontraction of groups of antagonistic muscles. By
building robotic actuators with a similar antagonistic layout [8],
one can simplify the imitation task [e.g., by drawing a direct
correspondence between human electromyography (EMG) sig-
nals and actuator commands]. However, often such designs are
unfavorable since they tend to have rather complex, coupled dy-
namics and can be hard to build into multijoint devices. Other
proposed designs have focused on simplifying the dynamics
(and thereby the control) [2] or improving scalability [9], [10].
These often have several benefits, such as compactness, but the
difficulty then lies in finding appropriate controllers, especially
when trying to mimic the capabilities of humans [11] and exploit
the benefits of variable impedance.

On the other hand, some impedance strategies, which are
employed by humans, are highly adapted to certain specific
properties of the human body and may not transfer directly to
those of robotic plants. For example, it is well known that the
human musculoskeletal system suffers from signal-dependent
noise, that is, noise in the kinematics of movement in direct
proportion to the control signal [12]. To counter the effects of
signal-dependent noise, humans adapt their impedance in dif-
ferent ways, depending on the task, e.g., in tasks requiring high
precision, humans tend to increase impedance by cocontract-
ing [13]. However, most robotic systems do not suffer from such
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noise characteristics (e.g., noise is more commonly constant,
additive, and much smaller in magnitude); therefore, direct
transfer of the human impedance strategy may not be reason-
able: maintaining the same level of stiffness on a less noisy
robot would waste energy and reduce compliance without sig-
nificantly improving accuracy.

To overcome such problems, in this paper, we suggest two
approaches to the problem of transferring impedance con-
trol strategies across plants with heterogeneous dynamics and
actuation.

The first is a scheme in which human impedance character-
istics can be directly tracked on a robotic VIA. We employ a
closed-loop tracking scheme (first proposed in [14]) and illus-
trate its use in the context of imitation. In particular, we focus on
the issue of transfer of impedance (i.e., “impedance matching”)
between different systems with this approach, and demonstrate
its use in the context of online teleoperation of robotic VIAs.
This can be considered as imitation at the control level, i.e.,
building controllers that achieve the same impedance behavior
across heterogeneous systems.

The second approach is to employ inverse optimal control
(OC) to seek the objective of demonstrated behavior in the form
of a performance measure (cost function) [15]. We use record-
ings of task-oriented human behavior in which the impedance
strategy employed is (assumed to be) optimized with respect
to his or her dynamics. By applying apprenticeship learning
(AL) [16], [17], we show how the underlying optimization cri-
teria, which are used by the human to shape their impedance
strategy, can be extracted and transferred to design impedance
strategies that are suitable to different (heterogeneous) vari-
able impedance robots. We demonstrate and compare these ap-
proaches in simulation and through human/robot experiments.

II. PROBLEM DEFINITION

Our aim is to transfer behavior of an expert demonstrator (e) to
an apprentice learner (l) given that the expert and learner have a
very different embodiment,1 both in terms of their dynamics and
actuation. Specifically, we assume the expert has state ex ∈ Rm ,
controls movement with commands eu ∈ Rn , and has dynamics

e ẋ = ef(ex, eu) ∈ Rm . (1)

Note that the effect of the commands eu on the dynamics (i.e.,
the form of ef(·)) depends on the actuation mechanism of the
expert. In particular, we can rewrite (1) as

e ẋ = eg(ex, eτ ) ∈ Rm

where eτ = eτ (ex, eu) is the (in general, state-dependent) re-
lationship between the expert’s command signal eu and the
torques/forces applied by the expert’s actuators.

Our goal is to transfer behavior to a learner with a different
embodiment, both in terms of the dynamics and actuation. For

1In principle, we avoid making any assumption on the extent to which the
expert and learner plants may differ. However, in order to make a meaningful
comparison between their respective behaviors, we assume that there is a suffi-
cient overlap in their capabilities that they may both achieve similar success at
a given task.

Fig. 1. Correspondence problem between human and robotic actuation sys-
tems. (Left) Humans use muscle activations (e.g., utriceps and ubiceps ) to
control movement. (Right) Robotic systems are controlled with command sig-
nals to the different motors (e.g., um otor1 and um otor2 ). The torque generated
by those motors depends on the actuators used.

example, we may wish to take impedance behavior measured
from the human arm (actuated by antagonistic muscles) and
transfer it to a robotic manipulator (actuated by VIAs). We
denote the learner’s state as lx ∈ Rr , command signal lu ∈ Rs ,
and dynamics

l ẋ = lf(lx, lu) = lg(lx, lτ ) ∈ Rr (2)

where lτ = lτ (lx, lu) denotes the torques produced by the
learner’s actuators. Note that, in general, the state and action
space (ex, eu and lx, lu) may differ significantly between the
two plants: For example, for a human expert, eu may correspond
to muscle activations, whereas for a robot learner, lu may cor-
respond to desired positions of a set of servomotors. The state
of the robot lx may be sufficiently described by the joint an-
gles and positions (lx = (lq�, l q̇�)�), while that of a human
demonstrator may include additional biomechanical variables
(e.g., tendon slack lengths, muscle pennation angles, etc. [18]).
In addition, lf(·) and ef(·) may also differ, both in terms of the
parameter values (e.g., inertia, link lengths, joint axis positions,
and orientations), as well as in their parametric form.

Clearly, the differences in embodiment between demonstra-
tor and learner cause numerous difficulties when attempting to
transfer behavior. As an example, consider the problem of trans-
ferring the control strategy used by a human to perform some
task to a robotic imitator, as illustrated in Fig. 1. Imagine that
we are given a set of recordings of the behavior (e.g., in the form
of muscle activation profiles), and we wish to use this data to
reproduce the movement on a robotic system. Depending on the
hardware, there are a number of approaches that we may take
(see Fig. 2). In the following, we characterize these approaches
and the domains to which they are applicable.

A. Direct Imitation for Biomorphic Systems

First, if there is a close correspondence between the robot
and the human, the simplest approach is the direct imitation of
behavior. In the case of open-loop imitation, one would define
the correspondence eu ≡ lu (and, therefore, s = n) and execute
commands

lu(t) = eu(t) ∈ Rn . (3)
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Fig. 2. Routes to behavior imitation. Starting with recordings of the expert (hu-
man) behavior, we can identify three ways in which behavior can be transferred.
The first is to do a direct policy transfer, i.e., make a direct correspondence
between the human state and commands ex, eu and feed those directly as com-
mands to the robot lx, lu. The second is to record features of the expert behavior
e φ(ex, eu) (e.g., the stiffness profile during movement) and attempt to track
these with corresponding features of the robot lφ(lx, lu). The third is to take
an inverse optimal approach, in which recordings of task-oriented behavior are
used to extract the underlying objective function e J and then generate robot
behavior by optimizing for a corresponding robot cost function l J .

For closed-loop control, the demonstrator’s behavior can be
described in terms of a control policy

eu = eπ(ex, t) ∈ Rn (4)

and imitation is achieved by drawing correspondence in both
the state and action space (i.e., ex ≡ lx and eu ≡ lu) and im-
plementing a controller

lu = π̃(lx, t) ∈ Rn (5)

where π̃ is an approximation of eπ (e.g., estimated through
supervised learning on the demonstration data [19]–[22]).

Clearly, direct imitation is only possible in a few special cases
where the dynamics and actuation of the robot are especially
similar to that of the human. For instance, if the robot is actuated
with artificial muscles (e.g., McKibben muscles [23]), it may be
possible to directly feed the muscle activations recorded from a
human as a command signal to the robot actuators. Evidently,
this approach has the benefit of simplicity, but its applicability is
limited since such direct correspondence between demonstrator
and imitator is rare.

B. Feature Tracking for Abstracting Hardware Differences

A second approach is feature-based imitation of the observed
behavior. The basis of this approach is to select a set of salient
features of the demonstrated behavior eφ(ex, eu, t), find the
“equivalent” features of the robot’s behavior lφ(lx, lu, t), and
draw correspondence between the two (i.e., lφ ≡ eφ) [24]. For
example, the features might include the joint stiffness and damp-
ing profiles of the human arm that occur during movement. By
drawing an equivalence between these and the joint stiffness and
damping of the robot, the feature-based approach imitates be-
havior by matching those features as closely as possible during
the movement.

