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Abstract— The reconstruction of finger movement activity
from surface electromyography (sEMG) has been proposed
for the proportional and simultaneous myoelectric control of
multiple degrees-of-freedom (DOFs). In this paper, we propose
a framework for assessing decoding performance on novel
movements, that is movements not included in the training
dataset. We then use our proposed framework to compare the
performance of linear and kernel ridge regression for the recon-
struction of finger movement from sEMG and accelerometry.
Our findings provide evidence that, although the performance
of the non-linear method is superior for movements seen by
the decoder during the training phase, the performance of
the two algorithms is comparable when generalizing to novel
movements.

I. INTRODUCTION

Classification methods have been extensively used for de-
coding movement intention from surface electromyography
(sEMG) signals with high accuracy [1, 2]. Nevertheless, one
severe limitation of classification methods for myoelectric
control is that they are restricted to a finite, predetermined
set of modules (e.g. grasp types). One way of achieving more
natural and dexterous myoelectric control is by employing
proportional and simultaneous control of a large number of
degrees-of-freedom (DOFs) of the prosthetic device [3, 4].

Previous work on proportional myoelectric control was
mainly focused on wrist kinematics decoding [5, 6]. Re-
cently, a small number of studies have addressed the chal-
lenge of decoding finger movement by using sEMG. Notably,
Smith et al. [7] estimated joint angles of the metacarpopha-
langeal finger joints of a non-amputee subject, by using
a multi-layer perceptron (MLP). Hioki and Kawasaki [8]
used a time-delayed, recurrent neural network, to estimate
finger joint angles also in a non-amputee subject. Finally,
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Ngeo et al. [9] used a muscle activation (MA) model to
reconstruct finger kinematics from sEMG, and demonstrated
that a non-parametric (Gaussian Process) regression method
outperformed artificial neural network (ANN) regression.

A comparison of linear and non-linear regression methods
was performed by Hahne et al. [6] for the proportional and
simultaneous control of wrist kinematics, and it was found
that when a non-linear feature was used, the differences
in decoding performance were marginal. Ameri et al. [10]
compared the real-time performance of an ANN and support
vector regression (SVR) in 10 non-amputee and two amputee
subjects, and found that SVR outperformed the ANN in
terms of decoding wrist movement, and also substantially
reduced processing times.

The use of regression methods offers the potential advan-
tage of generalizing to novel movements, that is movements
not included in the training dataset. This is particularly
important for clinical applications, where exhaustive training
that could cover all possible combinations of finger move-
ments would be prohibitively expensive in terms of both time
and effort. To this end, we propose a framework for assessing
the quality of finger movement decoding for both within-,
as well as across-movement generalization. In this paper, we
evaluate our method on the NinaPro database [11–13], which
is a publicly available dataset comprising movements during
execution of isometric and isotonic hand configurations, as
well as functional movements and grasping of common
household objects. Reconstruction of finger movement is
achieved with using both linear regression (LR) and kernel
ridge regression (KRR), and the performance of the two
algorithms is compared for within- and across-movement
generalization.

II. METHODS

A. NinaPro database

The second iteration of the publicly available NinaPro
database [13] was used in this paper. Briefly, 40 able-bodied
subjects were instructed to perform six repetitions of various
hand, wrist and functional and grasping movements, or-
ganized in three distinct sets of exercises (referred to as
exercises B, C and D in [12]). In our study, we only used data
from exercises 1 and 2, for which hand kinematics data were
collected. For exercise 2, wrist movements were excluded
from analyses, since the motion of the fingers during these
movements was negligible. Muscle activity was recorded by
using 12 wireless sEMG electrodes, each integrated with a 3-
axis accelerometer. From this total number of 12 electrodes,
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eight were equally spaced around the forearm, and the
remaining four were targeted to specific muscles. Hand
kinematics were simultaneously recorded by using a 22-DOF
data glove, which returns values that are proportional to joint
angles. The sampling rate was set to 2 kHz for myoelectric
signals, and to 25 Hz for accelerometry and glove data. The
synchronization of the three different streams was performed
off-line by using high-resolution timestamps [13].

