
Space-time Area Coverage Control for Robot Motion
Synthesis

Vladimir Ivan, Sethu Vijayakumar
School of Informatics, University of Edinburgh, Edinburgh, UK

Email:{v.ivan, sethu.vijayakumar}@ed.ac.uk

Abstract—We propose a novel method for representing the
interaction of a robot and an object. We create a virtual surface
by taking a chain of linear segments attached to the robot links,
we spatially extrude them in time, and we then compute the
coverage of this surface around the object. Our approach uses
a technique based on computation of electric flux, borrowed
from electro dynamics. The advantage of using this method is
that it is invariant to the relative transformations of the virtual
surface, which makes it suitable as a complementary term in
a cost function when constructing a multi-objective problem.
We demonstrate the different types of interactions this method
can represent, and how it can be integrated into trajectory
optimisation based motion planners. We also demonstrate a
practical application of such representation on a real robot.

I. INTRODUCTION

Robotic systems are gaining popularity as tools in
academia, industry, and every day life, with applications such
as manufacturing, assembly, construction, mining, health mon-
itoring, packaging, and agriculture. The range of tasks that
robots in these areas are programmed to do is wide, but the
tools and techniques that are available to define such tasks
is fairly limited, i.e. tracking pre-programmed end-effector
position and orientation, or minimising control effort. In this
paper, we present a method which we use to define a kinematic
task based on controlling the amount of wrapping of the
surface that the moving links of the robot sweep along during
the motion around an object of interest. Figure 1 illustrates
what would such a surface look like and what types of motion
can be achieved by deforming this surface into different shapes.
This method is complementary to the existing tools and it can
be used as an additional constraint or as a cost term in a control
algorithm.

Controlling the amount of wrapping of the surface that
the robot’s links move across has several applications, such
as: wiping the surface of an object (polishing), covering the
surface area with a spray tool (painting or spraying cement),
scanning complex object (checking structural fidelity) and
wrapping objects with flexible materials (packaging using cling
film or assisting people with putting clothes on [1]). Some
of these tasks can be defined by end-effector trajectories or
relative force profiles [2]. The area that the surface in Figure 1
covers is a measure that generalises over finer geometric detail.
This allows us to transfer and adapt the planned motion to
objects of different shapes, or to exploit this invariance to
improve robustness with respect to geometric inaccuracies that
may arise from imprecise sensing.

We propose to use an analogy to the well studied physical

(a) Negative side coverage (b) Positive side coverage

(c) Large amount of posi-
tive coverage

(d) Zero coverage

Figure 1: Different configurations of a virtual surface with a posi-
tive side (green) and negative side (blue) constructed by
spatially extruding a chain of linear segments (red line) in
time. (a) and (b) show negative and positive side covering.
To visualise the concept of coverage in (c) the large positive
(green) area dominates the interaction, while in (d) the
positive and negative contributions negate each other.

property of electric flux [3] to compute the area that an
open or closed surface covers around an object of interest.
The method proposed here exploits this parametrisation in the
context of computing coverage through flux of a chain of
linear segments attached to the robot links spatially extruded
in time. We use the kinematics of the robot to define virtual
points attached to the robot links, e.g. joint positions. We
then track the position of these points over time and create a
virtual surface constructed through triangulation. Our previous
work [4] has shown that the electric flux space has very few
local minima, which makes it a suitable task space for local
optimisation methods. To synthesise robot motion, we use the
Approximate Inference Control, a local trajectory optimisation978-1-4673-7509-2/15/$31.00 ©2015 Crown

sethu
Text Box
In: Proc. 17th IEEE International Conf. on Advanced Robotics (ICAR 2015), Istanbul, Turkey (2015).

method, proposed in [5], which we use to optimise the shape
of the virtual surface to achieve a prescribed amount of electric
flux through it.