1) Benefits of Feature-Based Imitation: One of the bene-
fits of this approach is that it allows one to focus only on the

key features of the demonstrated behavior, while ignoring those
that are irrelevant and emerge solely as a consequence of the
demonstrator’s specific embodiment. For example, it is known
that there is a coupling between the damping and stiffness of the
human musculoskeletal system [25] so that any human demon-
strated behavior inherently contains a nonnegligible damping
profile, in addition to stiffness and position modulation. Since
this damping is inherent to the dynamics of the human, it can-
not be avoided whether or not it is beneficial for a given task.
In throwing, for instance, damping may be detrimental to per-
formance as it dissipates energy that could be used to throw
greater distances. A robotic imitator with decoupled control of
stiffness and damping (see, e.g., [26]) is not subject to such re-
strictions, and, therefore, may profit from imitating the stiffness
only (to exploit energy storage, similar to the human), while
avoiding energy dissipation by minimizing the damping during
the throw [4].

With a feature-based approach, we would seek to match only
the key beneficial features, and ignore extraneous properties of
the demonstrations. In other words, we seek to abstract the
behavior from the specific embodiment of the demonstrator and
seek ways to imitate these features independent of the specific
embodiment of the imitator system (i.e., design of the robotic
device). We clarify the issues involved in this with an example.

2) Example: Ideal VSA, MACCEPA, and Edinburgh SEA:
To illustrate the influence that different mechanical designs
have on the control of impedance features, such as stiffness
and equilibrium position, we consider three possible designs for
a single-joint VSA (see Fig. 3).

The first and simplest of the three is the idealized single-
joint VSA [see Fig. 3(a)], in which we assume that the stiff-
ness and equilibrium position are directly controllable (i.e.,
u = (q0 , k)�) and that the torque around the joint is given by

τ(q,u) = −k(q0 − q) ∈ R (6)

where q ∈ R is the joint angle. In this case, the control of equilib-
rium position and stiffness is independent, enabling any combi-
nation of position and stiffness to be selected. This is illustrated
in Fig. 3(a), right, where, for instance, moving along the y-axis
(corresponding to u2) adjusts the stiffness, but has no effect on
the equilibrium position, and vice versa. Unfortunately, in real
mechanisms, it is rarely possible to achieve such ideal behavior.

In contrast, consider the MACCEPA [2] and the Edinburgh
SEA [27] as examples of actuators of differing designs that have
both been realized in hardware. For the MACCEPA, the joint
torque is given by

τ(q,u) = κBC sin(u1 − q)
(

1 +
ru2 − (C − B)

A(q, u1)

)
∈ R

(7)
where u = (u1 , u2)� are the commanded positions of the
two servomotors [see Fig. 3(b)], q ∈ R is the joint angle, κ
is the spring constant, r is the radius of the winding drum
(mounted on the servo that extends the spring). A(q, u1), B,
and C are the distances illustrated in Fig. 3(b), with A(q, u1) =√

B2 + C2 − 2BC cos(u1 − q). Note that, due to the multipli-
cation of terms dependent on u1 and u2 , there exists a coupling
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Fig. 3. (Left) Geometry, dynamics, and hardware implementation of the 1-link variable stiffness actuators used in the numerical simulations and experiments.
(Right) Equilibrium position and stiffness as a function of commands u (evaluated at q = 0 rad, q̇ = 0 rad·s−1 ). (a) Ideal VSA. (b) MACCEPA. (c) Edinburgh
SEA.
between equilibrium position and stiffness, making independent
control of the two difficult. To illustrate this, we can make a sim-
ilar plot of the equilibrium position and stiffness as a function
of motor commands for this plant [see Fig. 3(b), right]. Here,
we can see that, although the equilibrium position is only influ-
enced by the first motor (u1), there is a rather complex, nonlinear
relationship between u1 and u2 and the stiffness.

For the Edinburgh SEA, an antagonistic arrangement is used
in which the motors adjust the position of two levers connected
through springs to the free link [see Fig. 3(c)]. In this case, the
torque around the joint is given by

τ(q,u) = ẑ�((F2(q, u2) − F1(q, u1)) × a(q)) ∈ R (8)

where u = (u1 , u2)� are the commanded positions of the
two servomotors, q ∈ R is the joint angle, ẑ is the unit vec-
tor along the joint rotation axis, a(q) = (a cos q, a sin q, 0)�,
Fi(q, ui) = κ(σi − σ0)σi

σi
, i ∈ {1, 2} are the forces due to

the two springs (both with spring constant κ), σ1 =
(−h − L sin u1 ,−d + L cos u1 , 0)� + a(q) and σ2 = (h +
L sin u2 ,−d + L cos u2 , 0)� − a(q) are the extensions of the
two springs (i.e., the vectors CA, and DB, respectively), and all
other quantities are illustrated in Fig. 3(c). In this case, due to
the antagonistic actuation, there is a strongly coupled, nonlinear
relationship between the motor commands and the joint equilib-
rium position and stiffness [as illustrated in Fig. 3(c)], making
it difficult to control these quantities directly.

These examples illustrate the fact that, even for relatively
simple VSA designs, there is considerable difficulty in directly
regulating the position and stiffness. At first glance, it would

seem necessary to develop specialized controllers for each de-
sign, in order to exploit their physical properties. However, in
Section III-A, we will outline a general method to control arbi-
trary VSAs with a constraint-based framework.

3) Disadvantages of Feature-Based Imitation: While the
feature-based approach can be highly effective for behavior
transfer in certain scenarios, it also has some difficulties in its ap-
plication. One of the primary problems is in identifying which
features of the demonstrator’s behavior are key to achieving
good task performance. In particular, effective use of feature-
based imitation requires an appropriate understanding of the
way in which different features affect task performance under
the dynamics of both the demonstrator and the robotic imitator.
Often, humans’ strategies for employing variable impedance
are highly adapted to certain specific properties of the muscu-
loskeletal system. The consequence of this is that care must be
taken when attempting to imitate that behavior to ensure that it
is appropriate for the robotic plant.

As an example, consider the task of point-to-point reaching
in free space (i.e., in the absence of external loads or other per-
turbations). Commonly, in such tasks, humans tend to increase
their impedance toward the end of the movement to ensure that
the target is hit accurately [13], [28] (i.e., to counter the effects
of signal-dependent noise [12]). This comes at the cost of in-
creased energy expenditure, since the human must cocontract
muscles to achieve this. However, for a less noisy robotic im-
itator, this may be unnecessary, since relatively high accuracy
(compared with the human) may be achieved even at relatively
low impedance. As such, a better strategy for the robot would
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be to keep impedance low throughout the movement, thereby
avoiding unnecessary energy consumption.

While the feature-based approach may suffer from such is-
sues, this does not mean that it should be ruled out for all
applications. For example, in the context of online, teleoperated
control of a robot, the feature-based approach can be exploited
to provide an intuitive way for a human operator to control a
slave robot. Feature-based imitation is particularly suitable in
such online, interactive control scenarios, since its speed and
efficiency makes the control responsive, and the proficiency of
the operator at controlling the robot for a given task can help
to overcome errors due to the mismatch in the dynamics. It
is, therefore, worthwhile to consider feature-based imitation in
the light of the requirements of applications. In Section III-
A, we outline a constraint-based approach to feature tracking
for the control of VIAs and illustrate its use experimentally in
Section IV.

C. Inverse Optimal Control for Task-Based Imitation

The third behavior transfer approach, which is considered in
this paper, is that of task-based imitation through inverse OC.
The idea behind this approach is to seek the objectives (i.e., task
goals) of the demonstrated behavior, and then present a corre-
sponding set of objectives to the imitator. Specifically, in this
approach, it is assumed that the demonstrator’s behavioral goals
are encoded in the form of some objective function eJ(·) by
which task performance is measured. Demonstrated behavior is
assumed to optimize this function with respect to the demonstra-
tor’s dynamics, and therefore, similarly optimal behavior may
be achieved by the imitator if a correspondent objective function
lJ(·) can be defined and optimized.2

With this representation (i.e., drawing the correspondence
eJ ≡ lJ), behavior is transferred at the level of task goals (i.e.,
via the objective function that defines the task), independent of
the specific control strategy, or embodiment of the demonstrator.
Furthermore, by optimizing the imitator (robot) behavior in such
a way as to take into account the imitator’s dynamics, task-
based imitation allows different strategies to be planned that are
tailored to the imitator’s embodiment.