B. Signal preprocessing

Myoelectric signals were digitally band-pass filtered be-
tween 20 and 500 Hz by using 4th order Butterworth
filters. Digital filtering was performed both forward and
backward in time to avoid introducing phase delays. For
feature extraction, a sliding window of 256 ms length was
used, with an increment of 100 ms. From each sEMG
channel, four time-domain (TD) features were extracted; the
mean absolute value (MAV), waveform length (WL), log-
variance (Log-Var) [6], and 4th order auto-regressive (AR)
coefficients. For accelerometry and hand kinematics signals,
the mean value (MV) feature was used, which computes the
average value of the signal within the processing window.
All features and kinematics signals were normalized in the
range [0, 1], and finally mean subtracted. Feature scaling and
mean subtraction followed cross-validation (CV) (Section II-
E), and were thus performed by using training data only.

The input dimensionality was (7 sEMG features + 3
acceleration signals) / channel × 12 channels = 120 input
features, while the output dimensionality was defined by the
number of recorded glove sensors. For decoding, a mapping
f : R120 → R22 was learned by using LR and KRR, as
explained in the next section.

C. Linear regression

Linear regression was performed by solving the linear
system of equations (ridge regression):

B̂ =
(
XTX + λI

)−1

XTY, (1)

where X denotes the design matrix in which rows represent
training samples and columns represent input features. The
rows of the output matrix Y represent training samples,
whereas the columns of Y represent target signals (i.e. data
glove measurements). The parameter λ is a regularization
constant.

D. Kernel ridge regression

Kernel ridge regression was performed by solving the
system of equations:

Â = (K + λI)
−1
Y, (2)

where K represents the Gram matrix, whose elements are
inner products in the kernel feature space

k
(
xi, xj

)
= 〈φ(xi), φ(xj)〉. (3)

In this study, the squared exponential kernel (also known as
radial basis function or Gaussian kernel) was used, which is
defined as follows:

k
(
xi, xj

)
= exp

−∥∥xi − xj∥∥22
2σ2

 , (4)

where the hyper-parameter σ controls the width of the kernel.

E. Cross-validation
Subject-specific decoders were learned during training.

The quality of reconstruction of finger movement was
assessed in two distinct scenarios; within- and across-
movement generalization. Hence, two different cross-
validation (CV) procedures were designed; for within-
movement generalization, decoders were trained by using five
out of six repetitions of each movement, and subsequently
tested on the left-out repetition. This yielded 6 folds for
each subject. For across-movement generalization, decoders
were trained on data from all except one movements, and
subsequently tested on the left-out movement. Since the
number of performed movements was different for the two
sets of exercises [12], this procedure yielded 8 and 23 folds
for exercises 1 and 2, respectively. In each case, across-fold
averages were computed and reported for each subject.

For both LR and KRR, hyper-parameters were optimised
via CV on a subset of 10 subjects, which was then discarded
from subsequent analyses. Concretely for LR, the optimiza-
tion of the regularization constant λ was performed via a
log-linear search in the range {−4,−3,−2,−1, 0, 1, 2}. For
KRR, a grid search was performed for the optimization of the
hyper-parameters λ and σ. The log-range for σ was {0, 1, 2}.
In both cases, the values of hyper-parameters which yielded
the highest average performance were chosen, and used to
report results on the test subject subset.

F. Decoding performance assessment
The quality of reconstruction was assessed by using the

coefficient of determination (R2) index which is defined as
follows:

R2 =

(
M∑
j=1

(
pj − p̄

) (
p̂j − ¯̂p

))2

M∑
j=1

(
pj − p̄

)2 M∑
j=1

(
p̂j − ¯̂p

)2 . (5)

where pj and p̂j denote measured and reconstructed data
glove values for the jth sample of a CV-fold, and p̄ and ¯̂p
denote their respective expected values over all the samples
of the fold j = 1, . . . ,M .

G. Chance level decoding performance
For chance level decoding performance assessment, LR

was used and predictions were made for randomized input
data matrices. Concretely, a random version of the design
matrix was fed into the decoder, which did not correspond
to the segment of hand kinematics data to be predicted.
Chance level decoding performance was hence assessed on
a plausible, rather than just some arbitrary input matrix.
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Fig. 1. Representative traces of finger movement reconstruction from surface electromyography (sEMG) and accelerometry. The measured activity of the
closest to the index metacarpophalangeal joint glove sensor is plotted against the estimates with linear regression (LR) and kernel ridge regression (KRR).
(A), (B) Within-movement generalization for exercises 1 and 2. (C), (D) Across-movement generalization for exercises 1 and 2.
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Fig. 2. Summary quartile plots of decoding performance (R2). Straight
lines, medians; dashed lines, means; solid boxes, interquartile ranges;
whiskers, overall ranges of non-outlier data; circles indicate outliers. LR,
linear regression, KRR; kernel ridge regression; wm, within-movement
generalization; am, across-movement generalization. Results shown for 30
subjects and 22 glove sensors. Results averaged across cross-validation (CV)
folds and glove sensors.