II. RELATED WORK

Coverage has been studied in the literature using tools from
both geometry and topology. In [6], the authors proposed a
geometrical methods for computing areas on the curved surface
of an object which are suitable for grasping by caging the
object using the gripper. Assuming that a caging grasp is
possible only within a sphere of a certain radius, by varying
this radius the curvature of the surface is analysed at different
scales, and the stability of the grasps is verified using physics
simulation. The resulting surface map is then used for motion
planning. A different method for controlling the movement of
flexible objects (such as clothes and ropes) on the surface of
a rigid object using geodesics has been proposed in [1]. As
opposed to these geometric methods, topological tools have
been used to compute coverage of sensor networks by [7].
These tools allowed the authors to compute the coverage with-
out the explicit knowledge of the geometry of sensor network
and to provide guarantees about the sensor coverage over a
particular area. Our method aims to compute coverage without
the reliance on the fine geometric detail of the environment,
same as the approach used for computing the sensor network
coverage, but at the same time, our representation has to
capture enough geometric information to allow us to control
the motion of the robot.

A class of representations which are invariant to geomet-
rical detail but capture the topology of punctured euclidean
spaces has been studied in [8]. The representations discussed
here have been also applied to solve robotics and computer
animation problems, such as path planning with winding
constraints using the winding numbers [9], character motion
control preserving spatial relationships using the Gauss Link-
ing Integral [10], and capturing the relationship between two
objects by parametrizing the space around one of these objects
using the analogy of the electric field and computing position
within this field [4] and its integral through the surface of
the second object [3]. These methods capture the relationship
between objects by describing how much one object wraps
around another while ignoring the finer geometric detail. Our
method builds on top of this work but we redefine the way we
construct the manipulated objects.

In our previous work [11], we have shown the effects of
choosing an alternate space for motion planning. It is often
possible to exploit a task representation, such as the one we
propose in this paper, which renders a complex motion in the
joint space as a simple, linear motion in the alternate space. As
a result, using local motion planning methods is then sufficient
for solving complex problems that would otherwise require
global planning methods (such as RRTs [12]). Local trajectory
optimisation techniques, such as iLQG [13] can therefore be
employed to solve complex tasks by exploiting the alternate
representations. The author of [5] proposed to formulate the
trajectory optimisation as an probabilistic inference problem
and solve it using a message passing algorithm. This formula-
tion introduces the idea of treating the alternate representation
as a Bayesian prior which expresses our belief that successful
trajectories will be smoother and more linear in this space.

Figure 2: Virtual surface (blue/green) with a triangle Oabc and a
virtually charged object (grey) with a triangle Odef .

We exploit this idea and argue that trajectories that involve
wrapping and scanning motion are more likely to be successful
in the space of space-time area coverage.

III. COMPUTING AREA COVERAGE USING ANALOGY TO
ELECTRIC FLUX

We propose to measure the area that a 2D surface covers
around an object in 3D. To achieve this, we use an analogy
to physical property of electric flux. Given a charged object
surrounded by an electric field, the electric flux is defined as
the rate of flow of this field through a given area of a virtual
surface [14]. When the virtual surface is a closed Gaussian
surface, the electric flux ΦE can be expressed as an integral
over the virtual closed surface S:

ΦE =

‹
E · dS =

Q

ε0
, (1)

where E is the electric field, Q is the total electric charge inside
of the surface S, and ε0 is the permitivity of free space. This
relation is also known as the Gauss’ law. The key property
of the Gauss’ law for the purpose of computing the area
coverage is that the surface surrounding the charged object
will always have constant flux, regardless of its deformation
or transformation. This allows us to control the coverage
independently of the distance from the virtually charged object.
For brevity, we will refer to the virtual electric flux only as
flux.

In practice, we are interested in computing the flux of ar-
bitrary 2D surfaces modeled using triangulation. Such method
was first proposed in [15] and later used in [3] to compute the
flux of a deformable surface. Given a triangulated model of the
virtually charged object and the triangulated open or closed
surface in the vicinity of the charged object, we define the
approximate electric flux through triangle Oabc (see Figure 2)
due to the uniformly charged triangle Odef as:

ΦE(Oabc,Odef) =
| ~de× ~df |

2

4∑
i=1

g(~xi,Oabc), (2)

~x1 =
4~d+ ~e+ ~f

6
, ~x2 =

~d+ 4~e+ ~f

6
,

~x3 =
~d+ ~e+ 4~f

6
, ~x4 =

~d+ ~e+ ~f

3

where g(~x,Oabc) is the electric flux through triangle Oabc due
to charged point ~x defined as1:

g(~x,Oabc) =2 atan2(J,K), (3)

J =(~ax× ~bx) · ~cx,
K =| ~ax|| ~bx|| ~cx|+ ~ax · ~bx| ~cx|

+ ~ax · ~cx| ~bx|+ ~cx · ~bx| ~ax|.