1) Objective Functions for Demonstrated Trajectories:
While inverse OC may be formulated in several different ways
according to the setting [17], [29]–[31], in this paper, we pri-
marily focus on discrete movements (i.e., with a finite duration).
Specifically, we assume that each demonstration is given in the
form of a trajectory through the state–action space of the demon-
strator, ex(t), eu(t), from start state ex0 , and with duration3 T .
The trajectory is assumed to be optimal with respect to some
(unknown) objective function

eJ = eh(ex(T )) +
∫ T

0

e l(ex, eu, t) dt (9)

2By convention, in this paper, it is assumed that e J and l J represent cost so
that their minimization indicates better performance.

3For simplicity, through the paper, we assume finite length trajectories of
equal length. However, as discussed in [17] and [31], inverse OC techniques are
also readily extended to variable length, or even infinite horizon tasks.

where eh(·), e l(·) ∈ R are cost functions that are defined
on the state–action space of the demonstrator. For instance,
e l(ex, eu, t) may describe the instantaneous power consumed
by the demonstrator’s actuators (e.g., the metabolic energy con-
sumed by human muscles at a given activation). Note that here,
since the optimality of the demonstrated trajectories depends
on the demonstrator’s dynamics ef(·), the recorded trajectories
will not, in general, be optimal under the dynamics of a different
(learner) system lf(·), i.e.,4{e x̄, e ū | ef(·)} �= {l x̄, l ū | lf(·)}.

Accordingly, in order to seek appropriate strategies for the
imitator, an equivalent objective function

lJ = lh(lx(T )) +
∫ T

0

l l(lx, lu, t) dt (10)

must be defined on the learner’s state–action space, where the
terms lh(·), l l(·) ∈ R define cost terms with a meaningful corre-
spondence to those of the expert eh(·), e l(·). For example, if the
term e l(ex, eu, t) of a human demonstrator represents the en-
ergy consumption of the muscles, one might define l l(lx, lu, t)
as the electrical power consumed by the motors of a robotic
manipulator. The goal of imitation then is to find the optimal
behavior for the learner {l x̄, l ū} under the dynamics lf(·) with
respect to the equivalent objective function (10).

2) Benefits of Task-Based Imitation: Similar to feature-
based approaches to imitation (see Section II-B), the ease with
which we can define correspondent cost functions [see (9) and
(10)] will depend on the specific embodiments of the two plants.
For example, cost terms that are dependent on features, such as
end-effector position, may be defined as exactly correspondent,
whereas terms that are dependent on other properties, such as
the applied torque or impedance, may require more complex
definitions. A major benefit of this approach, however, is that
often it is much easier to define correspondence at the level of
the task, rather than at the detailed control level of the plants.
For instance, when imitating human behavior (see Fig. 1), the
selection of which dynamics characteristics to match (e.g., stiff-
ness, damping, etc.) in a feature-based imitation approach will
depend critically on the effect those have on the dynamics of the
two plants with respect to the task goals. In contrast, with task-
based imitation, only the salient features (e.g., target accuracy,
energy consumption) are specified, with the low-level details of
the behavior automatically handled by the control optimization.

III. METHOD

In this section, we turn to the implementation details of be-
havior transfer under the different approaches. We first out-
line a method for feature-based transfer tailored to imitation of
impedance using a closed-loop tracking framework. We then
describe an approach to task-based imitation through AL for
inverse OC.

4For compactness, here, we use the “bar” notation to denote optimality, i.e.,
ū denotes the optimal command sequence, and x̄ denotes the optimal trajectory
in state space.



852 IEEE TRANSACTIONS ON ROBOTICS, VOL. 29, NO. 4, AUGUST 2013

A. Imitation by Impedance Feature Matching

Here, we consider the problem of (feature-based) transfer of
a demonstrator’s impedance on a robotic system. In particular,
we wish to imitate the stiffness and equilibrium position of
the demonstrator, as features of the behavior, i.e., we draw the
correspondence

eφ ≡ lφ ⇒ (eq0
�, ek�)� ≡ (lq0

�, lk�)� (11)

where eq0 ∈ Rp is the joint equilibrium position vector5 of
the demonstrator, ek = vec(eK) ∈ Rp2

is the demonstrator’s
joint stiffness matrix eK ∈ Rp×p in the vector form, and lq0
and lk are the corresponding equilibrium position and stiffness
elements for the learner. Since we are considering impedance
matching in joint space, we also assume that there is some
meaningful correspondence between the joint space kinematics
(q0) and impedance (k) of the two systems, i.e., between eq and
lq, and in particular, that they are of equal dimension eq, lq ∈
Rp (and therefore lq0 ∈ Rp , lk ∈ Rp2

, and eφ, lφ ∈ Rμ with
μ = p + p2).

1) Estimation of Impedance Features: In order to achieve
imitation of the features defined in (11), some scheme for their
estimation (or measurement) is required both for 1) the demon-
strator and 2) the imitator. In the case of the former, feature
estimation is required to extract the desired impedance from the
demonstrations, i.e., to provide a reference to the imitator. In the
latter case, estimation is desirable for feedback purposes (i.e., to
evaluate the accuracy with which the demonstrator’s impedance
is reproduced).

To satisfy these requirements, we may appeal to several
existing approaches for the estimation of the demonstrator’s
impedance. For example, one approach is to use surrogate
measures of the impedance, based on measurable quantities
such as muscle activations/cocontraction levels from EMG sen-
sors [32]–[35]. An alternative approach (favored in this paper)
is to use estimates of the demonstrator and imitator impedance
that is derived from models of their respective dynamics.

Specifically, we assume that for both plants, the relationship
between the state e,lx, the command vector e,lu, and the joint
torque is given, i.e.,

eτ = eτ (ex, eu) ∈ Rp (12)

for the demonstrator, and

lτ = lτ (lx, lu) ∈ Rp (13)

for the imitator. These may be given in a closed form6 or as a
nonparametric model (e.g., from nonparametric regression).

5For space reasons, here, we primarily consider impedance matching in the
joint space; however, the methods that are presented can easily be extended to
stiffness and equilibrium position matching in task space through the approach,
which is described in [14].

6In our experiments, we employ a biomechanical model of the musculoskele-
tal system (including muscle dynamics) to predict human impedance features,
and a rigid-body model of the actuators, validated by a system identification,
for the robots (for details, see Section IV).

The equilibrium position of the joints7 as a function of state
and command

q0 = q0(x,u) ∈ Rp (14)

is defined as the solution of τ (x,u) = 0 for q. This may be
found either analytically, or numerically with a root-finding
algorithm such as the Newton–Raphson method. The joint stiff-
ness matrix is defined as

K = K(x,u) = −∂τ (x,u)
∂q

∣∣∣
q

∈ Rp×p . (15)

Again, this may be derived in a closed form, or numerically, e.g.,
through finite differences. Computing (14) and (15) from (12)
therefore provides an estimate of the demonstrator’s stiffness
and equilibrium position, and computing the same from (13)
yields similar estimates for the imitator.

Note that, for both plants, (14) and (15) may be nonlinear
functions of the state and commands, and that, depending on
the system, the number of independent elements of K may vary.
For example, the stiffness of each joint may be coupled so that
K is (nondiagonal) symmetric, as in the human musculoskele-
tal system where synergistic muscle groups, biarticular muscles,
the arrangement of tendons, etc., can cause cross coupling of
joints (see, e.g., [6]). Alternatively, the stiffness of individual
joints may be independent (as would be the case, for example,
in a chain of MACCEPAs [2]), in which case, K reduces to a
diagonal matrix. In such cases, the dimensionality of the imita-
tion problem (11) may be reduced (and computation efficiency
gained) by omitting those elements that cannot be independently
varied.