H. Statistical tests

A non-parametric analysis of variance (ANOVA) test,
namely the Friedman test, was used to compare the perfor-
mance of LR and KRR for within-, and across-movement
generalization. Post-hoc pairwise comparisons were per-
formed by using Wilcoxon rank sum tests and the Nemenyi
correction for multiple comparisons. The significance level
was set to α = 5×10−2. Statistical tests were performed on

across-fold computed averages for each subject, so that the
sample independence assumption of the test was not violated.

III. RESULTS

The hyper-parameter values selected via CV (Section II-
E) were λ = 0.1 for LR, and λ = 10−4, σ = 10 for
KRR. By using these parameter settings we were then able to
reconstruct finger movement for 30 subjects. Representative
traces of kinematics activity recorded with one of the data
glove sensors are shown in Fig. 1 for the two exercises.
Predictions with LR and KRR, both for within- (Fig. 1A,B),
and across-movement (Fig. 1C,D) generalization are also
shown in the same figure.

Summary decoding results for 22 DOFs and 30 subjects
are presented in Fig. 2. As expected, a decrease in per-
formance was observed for across-movement generalization.
A Friedman test was performed to compare the decoding
accuracy of LR and KRR. In all cases, decoding performance
significantly outperformed chance level prediction (all p
values smaller than 10−17). For within-movement general-
ization, KRR significantly outperformed LR (p < 10−3), and
the improvement in performance was larger for the exercise
2. On the contrary, for across-movement generalization the
performance of the two algorithms was comparable, with LR
yielding marginally, however not significantly higher decod-
ing accuracy. Finally, the performance of both algorithms
was significantly higher in the case of within-movement
generalization (both p-values smaller than 10−12).

IV. DISCUSSION

In this paper, we used sEMG and accelerometry to achieve
highly-accurate reconstruction of the movement of a large
number of DOFs of the human hand. For within-movement



generalization, the overall decoding performance was R2 =
0.70± 0.04 for LR, and R2 = 0.79± 0.04 for KRR, which
is higher than R2 = 0.55 reported by Smith et al. [7].
Comparison to other studies is more challenging, due to
differences in electrode placement [8, 9].

The use of regression methods offers the potential advan-
tage of generalizing to novel movements. To evaluate this
hypothesis, we implemented a novel CV method and tested
the performance of the decoding algorithms on movements
not included in the training dataset. Although a decrease in
decoding performance was observed (Fig. 2), finger trajec-
tories were still tracked reasonably well (Fig. 1C,D).

A decoding accuracy comparison was performed for LR
and KRR. Previous work has shown that the use of non-
parametric methods, such as Gaussian Process regression,
can improve decoding performance, especially in the case of
limited availability of training data [9]. We argue, however,
that any algorithmic comparison should be assessed on
both within-, as well as across-movement generalization.
In this study, we provide evidence that although a non-
linear regression method can outperform linear regression
during within-movement generalization, the performance of
the two methods is comparable when generalizing to novel
movements. From a clinical perspective, our results imply
that the extra computational cost induced by the use of non-
linear methods may not necessarily be associated with an
increase in performance in real-life decoding situations.

For wrist movement reconstruction, Hahne et al. [6] found
that when a non-linear sEMG feature was used, the per-
formance of (generalized) LR and KRR was comparable,
hence implying that any non-linearities in the mapping from
sEMG to kinematics could be captured by the non-linear
features. A direct comparison of their results to ours is
not straightforward, since the notion of across-movement
generalization cannot easily be transferred to the case of wrist
movement decoding. Nevertheless, our findings reinforce the
belief that under a given non-linear feature representation, the
performance of LR and KRR is comparable.

Our study provides a benchmark for the reconstruction
of finger movement from sEMG and accelerometry. Further
verification of our results with amputee subjects and during
online myoelectric control are required to evaluate the merit
of our approach for clinical applications.
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