Each triangle (Odef) of the virtually charged object con-
tributes to generating the electric field around the object, and
each triangle of the virtual surface contributes to the total flux.
We compute the total flux using superposition. Because of this,
the flux computation has the complexity of O(lm), where l is
the number of triangles of the virtually charged object and m is
the number of triangles of the virtual surface. The flux formula
and its Jacobian are ideal for implementation on parallelized
systems, such as GPUs, due to the independent contribution
of each triangle to the total flux.

We refer to the object from which we draw triangles Odef
as virtually charged object. This analogy to objects generating
an electric field is useful for visualising the concept of the
virtual electric flux, but notice that we do not compute any
actual electrical charges on the the surface of the object, apart
from assuming that each triangle is charged uniformly with an
unit charge.

If the points a, b, c are attached to a kinematic structure
of the robot and controlled via joint angles q ∈ Rn, then the
analytical Jacobian of the flux with respect to the joint angles
can be obtained using the chain rule:

∂ΦE(Oabc,Odef)

∂q
=
| ~de× ~df |

2

4∑
i=1

∂g(~xi,Oabc)
∂q

, (4)

∂g(~x,Oabc)
∂q

=2

∂J
∂qK − J

∂K
∂q

J2 +K2
, (5)

∂J

∂q
=(
∂ ~ax

∂q
× ~bx+ ~ax× ∂ ~bx

∂q
) · ~cx

+ (~ax× ~bx) · ∂ ~cx
∂q

, (6)

∂K

∂q
=
∂| ~ax|
∂q
| ~bx|| ~cx|+ | ~ax|∂|

~bx|
∂q
| ~cx|+ | ~ax|| ~bx|∂| ~cx|

∂q

+(
∂ ~ax

∂q
· ~bx+ ~ax · ∂

~bx

∂q
)| ~cx|+ ~ax · ~bx∂| ~cx|

∂q

+(
∂ ~ax

∂q
· ~cx+ ~ax · ∂ ~cx

∂q
)| ~bx|+ ~ax · ~cx∂|

~bx|
∂q

+(
∂ ~cx

∂q
· ~bx+ ~cx · ∂

~bx

∂q
)| ~ax|+ ~cx · ~bx∂| ~ax|

∂q
, (7)

∂ ~ax

∂q
=− ∂~a

∂q
,
∂ ~bx

∂q
= −∂

~b

∂q
,
∂ ~cx

∂q
= −∂~c

∂q
, (8)

∂| ~ax|
∂q

=
~ax · ∂~a∂q
| ~ax|

,
∂| ~bx|
∂q

=
~bx · ∂~b∂q
| ~bx|

,
∂| ~cx|
∂q

=
~cx · ∂~c∂q
| ~cx|

, (9)

1We denote a triangle defined by edges a, b, and c as Oabc, a 3D vector
as ~x, and a vector between two points as ~ax = ~x− ~a.

Figure 3: The virtual surface constructed from vertices attached to
the robot’s links at time steps t − 2 to t + 2 respectively
(the columns). The highlighted set of triangles is used for
flux computation at time t.

where ∂~a
∂q , ∂~b

∂q , and ∂~c
∂q are the 3D position Jacobians of frames

attached to the kinematic structure of the robot that can be
obtained using standard kinematics software. The complexity
of computing the Jacobian of the flux is O(lmn).

IV. AREA COVERAGE OF SPACE-TIME SURFACES

One of the key contributions of this paper is how we
compute the flux through the surface that the robot parts
sweep along during the motion. We generate this surface on
the fly from a series of ñ number of points attached to the
kinematic structure of the robot. We do this by constructing
triangles between points from two consecutive time steps (see
Figure 3). Given T number of time steps, we create 2ñ(T −1)
triangles, when we consider the swiping surface of one moving
kinematic chain. If multiple chains are considered, such as
the arms of a bi-manual robot, we have the choice between
defining multiple surfaces or glueing the surfaces manually
with additional triangles. We decide on an order in which we
connect the triangles, to ensure consistency, and also to define
an orientation that the triangles are facing (see Figure 2). This
orientation is important for distinguishing between the positive
and the negative flux generating side of the surface. In our
figures and illustrations, the positive flux is measured through
the green side of the surface and negative flux is measured
through the blue side.