2) Resolved Equilibrium and Stiffness Tracking Control:
Given estimates of the equilibrium position and stiffness for
both the demonstrator and imitator, we are now in a position to
design controllers that enable the robotic imitator to mimic the
demonstrated impedance. While different approaches for stiff-
ness modulation in VSAs have been proposed [36], [37], here,
we briefly outline a recent model-based approach that is well
suited for closed-loop stiffness tracking on a variety of differ-
ent VSAs [14]. The proposed approach is based on closed-loop
tracking, using the estimated stiffness eK and equilibrium po-
sition eq0 of the demonstrator as the reference target.

Noting that in general (13) may be a nonlinear function of
the commands u, a direct (linear, orthogonal) decomposition
for control of (the imitator’s) equilibrium position and stiffness
is not feasible in general. Instead, we move to the command
velocity space for control: Taking the time derivative of (14)
and (15) for the imitator, the linearized, forward impedance
dynamics are

l q̇0 = Jq0 (
lx, lu)l u̇ + Pq0 (

lx, lu)l ẋ (16)

l
k̇ = Jk (lx, lu)l u̇ + Pk (lx, lu)l ẋ (17)

7For simplicity, we assume that the torque functions e , lτ(·, ·) in (12) and
(13) represent the torque around the joint in the absence of an external load,
and therefore, (14) represents the unloaded equilibrium position. If, instead,
we wish to estimate the (link side) equilibrium position under an external load,
then q0 (x, u) must instead be computed as the solution to τ(x, u) + τe = 0,
where τe represents the external torque due to the load.
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where l q̇0 ,
l
k̇ are the change in equilibrium position and stiff-

ness with respect to time, l u̇ ∈ Rs is the rate of change of motor
commands, Jq0 ∈ Rp×s and Jk ∈ Rp2 ×s are the Jacobian of
the equilibrium position and the stiffness with respect to motor
commands, while Pq0 ∈ Rp×r and Pk ∈ Rp2 ×r are the corre-
sponding Jacobians with respect to the state.

To simultaneously control equilibrium position and stiffness
(in joint space8), we can invert this relationship to yield9

l u̇ = J†ṙ + (I − J†J)u0 (18)

where ṙ = (l q̇0 − Pq0
l ẋ,

l
k̇ − Pk

l ẋ)� ∈ Rp+p2
, J = (Jq0 ,

Jk)� is the combined Jacobian, I ∈ Rs×s is the identity ma-
trix, J† denotes the Moore–Penrose pseudoinverse of J, and
u0 ∈ Rs is an arbitrary vector. The latter can be used to resolve
any further redundancy in the actuation (such as additional ac-
tuators used for varying damping [38] or for mechanisms where
multiple actuators are used to control variable stiffness elements,
e.g., [39]).

Application of (18) requires state derivatives, provided by
feedback, or calculated from the analytical model of the system
dynamics. To avoid the requirement on analytical modeling,
as well as to circumvent the noise and phase-lag issues that
are related with the feedback on l ẋ, we employ online feedback
about the current stiffness and equilibrium states, i.e., we choose
ṙ according to the difference in the desired and actual equilib-
rium and stiffness values ṙ = κp(eq0 − lq0 ,

ek − lk)�, where
κp is a gain parameter. This solution is similar to closed-loop
inverse kinematic control [40], and mitigates instabilities due to
drift [41].

3) Benefits of Resolved Impedance Tracking: Imitation of
the demonstrated impedance through this approach has several
benefits. The first is that it enables us to match these features
of the demonstrator’s behavior, with relative ease, in a device-
independent way. For example, if we wish to track the stiffness
of a single joint of a human demonstrator, then we are free to
choose the robotic mechanism: in this case, any of the VSAs
that are described in Section II-B could be used.

A second benefit is the flexibility that this approach gives in
selecting the correspondence between demonstrator and imita-
tor features. In particular, the explicit decomposition into task
and nullspace parts in (18) means that features deemed to have
lower importance in the imitated behavior can be either ignored
(by eliminating rows of J), or tracked with lower priority (by
pushing these features into the nullspace).

For example, consider the case of behavior transfer from a
demonstrator with stiffness matrix eK that is constrained al-

8Note that the present approach can also be used for the tracking task (e.g.,
end-effector) space stiffness and equilibrium position. Denoting the task-space
coordinates as s ∈ Rp , and the Jacobian from joint to task space as W(lq) ∈
Rp×p (assumed to be square and full rank), the task-space stiffness is lKs =
(W�)−1 lKW−1 ∈ Rp×p , and the task-space equilibrium position l s0 ∈ Rp

is the solution of
Fs = (W�)−1 lτ = 0

where Fs is the task-space restoring force. Given l s0 and lKs , we can then
derive the Jacobians Js0 ∈ Rp×s and Jk s ∈ Rp 2 ×s , with respect to the motor
commands lu, and perform tracking in a similar way as in the joint space
approach [14].

9We omit the dependence on lx and lu for readability.

ways to be symmetric (e.g., due to joint coupling arising from
biarticular muscles) to a (fully actuated) robotic imitator (see,
e.g., [10]) where the entire stiffness matrix lK can be con-
trolled. In this case, we can draw correspondence on a subset of
the elements of eK and lK (e.g., define the feature vectors as
eφ = (eq0

�, diag(eK)) ∈ R2p and lφ = (lq0
�, diag(lK)) ∈

R2p ) and then use the remaining degrees of freedom of the
imitator for other objectives (e.g., joint stabilization through
active damping [42]). The latter may be incorporated into the
imitator’s behavior through the nullspace term u0 in (18).

B. Imitation by Inverse Optimal Control

In this section, we consider the transfer of behavior through
inverse OC. In particular, we wish to imitate the demonstrator
on the level of task goals as encoded by the objective function
optimized, i.e., drawing the correspondence

eJ ≡ lJ ∈ R (19)

where eJ and lJ are objective functions for the expert and
learner, respectively.

In this paper, we pursue an approach based on AL [17],
whereby the demonstrator’s cost function is approximated by a
parametric model J̃(w) with the parameters w estimated from
the demonstration data. A schematic overview is illustrated in
Fig. 2 (outer path), which shows the processing steps, and the
inputs required at each stage. Reading from the top left, we first
collect demonstrations from an expert (e.g., a human) perform-
ing some task. This is fed into a module for AL (top right), along
with information about the demonstrator’s dynamics. Based on
these, estimates w̃ of the parameters of the expert’s cost func-
tion are made that are then fed to the OC module (bottom right)
along with a model of the imitator (robot) dynamics. The OC
module finds the optimal strategy for the imitator, with respect
to the learnt cost function and imitator dynamics, and this is, fi-
nally, sent to the robot for execution. In the following, we briefly
describe the details of the AL and OC components.

1) Multiplicative Weights Apprenticeship Learning: In
recent years, numerous approaches to inverse OC have been
proposed [17], [29]–[31], [43]–[46]. The method chosen here is
called multiplicative weights apprenticeship learning (MWAL),
originally developed in [16]. The algorithm is based on princi-
ples of adversarial game theory and, as such, has been shown to
be a robust method for AL. Furthermore, its efficiency makes
it well suited for learning in the robotics domain, where state–
action spaces are typically high-dimensional and continuous.

The method works on data given as a set ofJ trajectories D =
{(exj

0 ,
euj

0), . . . , (
exj

T , euj
T )}Jj=0 of states ex and actions eu

recorded from the demonstrator. In the model-based approach
described here, the expert’s dynamics (1) are assumed to be
known, i.e., the function

e ẋ = ef(ex, eu) ∈ Rm

is given or may be approximated either through a system iden-
tification or dynamics learning10 [8], [48].

10Note, however, that even in the absence of a model of e f , MWAL may also
be applied using model-free approaches. See, e.g., [47].
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The trajectories in D are assumed to be optimal under the
dynamics (1), with respect to a cost function of the form

eJ =
η∑

i=1

wi
ehi(ex(T )) +

I∑
i=η+1

wi

∫ T

0

e li(ex, eu, t) dt

(20)
or, more compactly

eJ = w�ψ(ex, eu). (21)

Here, ehi(·), e li(·) ∈ R are a set of basis functions that rep-
resent terminal and running costs, respectively, i.e., ψ =
(eh1 , . . . , ehη ,

∫ T

0
e lη+1dt, . . . ,

∫ T

0
e lIdt)�. These may be

made up of a set of bases for a generic function approxima-
tor (e.g., Gaussian radial basis functions), or a set of salient
features of the task (e.g., energy or accuracy costs). The weights
w = (w1 , . . . , wI)� are the parameters to be estimated, and it is
assumed (by renormalization, if necessary) that wi > 0∀ i and∑

i wi = 1.
The idea behind MWAL is that the weights wi specifying the

importance of the different components of the objective function
(21) can be determined efficiently by comparing the expected
value of the observed behavior D with that of a second set of tra-
jectories pD that are optimal with respect to an estimate of (21)
with weights w̃i . Specifically, since the cost bases ehi(·), e li(·)
are given (as part of our model), we can estimate the value of
the trajectories in D and pD, with respect to each of the bases
separately. That is, for the ith basis function

ṽi =
1
J

J∑
j=0

∫ T

0

e li(exj (t), euj (t), t) dt (22)

if it is a running cost and

ṽi =
1
J

J∑
j=0

ehi(exj (T )) (23)

if it is a terminal cost. We can then compare the difference in
these value estimates to adjust the weights w̃i , by scaling up
those for which the value of the expert trajectories is lower (in-
dicating a stronger preference to minimize these components
of the cost), and scaling down those for which the values are
higher (indicating the opposite). In successive iterations, MWAL
alternates between solving the forward OC problem under the
current estimate of w̃ to find trajectories pD, and then updat-
ing the estimate based on the difference in estimated values
e ṽ = (e ṽ1 , . . . ,

e ṽI)D , and p ṽ = (p ṽ1 , . . . ,
p ṽI)p D . This pro-

ceeds until convergence to a set of weights that, when optimized,
reproduces the demonstrated behavior D. MWAL is summa-
rized in Algorithm 1, and full details can be found in11 [16]. For
the forward optimization step (Step 6 of Algorithm 1), the iter-
ative local quadratic Gaussian (ILQG) algorithm [49] is used,
the details of which are described in the following.

11Note that, in Algorithm 1, we have made two adjustments to the formulation
described in [16]. These are 1) introduction of a learning rate parameter α and
2) normalization of the vectors e v̂ = e ṽ/‖e ṽ‖ and p v̂ = p ṽ/‖e ṽ‖. While
these adjustments do not affect the convergence properties of the algorithm
(effectively, they correspond to a scaling of β), we found them convenient for
adjusting the speed of learning, while maintaining robustness.

2) Transferring the Learnt Objective to the Imitator: Having
completed the AL stage to find a model of the demonstrator’s
objectives, our next task is to find an appropriate behavior for
the imitator. For this, we use local OC to optimize an equivalent
cost function to that used by the demonstrator. Specifically, we
parameterize the learner’s cost function as a similar weighted
combination of terms

lJ =
η∑

i=1

w̃i
lhi(lx(T )) +

I∑
i=η+1

w̃i

∫ T

0

l li(lx, lu, t) dt. (24)

Here, lhi(·), l li(·) ∈ R are a set of basis functions that cor-
respond to those of the expert (21), and w̃i are the weights
learnt by MWAL in the previous step. At this point, a design
decision must be made as to the appropriate correspondence
between the learner’s cost bases lhi(·), l li(·) and those of the
expert ehi(·), e li(·). In general, this will depend on the spe-
cific embodiments (dynamics and actuators) of the two plants.
However, as noted in Section II-C, in practical settings, this is
relatively easily resolved (and at worst, it is no more difficult
than specifying the correspondence in features eφ(·), lφ(·) for
feature-based imitation). For example, different terms might in-
clude the total work done by the two plants, or accuracy (e.g.,
in terms of the end-effector positions of the two plants). Further
examples are given in the experiments (see Section IV).

Having defined correspondence in terms of these bases, and
given the learnt weights w̃, all that remains is to solve the OC
problem defined by (24) and (2). Here, since we are interested
in high-dimensional, continuous robot control problems, we use
an efficient local OC method. In the next section, we briefly
describe the details.

3) Forward Optimal Control with ILQG: In our framework,
solving the forward OC problem enters at two points. First, in
MWAL, the optimal trajectories pD, with respect to the esti-
mated cost function, are sought at every iteration for updating
the weights. Second, as discussed previously, given the learned
cost function, we seek the optimal movement for the imitator



HOWARD et al.: TRANSFERRING HUMAN IMPEDANCE BEHAVIOR TO HETEROGENEOUS VARIABLE IMPEDANCE ACTUATORS 855

plant. In both cases, we need a technique that 1) can cope with
continuous, nonlinear systems and that 2) is efficient (since it
is called multiple times during MWAL). There are numerous
recent forward OC algorithms available for this [50]–[52]. The
algorithm employed here is ILQG [49] since we found it to be
an efficient, approximate model-based solver of OC problems.

Briefly, ILQG works by making a local linear-quadratic-
Gaussian (LQG) approximation to OC problems and iteratively
improving its solution around a nominal trajectory. It starts
with a time-discretized initial guess of a control sequence ūj

of length T . At each iteration j, this is used to find the cor-
responding state sequence x̄j under the deterministic forward
dynamics f(·) via numerical integration. Next, the dynamics are
linearly approximated with a Taylor expansion, and similarly,
a quadratic approximation of the cost function around x̄j

t and
ūj

t is made. Both approximations are formulated as deviations
δxj

t = xj
t − x̄j

t and δuj
t = uj

t − ūj
t from the current trajectory

and, therefore, form the local LQG problem. The latter can be
solved efficiently via a modified Ricatti-like set of equations.

With the solution to these equations, a correction to the con-
trol signal δūj is found, which is used to improve the control
sequence for the next iteration: ūj+1(t) = ūj (t) + δūj . Finally,
ūj+1(t) is applied to the system dynamics, and the new total
cost along the trajectory is computed. The algorithm stops once
the cost ceases to decrease significantly (ΔJ ≈ 0). After con-
vergence, ILQG returns a control sequence ū, gains L̄, and a
state sequence x̄, which represents the optimal trajectory. In our
framework, these trajectories are then either collected as sample
data for Step 6 of the MWAL algorithm, or used for OC of the
imitator plant, using the gains to provide local optimal feedback.

IV. EVALUATIONS

In this section, we evaluate the different approaches to imi-
tation in several impedance control scenarios. In the first inves-
tigation, we conduct a simulation study into behavior transfer
from a model of the human wrist to two robotic VIAs with het-
erogeneous dynamics. We then report an experiment in which
feature-based imitation is used for online behavior transfer in
the context of human teleoperation of a nonbiomorphic robotic
device. Finally, we report experiments in which task-based imi-
tation is used to learn from human demonstrations for behavior
transfer to the Edinburgh SEA [53].

A. Transferring Impedance Behavior on a Single Joint

The goal of the first investigation is to compare the three
approaches for transferring human impedance behavior with
heterogeneous robotic systems. As a case study for this, we
look at the problem of transferring a “hitting” behavior onto two
different robotic VIAs (as illustrated in Fig. 4) in simulation.

As demonstrator, a biomechanical model of the human wrist is
used. The wrist model consists of a single joint, actuated by two
antagonistic muscles with Kelvin–Voight muscle dynamics [6]
(see Fig. 4, left). Its equation of motion is

Ie q̈ + be q̇ = eτ(eq, e q̇, eu) (25)

Fig. 4. Transfer from (left) human wrist model to (top right) the Edinburgh
SEA and (bottom right) the MACCEPA.

where I = 4.5 × 10−3 kgm2 is the moment of inertia, b = 5 ×
10−3 N·msrad−1 is the damping, and the joint torque is given
by

eτ(eq, e q̇, eu) = −A�T(eq, e q̇, eu) (26)

where the control inputs eu ∈ R2 represent muscle activations,
A = (0.025,−0.025)� m are moment arms12, and T ∈ R2 are
the muscle tensions

T(eq, e q̇, eu) = Km (eu)
(
lr (eu) − l(eq)

)
− Bm (eu)l̇(e q̇).