The virtual surface constructed in this way consists of
patches of triangles that connect consecutive time steps, where
we assume that at the time step t only the vertices correspond-
ing to this time step can be controlled. For this reason, we
only compute flux through the patch constructed from vertices
at t − 1 and t (the highlighted patch in Figure 3). We ignore
all previous and future patches because the flux through these
will be accounted for when we update the subsequent time
steps. We store the positions of all the vertices for all the
time steps in memory, and access these by indexing into the
memory storage. When computing the flux, we update the
vertex positions at time t and we use the stored positions from
the previous time step.

The approximation of the flux through the surface of the
triangle is most accurate when the triangle equilateral does not
intersect other triangles, and covers only a small area relative to
the distance of the triangle to the object’s surface. We therefore
aim to create triangulations as dense and as uniform as possible
while keeping the number of triangles as small as possible due
to the computational overhead.

Having an oriented surface through which we measure the
flux, we can now deform this surface to produce three kinds

of behaviour: 1) increase the flux in a positive direction (see
Figure 1b), 2) increase the flux in a negative direction (see
Figure 1a), and 3) maintain zero flux (see Figure 1d). The
positive and negative flux changes can be interpreted as oppo-
site wrapping motions, i.e. wrapping and unwrapping an object
with the virtual surface or wrapping the object in clockwise
and in the anticlockwise directions. Maintaining zero flux is a
bit harder to visualise, since this involves deforming the virtual
surface in such way, that it remains perpendicular to the surface
of the charged object (see Figure 1d). We will demonstrate this
in the third scenario of the experiment in Section V-A.

The flux through the virtual surface does not depend on
transformations and deformations of the surface which don’t
cause wrapping (increasing the area covered). Because of
this, the flux, as a task representation for motion planning,
has a null space which we can utilise to satisfy additional
constraints, such as joint limits, collision avoidance, or end-
effector position and orientation. Additionally, the proximity
of the virtual surface to the object has to be controlled using
another task term, otherwise the surface may collapse to the
surface of the objects. How the flux task gets combined with
the other tasks depends on the choice of motion planning
algorithm.

A. Trajectory optimisation with electric flux

We have described a method for computing flux through a
virtual sweeping surface defined by the poses the robot passes
through during its motion. To deform this surface into a shape
that will achieve the desired amount of flux, we will use motion
planning to compute a trajectory, or a series of commands for
the robot. The space of all possible configurations is called the
configuration space:

x ∈ C ⊆ Rn, (10)

where x is an n-dimensional robot configuration. Here, we
consider continuous configuration spaces which are subsets of
Rn because they are suitable to represent real world properties
such as joint angles. For each configuration xt, we compute
the flux yt through the virtual surface patch at time t as:

ΦE(xt) : xt → yt, (11)

where ΦE(xt) is the map between the configuration space
and the flux space defined in Equation 2, with the addition
of computing the positions of the edges of triangles Oabc
using forward kinematics. We store these edge position as we
discussed in Section IV, which is why we omit recomputing
the forward kinematics of vertices from configuration xt−1.
We now want to compute a trajectory in configuration space
that will minimize the squared error between the desired flux
y∗t and the flux generated by the robot at time t:

ct = |ΦE(xt)− y∗t |
2
, (12)

where ct is the task cost we minimize. The cost function
may contain other terms such as, collision cost, joint limits
violation, e.t.c. (see Equations 13-16 for concrete examples).

A multitude of algorithms have been proposed to solve the
motion planning problem [12]. Methods for optimising robot
motion with respect to a cost function have been proposed,
ranging from sampling based approaches [16] to optimal

control [13]. In our previous work [11], we discuss how the
task spaces y can be constructed in a way that improves the
convergence of local optimisation methods. In other terms, we
construct spaces where successful trajectories are easier to find
(in case of sampling methods), shorter or local (in case of
optimisation methods) in an appropriate space, thus avoiding
the need for more expensive global planning methods. For this
reason, we choose a trajectory optimisation method called Ap-
proximate Inference Control (AICO). AICO uses approximate
probabilistic inference on a graphical model representing the
dynamical system to compute successful maximum aposteriori
trajectories. For more detail about this method, we refer
the reader to [5] or a reinterpretation of the formalism as
a generalisation of stochastic optimal control [17] or path
integral control [18]. The flux representation we described in
this section, and in the previous section, provides the cost term
(Equation 12) and the gradient of the cost (Equation 4), which
are the necessary inputs for the optimisation algorithm.

Within the AICO framework, we represent the cost term
from Equation 12 using a motion prior. Motion prior is a term
borrowed from machine learning, which we use here to express
our prior beliefs about successful trajectories. This allows us to
picture the choice of the flux cost term as a way of expressing
our belief that the task we intend to solve will be a motion
that increases or decreases the area the robot swipes along
when moving around the object of interest. This belief can be
expressed in different ways and virtually any motion planning
algorithm could be chosen here to solve this planning problem.

V. EXPERIMENTS

A. Maximising area coverage of robot motion

The flux representation enables us to interact with objects
through shaping the virtual surface we generate during the
motion. In this experiment, we demonstrate several interactions
that we can capture and control using the flux representa-
tion and a 7 degree-of-freedom (DoF) robotic arm. In all
our experiments, we use the AICO planning framework we
discussed in Section IV-A. We implement the flux task using
a motion prior. How this motion prior gets computed and used
for motion planning is described in [5]. However, the motion
priors reflect the effects of a particular term in a cost function.
Therefore, we will describe the setup of our problems using
the cost function we optimise. We initialise AICO with the
robot starting at a predefined starting position2 and the initial
series of commands will keep the robot in this position (zero
commands). Both the choice of initial pose and the subsequent
trajectory initialisation have impact on quality of the solution
and the convergence rate. This is because AICO is a local
optimisation method.

In the first scenario, we place a sphere in the working
envelope and we define a problem of covering the area around
the sphere. This could be interpreted as a task that requires
scanning the object from multiple views. We define a single
line segment between the penultimate joint position and the
tip of the end-effector. We then construct the virtual surface
by extruding this line over time. Figure 4 shows the virtual
surface with the green positive side and blue negative side.

2We have chosen the starting pose so that the resulting virtual surface would
start in a visually clear area.

(a) Single flux target (b) Opposite flux targets (c) Positive and zero targets (d) Object projection

Figure 4: Planning motion using the flux representation with: (a) positive flux target of 1.5 for a sphere, (b) positive flux target of 1.0 for the
sphere and negative target of -1.0 for the teddy bear, and (c) positive flux target of 1.0 for for the sphere and zero target for the teddy
bear. The robot arm starts at the top left of each figure and moves around the objects while optimised the flux values. (d) shows the
projections of the large positive and close zero coverage produced in the experiment in (c).

We then set up the AICO motion priors using the following
cost function:

ct =ρsphere
E

∣∣∣Φsphere
E (xt)−1.5

∣∣∣2+ρo |Φo(xt)|2

+ρd |Φd(xt)−0.2|2 , (13)

where Φsphere
E (xt) is the flux cost term with the desired

flux value of 1.5, Φo(xt) is the end-effector alignment term
(keeping the end-effector parallel to the x axis), and Φd(xt)
is the distance terms which keeps the robot from colliding
with the sphere by keeping the end-effector at a distance of
0.2m from the centre of the sphere. ρsphere

E , ρo, and ρd are the
respective task precision constants, which we have manually
tuned to give high precision to the flux and alignment terms
but low precision to the distance term to achieve a consistent
motion that is not affected too much by the distance term.
Figure 4a shows the resulting shape of the virtual surface
wrapped around the sphere.

In the second scenario, we add a second object and a
secondary flux term with the desired flux value of -1.0, also
changing the desired flux for the sphere to 1.0. We use the
following cost function:

ct =ρsphere
E

∣∣∣Φsphere
E (xt)−1

∣∣∣2+ρteddy
E

∣∣∣Φteddy
E (xt)+1

∣∣∣2
+ρo |Φo(xt)|2+ρd |Φd(xt)−0.2|2 , (14)

where Φteddy
E (xt) is flux cost term for the second object.