(27)
Here, l(eq) = l(q=0) − Aeq ∈ R2 are muscle lengths, l(q=0) ∈
R2 is the muscle length at eq = 0

Km (eu) = diag(k01 + gk
eu) ∈ R2×2 (28)

is the muscle stiffness

Bm (eu) = diag(b01 + gb
eu) ∈ R2×2 (29)

the muscle damping, and lr (eu) = l0 + diag(gr )eu ∈ R2 is
the muscle rest length. The elasticity coefficients gk =
1459.44 Nm−1 and k0 = 121.62 Nm−1 are given from the mus-
cle model [6], l0 is set such that l(q=0) − l0 = 0, and gr =
(0.05, 0.05)� m. In this evaluation, the viscosity coefficients are
also set to zero13 (i.e., gb = 0, Nsm−1b0 = 0 Nsm−1).

Combining all of the above, the expert’s dynamics can be
written as

ef(ex, eu) = (e q̇, (eτ − b)/I)�. (30)

Using (26)–(29), the joint equilibrium position and stiffness
can be computed through (14) and (15) as

eq0(eu) = (A�KmA)−1A�Km (l(q=0) − l0 + diag(gr )eu))
(31)

and

ek(eu) = A�KmA. (32)

12In general, the moment arms around different joints (e.g., complex joints
such as the shoulder) may depend on additional variables such as the joint angle
q [18]. However, here, for simplicity, we assume the moment arms to be constant
for this relatively simple joint [6].

13Note that to facilitate comparison of the imitated robot behavior with that
of the demonstrator, in this experiment, we remove the command-dependent
muscle damping from the wrist model; therefore, the only damping comes from
the fixed joint damping term b. In Section IV-C, the full muscle model is used,
including command-dependent damping.
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Fig. 5. Example joint position, stiffness, torque, and velocity profiles demon-
strated from the simulated human wrist (“Expert”) and transferred onto the
two simulated robotic VSAs via the direct, feature-based, and inverse OC
approaches.

Fig. 6. Command profiles 1) demonstrated on the human wrist (“Expert”) and
2) generated during feature-based imitation on the robotic plants.

The task is to hit a target as hard as possible. For this, the
expert uses the cost function

eJ = w1(eq(T ) − q∗)2 − w2
e q̇(T ) + w3

∫ T

0

eτ 2 dt

= w1
eh1 + w2

eh2 + w3

∫ T

0

e l3 dt (33)

where q∗ = 30◦ is the target position in joint space, and eτ
is the torque applied around the joint [as given by (26)]. The
three terms of (33), respectively, correspond to 1) minimiz-
ing the distance to the target (ball) at the time of impact
(T = 0.18 s), 2) maximizing the angular velocity at impact, and
3) minimizing effort during movement. The tradeoff be-
tween these objectives is determined by the weights w =
(w1 , w2 , w3)� = (0.9970, 0.0025, 0.0005)�.

To generate demonstrations, ILQG is used to plan a set of
trajectories optimizing (33) under the dynamics (30). Specifi-
cally, a set of J = 20 such trajectories from a uniform-random
distribution of start states eq(t = 0) = U [−20, 0]◦ are used. An
example trajectory is illustrated in the leftmost column of Fig. 5,
where we plot the joint position, stiffness, torque, and velocity
over time.

As imitators, simulations of 1) the Edinburgh SEA [see
Fig. 3(c)] and 2) the MACCEPA [see Fig. 3(b)] are used,

TABLE I
AVERAGE COST l J OF IMITATED TRAJECTORIES FROM DIFFERENT START

STATES UNDER DIFFERENT IMITATION STRATEGIES

Shown are (mean ± s.d.) cost imitating trajectories from 50 random start states. 
Average cost incurred by expert during demonstrations: eJ = −0.026 ± 0.002.

with dynamics as described in Section II-B. The former is a
biomimetic plant, with close (homomorphic) correspondence to
the demonstrator (both have antagonistic actuation where coac-
tivation of the commands u leads to increased stiffness). The
MACCEPA is nonbiomorphic (i.e., geometrically dissimilar),
but biomimetic in the sense that it also has variable stiffness
(albeit controlled with a different mechanism). To enable fair
comparison of demonstrated and imitated behavior, the parame-
ters of the robotic plants are optimized as far as possible to have
similar characteristics to those of the demonstrator: the dynam-
ics parameters (e.g., inertia, damping, and friction constants) of
the robots are made identical to those of the human, and the ac-
tuator parameters (e.g., spring constants, geometric parameters)
are optimized so that the human and robots have similar capa-
bilities in terms of the approximate torque, equilibrium position,
and stiffness ranges. Note that, in reality, robotic actuators are
often designed in a similar way, i.e., to try to match the capabil-
ities and characteristics of humans. However, note also that the
correspondence in these systems is not exact since the actuation
relations [see (7), (8), and (26)] are different.

To compare the different methods, we apply
1) direct imitation by feeding the (renormalized) expert ac-

tion sequence {eu0 , . . . ,
euT } as commands to the robot.

Correspondence is defined as e û ≡ l û (where e û, l û are
the commands normalized by their admissible range)14;

2) feature-based imitation, tracking the computed equilib-
rium position and stiffness of the expert on the robots
(as described in Section III-A). Here, correspondence is

defined as (e q̂0 ,
e
k̂)� ≡ (l q̂0 ,

l
k̂)� (where, similarly, φ̂ de-

notes feature φ normalized by its admissible range);
3) Apprenticeship learning, as described in Section III-B

(using the jth trajectory {(ex0 ,
eu0), . . . , (exT , euT )}j

as training data D, the expert’s dynamics ef(·) as de-
scribed by (30), with α = −300 and P = 150). Here,
correspondence is drawn on the three terms of (33), i.e.,
(eh1 ,

eh2 ,
e l3)� ≡ (lh1 ,

lh2 ,
l l3)� where lh1 = (l q(T ) −

q∗)2 , lh2 = −l q̇(T ), and l l3 =
∫ T

0
l τ 2 dt.

The imitation approaches are applied to each of theJ demon-
strations, and evaluated by computing the average cost accumu-
lated in each trajectory [according to the true expert cost (33)].
The results are summarized in Table I, and examples of the
imitated behavior are plotted in Fig. 5.

Looking at the results for the Edinburgh SEA, we see that
feature-based and direct imitation are both able to reproduce

14Note that since there is no direct correspondence between the human model
and the MACCEPA, direct imitation is only performed with the Edinburgh SEA.
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Fig. 7. Feature-based imitation of equilibrium position and stiffness on the MACCEPA. (a) Human EMG signals. (b) Robot motor commands. (c) Equilibrium
position. (d) Stiffness. In (c) and (d), the black dashed line denotes the actual equilibrium position and stiffness realized by the actuator, and the red line indicates
the desired equilibrium position/stiffness [predicted from the human data via (31) and (32)]. Note that to ensure that they remain within the admissible impedance
range of the robot, the latter are normalized such that the theoretical maximum and minimum stiffness and equilibrium position achievable by the human (according
to the wrist model) correspond to the maximum and minimum stiffness and equilibrium position achievable on the robot).

the hitting task. This can be confirmed by looking at the repro-
duced behavior (see Fig. 5), where we see 1) the hitting target
(◦) is reached accurately, and 2) peak velocity occurs at the end
of the movement. The same is true for feature-based imitation
on the MACCEPA, despite its totally nonbiomorphic design.
Accurate tracking of the joint stiffness and equilibrium posi-
tion is achieved, albeit with a very different command profile
(cf., Fig. 6). These results indicate that, at minimum, 1) for a
biomimetic hardware design, feature-based imitation is suffi-
cient to reproduce the task, and 2) if the plant is additionally
biomorphic, direct imitation is sufficient.