Figure 4b shows how the virtual surface passes between the
two objects. The surface ends below the object on the right
because both of the flux cost terms have the same weight
and target value, which means that moving any further would
increase the flux for one of the objects while decreasing it
for the other resulting in a suboptimal solution. Additionally
notice that the object on the right has a very different shape
than the object on the left. This does not affect the motion
because the flux representation is invariant to the shape of the
object.

In the third scenario, we keep the same setup as in the
second scenario but we set the desired flux target for the object

on the right to zero. We use the following cost function:

ct =ρsphere
E

∣∣∣Φsphere
E (xt)−1

∣∣∣2+ρteddy
E

∣∣∣Φteddy
E (xt)

∣∣∣2
+ρo |Φo(xt)|2+ρd |Φd(xt)−0.2|2 . (15)

Figure 4c shows the shape of the virtual surface which max-
imises the positive flux around the sphere but remains flat to
minimizes the flux w.r.t. the teddy bear. Figure 4d demonstrates
this difference in coverage visually by viewing the virtual
surface from the point of view of the objects. The top figure
shows a large positive (green) area being covered, while the
bottom figure shows a narrow strip with equal amount of
positive (green) and negative (blue) area.

The sphere model consists of lsphere = 20 triangles and
the teddy bear model consists of lsphere = 200 triangles. We
have planned a trajectory of 50 time steps with a single line
segment extruded to create the virtual surface. The virtual
surface therefore consists of m = 100 triangles (2 triangles
per linear segment). The robot arm has n = 7 DoF. The
computational complexity of updating the flux representation
is therefore O(lspheremn + lspheremn) = O(154000). On a
PC running a 3GHz Intel Core 2 Quad CPU the average
computation time required to update the flux for both tasks
for the whole trajectory is 3.5ms, when computing the flux
sequentially.

B. Wrapping an object with packaging material using the flux
representation

In Section V-A we showed different interactions we can
represent using this representation. We will now demonstrate
how flux can be applied to real world problems. For this
experiment, we use the Baxter robot with two 7 DoF arms
(14 controllable DoF in total). The task is to wrap an object
in cling film. We attach the cling film to the arms of the robot
(see Figure 5). To avoid modelling the deformation of the cling
film, we assume that we can achieve successful wrapping by
maximizing the area its edges cover around the bottle.

To solve this problem, we penalise for deviations of the
orientations of the robot arm segments which have the cling
film attached to them. We also penalise for distance from
the bottle to avoid using too much wrapping material. The
wrapping motion is then realised by optimising the amount
of flux with a negative target for the right arm segments and

(a) Wrapping the bottle (b) Wrapping the bottle at a new location

Figure 5: Wrapping a bottle with the cling film using flux to control the coverage. We displace the bottle between (a) and (b) to show that the
spatial transformations don’t affect the flux computation.

positive target for the left arm segments. Based on this, we
construct the following cost function:

ct =ρright
E

∣∣∣Φright
E (xt)

∣∣∣2+ρleft
E

∣∣Φleft
E (xt)−1

∣∣2
+ρright

o

∣∣Φright
o (xt)

∣∣2+ρright
d

∣∣∣Φright
d (xt)−0.3

∣∣∣2
+ρleft

o

∣∣Φleft
o (xt)

∣∣2+ρleft
d

∣∣Φleft
d (xt)−0.3

∣∣2 , (16)

where Φright
E (xt), Φright

o (xt), and Φright
d (xt) are the flux, orienta-

tion and distance terms respectively for the right arm segments
(the left arm segment cost terms are analogously Φleft

E (xt),
Φleft

o (xt), and Φleft
d (xt)).

We have optimised the motion using AICO and realised it
on the Baxter robot (see Figure 5a). The robot has wrapped
the bottle successfully. We then displaced the bottle and
optimised the motion again. Figure 5b shows the resulting
motion computed using the same cost function. This result
demonstrates that to achieve the same amount of wrapping
as in Figure 5a, the joint space trajectory has to be modified
but the flux space trajectory remains the same. Although,
there may be other ways to achieve similar motion, the
flux captures the relationship of the robot motion with the
bottle directly, therefore there is no need to change the task
definition in the flux space when the environment changes.
This experiment highlights robustness of the representation to
the displacement of an object with a simple shape. However,
this result generalises to more complex shapes as we have
demonstrated in Section V-A.