However, looking at the task performance (average cost), it
is evident that neither of these approaches reach comparable
performance with that of the demonstrator (see Table I). This
is unsurprising since, due to differences in the dynamics, the
optimal hitting strategy for the demonstrator is suboptimal for
the imitators. If we take the inverse optimal imitation approach,
on the other hand, the gap in performance is closed. For the
Edinburgh SEA, inverse optimal imitation achieves similar per-
formance to that of the demonstrator by adjusting the hitting
strategy (e.g., compare differences in stiffness and equilibrium
profiles in Fig. 5). For the MACCEPA, inverse optimal imitation
significantly changes the hitting strategy so that performance
even exceeds that of the demonstrator. This is possible since
inverse optimal imitation explicitly takes into account the imita-
tor’s dynamics which, for the MACCEPA, are apparently better
suited to the hitting task than the antagonistic plants.

B. Tracking Human Impedance Profiles

While feature-based approaches evidently do not always pro-
vide optimal behavior with respect to task goals, this does not
rule out their use entirely. In particular, the simplicity and com-
putational efficiency of feature-based imitation make it appeal-
ing for online, interactive transfer, where the demonstrator’s
expertise can help to compensate for errors (see Section II-B).
In our next experiment, we investigate the transfer of impedance
(equilibrium position and stiffness) in this setting, through the
approach described in Section III-A. The experimental setup is
as follows.

Data, in the form of muscle activations, are collected from
a human operator demonstrating simple movements and varia-
tions of impedance. More specifically, a pair of EMG sensors
(surface EMG electrodes, Otto Bock), which are affixed to the
wrist extensor and flexor muscles of the forearm (see Fig. 7),
measure muscle activation at a 500-Hz sampling rate. The raw
signals are 1) filtered through a bandpass filter to remove the
lowest and highest frequency components and smooth out noise
and 2) normalized so that the activation at rest corresponded
to eu = 0, and maximum voluntary contraction (m.v.c.) corre-
sponds to eu = 1, respectively.

For simplicity, the same muscle model, as described in the pre-
ceding section, is used to predict the demonstrator’s impedance.
Note that this model provides a minimalistic model of the muscle
dynamics in terms of the activations, and has been widely used
in the literature to predict impedance behavior of humans [6],
[27], [54].

The model is adjusted to the demonstrator through a com-
bination of direct measurement, and/or estimation of parame-
ters according to existing biomechanical models. In particular,
the mass of the free-moving link (i.e., hand) is estimated as
m = 400 g, i.e., the average adult male hand mass [55], [56],
the muscle stiffness, and damping properties (k0 , gk , b0 , gb ) are
taken from [6] (which in turn are based on earlier measurements
of joint stiffness in humans [57]), the muscle pretension (i.e.,
l(q=0) − l0) is assumed zero at the rest posture, and the moment
arms [A in (27)] are measured directly from the demonstra-
tor’s wrist. The only remaining free parameter is the muscle
extension coefficient gr , which is manually adjusted to ensure
that the (kinematic) response of the model matched that of the
demonstrator when presented with the same inputs (i.e., when
simulating the wrist using the demonstrator’s recorded muscle
activations as control inputs to the model).

The feature-based approach (as detailed in Section III-A)
is applied, using (31) and (32) to estimate the demonstrator’s
impedance from the recorded muscle activations. The (esti-
mated) impedance of the demonstrator is then transferred onto
the robotic imitator. For the latter, the MACCEPA [2] is used as
an illustrative example of a nonbiomorphic robotic actuator.

To illustrate performance, imitation is performed for 25 s of
operation in which the demonstration is broken into distinct
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phases: 1) alternating left–right hand movement with muscles
relaxed, 2) alternation between low and high stiffness at q = 0
(sequentially relaxing and cocontracting muscles), and 3) alter-
nating left–right hand movement with muscles tensed (i.e., high
activation/cocontraction). Representative results are reported in
Fig. 7, where the first and last conditions are indicated by the
shaded regions in the plots.

As can be seen, during phase 1), the EMG signals indicate
alternating activation between the two muscles [see Fig. 7(a)],
resulting in a left–right movement of the wrist equilibrium po-
sition [see Fig. 7(c)]. The robot tracks this movement with con-
siderable accuracy, albeit with a slight time delay, which we
attribute to the limited speed of the servos used in the device.
During phase 2), the hand remains at the rest position q = 0,
and the operator cocontracts three times. As can be seen, this
causes three spikes in the stiffness profile [see Fig. 7(d)], which
are also accurately tracked. It is interesting to note in the plot of
the commands to the MACCEPA [see Fig. 7(b)], the controller
primarily relies on the second (pretensioning) motor for this,
since there is a linear dependence between u2 and stiffness at
equilibrium. Finally, during phase 3), we again see good track-
ing of the equilibrium position with increased overall stiffness,
despite the relatively high noise in the recorded EMG.

Finally, in all three phases, we note that, for each spike in
muscle activations, there is a corresponding spike in the stiff-
ness [see Fig. 7(d)]. This is in accordance with the accepted view
in biomechanics that stiffness increases with muscle activation,
even outside isometric conditions [35]. Here, this characteris-
tic of human impedance behavior is reproduced on the robotic
actuator.

C. Inverse Optimal Control From Human Data

In this final experiment, we apply the inverse OC approach
to learning from a set of human demonstrations with the goal
of transferring behavior to the Edinburgh SEA [see Fig. 3(c)].
For ease of comparison with the simulation studies (see
Section IV-A), we study the same hitting task, in which the
demonstrator attempts to hit a target (ball) as hard as possible,
while minimizing effort. The goal is to learn a model of the
human’s objective function in order to transfer it to the robotic
hardware. The experimental setup is as follows.

For collecting demonstrations, the measurement rig, shown
in Fig. 8, is used. The rig consists of a hinge joint with a
paddle attached, which is aligned to a ball suspended from a
string. The rig has a handle which the demonstrator grasps to
rotate the joint and hit the ball with the paddle. A magnetic
motion sensor (Flock of Birds, Ascension Technology Cor-
poration, Milton, VT, USA) is used to measure the angle of
the demonstrator’s wrist (hinge angle) at a 500-Hz sampling
rate. Simultaneously, surface EMG sensors (as described in
Section IV-B), which are placed on the antagonistic muscles
of the demonstrator’s forearm, measure the muscle activations
of the demonstrator at the same 500-Hz rate. With this setup, tra-
jectories of the human through state–action space are recorded,
where the state is modeled as ex = (eq, e q̇) ∈ R2 , i.e., the in-
stantaneous wrist angle and velocity and actions are modeled as

Fig. 8. Apparatus for recording human demonstrations of the hitting task.

the (feed-forward15) muscle activations eu ∈ R2 , as measured
by the normalized EMG.

Data are collected from a human attempting to hit the ball
(suspended at a point corresponding to wrist angle q∗ = 34.0◦)
as hard as possible with the paddle, from a series of start posi-
tions, given a fixed time duration in which to complete the move-
ment. Specifically, three trajectories are recorded from each of
five start positions q = {10, 0,−10,−20,−30}◦, with a fixed
duration of 0.2 s. To reduce the effects of noise and variability
in the execution of the trajectories, the data are preprocessed by
1) smoothing the signals with a Butterworth filter and 2) tempo-
ral alignment of trajectories around the time of impact with the
ball. The trajectories from each of the start states are then aver-
aged, and the resultant J = 5 mean trajectories used as training
data for the learning.

Since our inverse OC approach requires a model of the ex-
pert’s forward dynamics, the demonstrator’s wrist dynamics
are approximated using the same two-muscle wrist model, as
described the preceding two sections, [i.e., with dynamics as
computed from (25)–(29)], with the parameters optimized with
respect to the normalized error between the recorded trajecto-
ries D = {(exj

0 ,
euj

0), . . . , (
exj

T , euj
T )}Jj=0 and those predicted

by integrating the model under the same command sequence
D̃ = {( ˜ex0

j
, euj

0), . . . , ( ˜exT
j
, euj

T )}Jj=0 .
For estimating the human objective, the cost function

model (33) is used, with the best fit to the coefficients w =
(w1 , w2 , w3)� sought through MWAL. Note that, in this ex-
periment, as eτ cannot be directly measured during movement,
we use the optimized parametric model to estimate the torques
for the third term in (33) using (26). The model is trained on
the demonstrated trajectories, with α = 300 for 20 iterations.
Note that, since the parameters of the true human cost function
(i.e., w) are unknown, we cannot explicitly calculate the error
in the weight estimate. Instead, convergence can be measured
by examining the magnitude of the weight update (i.e., Δw̃ in
Algorithm 1). The results reported in the following are for the
convergent estimate.