VI. CONCLUSION

We have presented a method for describing the relationship
between an object and a virtual surface constructed by taking
chain of linear segments attached to the robot and spatially
extruding them in time. We have extended the techniques used
for computing the electric flux to compute the coverage of
the object by the virtual surface. This method is invariant
to relative transformations and deformations of the virtual
surface. This property makes the representation challenging to
use on its own but ideal as a complementary term in a problem
definition that already constraints the distance between the
robot and the object, and the orientation of the robot links. We
demonstrated the capabilities of this representation as well as
its practical application. In the future, we intend to extend this
method for use in real time applications, where we’ll exploit
the flux invariants to track moving objects. We also intend to
use the flux for consistent constraint learning as proposed in
[2].

REFERENCES

[1] H. Wang and T. Komura, “Manipulation of Flexible Objects by
Geodesic Control,” Computer Graphics Forum, vol. 31, pp. 499–
508, May 2012.

[2] M. Howard, S. Klanke, M. Gienger, C. Goerick, and S. Vi-
jayakumar, “A novel method for learning policies from variable
constraint data,” Autonomous Robots, vol. 27, no. 2, pp. 105–
121, 2009.

[3] H. Wang, K. Sidorov, P. Sandilands, and T. Komura, “Har-
monic Parameterization by Electrostatics,” ACM Transactions
on Graphics (TOG), 2013.

[4] P. Sandilands, V. Ivan, T. Komura, and S. Vijayakumar, “Dexter-
ous Reaching, Grasp Transfer and Planning Using Electrostatic
Representations,” in Proc. of Humanoids, 2013.

[5] M. Toussaint, “Robot Trajectory Optimization using Approxi-
mate Inference,” in Proc. of ICML, pp. 1049–1056, 2009.

[6] D. Zarubin, F. T. Pokorny, M. Toussaint, and D. Kragic,
“Caging complex objects with geodesic balls,” in Proc. of IROS,
pp. 2999–3006, 2013.

[7] P. Dłotko, R. Ghrist, M. Juda, and M. Mrozek, “Distributed
Computation of Coverage in Sensor Networks by Homological
Methods,” AAECC, vol. 23, no. 1, pp. 29–58, 2012.

[8] S. Bhattacharya and et al., “Invariants for homology classes with
application to optimal search and planning problem in robotics,”
AMAI, vol. 67, no. 3-4, pp. 251–281, 2013.

[9] P. Vernaza, V. Narayanan, and M. Likhachev, “Efficiently finding
optimal winding-constrained loops in the plane,” in Proc. of
R:SS, (Sydney, Australia), 2012.

[10] E. S. L. Ho, T. Komura, and C.-L. Tai, “Spatial Relationship
Preserving Character Motion Adaptation,” ACM Transactions
on Graphics, vol. 29, no. 4, pp. 33:1–33:8, 2010.

[11] V. Ivan, D. Zarubin, M. Toussaint, T. Komura, and S. Vijayaku-
mar, “Topology-based Representations for Motion Planning and
Generalisation in Dynamic Environments with Interactions,”
IJRR, vol. 32, no. 9-10, pp. 1151–1163, 2013.

[12] S. M. LaValle, Planning Algorithms. Cambridge University
Press, 2006.

[13] E. Todorov and W. Li, “A generalized iterative LQG method
for locally-optimal feedback control of constrained nonlinear
stochastic systems,” in Proc. of ACC, pp. 300–306, 2005.

[14] D. J. Griffiths, Introduction to Electrodynamics. Always learn-
ing, Pearson, 2013.

[15] A. Van Oosterom and J. Strackee, “The Solid Angle of a
Plane Triangle,” IEEE Transactions on Biomedical Engineering,
vol. BME-30, no. 2, pp. 125–126, 1983.

[16] O. Salzman and D. Halperin, “Asymptotically near-optimal RRT
for fast, high-quality, motion planning.” CoRR, 2013.

[17] K. Rawlik, M. Toussaint, and S. Vijayakumar, “On Stochastic
Optimal Control and Reinforcement Learning by Approximate
Inference,” in Proc.of R:SS, (Sydney, Australia), 2012.

[18] E. Theodorou, J. Buchli, and S. Schaal, “A Generalized Path
Integral Control Approach to Reinforcement Learning,” JMLR,
vol. 11, pp. 3137–3181, 2010.