15Note that, while muscle activations recorded through EMG may also con-
tain contributions from feedback controllers, in general, in the short duration,
explosive movement considered here, such feedback contributions may be as-
sumed to be negligible in the face of the inherent feedback delays of the human
neuromuscular system [58].
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Fig. 9. Human demonstrated (a)–(c) ball-hitting behavior and (d)–(f) imitated robot behavior. In (d)–(f), the robot behavior that is generated through direct
imitation is shown in thick green, and that generated with inverse optimal imitation is shown in thin black. (a) Filtered EMG readings of the human’s forearm
muscles during hitting. (b) Human wrist position until impact. (c) Wrist joint velocity. (d) Robot motor commands during imitation. (e) Robot joint positions.
(f) Robot joint velocity. In (b) and (e), the thin black line marks the target position, and the dashed vertical lines mark the impact times. In (c) and (f), the dashed
horizontal line marks the impact velocity, and the dashed vertical lines mark the impact times.

For evaluation, we compare the behavior of the robot when
imitating behavior through 1) the inverse OC approach and,
2) the direct imitation approach. For the former, ILQG is used
to find the optimal controller for the Edinburgh SEA with respect
to the cost function [i.e., (33), using the learned weights]. For
the latter, the human EMG signals are scaled according to the
maximum admissible commanded angle of the robot motors,
and then fed directly as commands to the robot, i.e., drawing the
correspondence e û ≡ l û, where e û and l û are the commands
normalized by the admissible ranges for the human and robot,
respectively. Note also that, since the response of the robot’s
servomotors is significantly lower than that of the human (in
terms of control frequency and other delays), control of the
robot is scaled in time so that the command sequences have
0.5-s duration for both of the approaches compared.

The results are shown in Fig. 9 for an example trajectory start-
ing at q = 0◦. Looking at the joint angle and velocity profiles,
we can see that the strategy used by the human is to first move
the wrist away from the target before rapidly moving it in the
positive direction toward the target. A similar movement occurs
on the robot when using both the direct and the inverse-optimal
approaches. However, comparing these, we see that for the direct
approach, the amplitude of the movement is reduced, and the
velocity at the time of impact is much smaller. In contrast, the
inverse optimal approach optimizes the command sequence for
the robot dynamics, resulting in earlier onset time for the move-
ment, and a much larger movement of the motors (see Fig. 9).
Consequently, it achieves a higher hitting velocity (with the
ball traveling a greater distance) when executed on the robotic
hardware. This can be verified in the accompanying video.

V. DISCUSSION

In this paper, a study of competing methods to transfer behav-
ior from humans to robots in the context of variable impedance
control has been presented. We have illustrated the difficulties

that this problem poses, given the inescapable heterogeneity be-
tween the human musculoskeletal system and robotic systems
and analyzed the relative pros and cons of different approaches
that may be employed to overcome these difficulties.

Approaches based on 1) direct transfer, 2) feature-based
tracking, and 3) transfer based on inverse OC have been com-
pared. The first, we may rule out in almost all cases unless the
robotic system is highly biomimetic. The second two avoid this
restriction but, as shown in our experiments, are best applied in
different settings.

Our findings indicate that feature-based tracking can be ef-
fective in many settings where online, interactive control of
the robotic device is required. This is the case, for example,
in the teleoperation domain where behavior is transferred (in a
supervised way) from a human operator. We have presented a
model-based method for control of variable stiffness actuators
using constraints on equilibrium positions and stiffness in task
and joint space. The proposed approach is generic by its formu-
lation, and can be applied to many different designs of variable
stiffness devices for accurate tracking of desired stiffness and
equilibrium position profiles. As shown in our experiments, it is
fast to compute and can be used with ease for online behavior
transfer, such as in the teleoperation setting explored here.

Outside such domains, however, our investigations show that
transfer based on inverse OC can be more effective in deal-
ing with heterogeneous dynamics and actuation between plants.
Such an approach is effective for task-oriented behavior transfer,
where we rather avoid prescribing specific features of behavior
and instead require our system to derive its own strategies to
meet task goals. We have presented a framework based on a
two-step approach to learning, where in the first step, a para-
metric model of the objective function underlying observed be-
havior is learnt using AL. This enables us to find a task-based
representation of the data in terms of the objectives (cost mini-
mized), and then apply local OC techniques to find a similarly
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optimal behavior for the imitator, taking into account the dif-
ferences in dynamics and actuation. Our experiments show the
effectiveness of this approach, where the proposed approach
actually exploits the dynamics characteristics of the imitator in
order to outperform the feature-based imitation approaches and,
in some cases, even surpass the task performance of the expert.

A number of directions for future research remain. One is-
sue to be investigated is that of scaling the different approaches
to more complex tasks and plants. For example, with regard
to feature-based imitation of impedance, it remains an open re-
search issue as to the accuracy with which human impedance can
be estimated, and thereby tracked, during complex, multijoint
movements, e.g., during full body motion. Methods exploiting
impedance observer techniques [59]–[61] and novel measure-
ment devices [62], [63] may be exploited in future work. With
regard to the inverse optimal approach, related issues of scal-
ability exist in terms of the selection of cost basis functions.
One such issue is the problem of finding appropriate cost bases
to describe more complex task objectives. With this in mind,
however, it should be noted that increased complexity of the
plant dynamics does not necessarily equate to an increase in
the complexity of the cost function. For example, for the task
of hitting, even if the task is to be performed by a system with
complex, nonlinear dynamics (such as full arm punching [15]),
the indicators of task success (i.e., the cost bases) nominally
remain the same (e.g., accuracy, impact velocity, and effort),
albeit their functional form may be more complex to compute,
and the (forward) optimization may become more difficult.

Another issue warranting further investigation is that of the
selection and design of cost function models for the inverse
optimal approach. At present, the selection of appropriate terms
in the cost function is left open to the designer of the learning
system (cf., Section II-C): She or he must make appropriate
consideration of the important components of the task and the
correspondence between demonstrator and imitator. While this
was feasible in this study, it remains an open issue as to how to
perform this selection in general.

In the hitting experiment, which is presented in Section IV-C,
for instance, a cost function was chosen that is intuitively suit-
able for the task. It is not known whether this cost function
can represent the demonstrator’s true cost function without er-
ror. Crucially, however, the cost function chosen here is flexible
enough that imitation could have failed: If the parameters had
been incorrectly learned, the task would not have been repro-
duced. For example, if the learning outcome had been a high
weight on the velocity term and a low weight on the accuracy
term, then the resultant behavior would have been a “power-
less” or “missed” hit (with high velocity toward the end of the
movement, but poor accuracy, the robot would either hit the ball
prematurely, or not at all16). This was not seen in the experi-
ments reported here (the hitting task was correctly reproduced),
lending support to the chosen cost model.

In general, however (and especially with more complex prob-
lems or greater heterogeneity in the dynamics), this issue of

16This was seen in [47], where a poor dynamics model resulted in a poor
estimate of the cost parameters.

selection of the cost model will be less straightforward. An im-
portant direction of future work, therefore, is to look for robust
ways of making this selection and to investigate the sensitivity
of the choice of model with respect to 1) the differences in dy-
namics between the demonstrator and imitator and 2) the set of
task outcomes afforded by optimizing behavior within the pa-
rameter space of that model. Nevertheless, a contribution of this
paper is to illustrate that, under the right conditions, the inverse
optimal approach can be a powerful alternative to the direct and
feature-based approaches when dealing with behavior transfer
across highly heterogeneous systems.
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