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Abstract— Linear discriminant analysis (LDA) is the most
commonly used classification method for movement intention
decoding from myoelectric signals. In this work, we review the
performance of various discriminant analysis variants on the
task of hand motion classification. We demonstrate that optimal
classification performance is achieved with regularized dis-
criminant analysis (RDA), a method which generalizes various
class-conditional Gaussian classifiers, including LDA, quadratic
discriminant analysis (QDA), and Gaussian naive Bayes (GNB).
The RDA method offers a continuum between these models
via tuning two hyper-parameters which control the amount of
regularization applied to the estimated covariance matrices. In
this study, we performed a systematic classification performance
comparison on four datasets. Hand motion was decoded from
myoelectric and inertial data recorded from 60 able-bodied
and 12 amputee subjects whilst they performed a range of 40
movements. We found that when the regularization parameters
of the RDA classifier were carefully tuned via cross-validation,
classification accuracy was statistically higher by a large mar-
gin as compared to any other discriminant analysis method
(average improvement of 13.7% over LDA). Importantly, our
findings were consistent across the able-bodied and amputee
populations. This observation provides supporting evidence that
our proposed methodology could improve the performance of
pattern recognition-based myoelectric prostheses.

I. INTRODUCTION

Pattern recognition-based myoelectric control aims at de-
ciphering movement intention from biosignals to achieve
naturalistic control of external devices, such as prosthetic
hands and exoskeletons. In the myoelectric control literature,
linear discriminant analysis (LDA) is the most extensively
used method for motion classification for a number of
reasons, including ease of implementation, computational
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efficiency, and performance robustness [1]-[3]. In this work,
we review the efficacy of a general family of discriminant
analysis and class-conditional Gaussian models in the context
of hand motion classification.

II. BACKGROUND

Discriminant analysis is a family of supervised proba-
bilistic models which assumes class-conditional multivariate
Gaussian densities [4]. LDA is a special case of this family
where a common covariance matrix, often referred to as the
pooled covariance or within-class scatter matrix, is shared
among classes. This assumption leads to linear decision
boundaries (i.e. hyperplanes). In LDA, a test data point x,
is assigned to the class ¢ for which the linear discriminant
function 0, (x,) is maximized:
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where 7. and p, forc = 1,..., C, are the prior probabilities
and class means, respectively, 3 is the pooled covariance ma-
trix, and C' is the number of classes. The prior probabilities,
mean vectors, and pooled covariance matrix can be estimated
from the training data:
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where N, is the number of training instances in class ¢, and
N is the total number of training samples. The posterior
probability for class c is given by the softmax function:
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Quadratic discriminant analysis (QDA) is another type of
class-conditional Gaussian model which does not make the
LDA assumption (i.e. shared covariance matrix), thereby a
separate covariance matrix has to be to estimated for each
class. In this case, the decision boundaries are quadratic in
feature space and the discriminant functions are given by:
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Fig. 1. Family of discriminant analysis classifiers. Classifiers such as LDA,
QDA, DLDA and GNB / DQDA can be recovered as special cases of RDA
via appropriate selection of regularization hyper-parameters « and ~y.
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where X, is the covariance matrix of class ¢, which can be
estimated from the training data:
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Regularized discriminant analysis (RDA) is a method that
generalizes LDA and QDA and provides a continuum of
models between the two [5]. Similar to the QDA classifier,
the class covariance matrices for this model are separate,
however they are regularized toward the pooled covariance
matrix and take the form:

Se.(a)=aS.+(1-a)3, 0<a<l. (8

The parameter « controls the amount of regularization. For
a = 0, we recover LDA, and for o = 1, we recover QDA.
A different form of regularization occurs when the estimated
covariance matrices are regularized toward diagonal matri-
ces, that is,

2 (y) = (1=7) 2 + 7 diag(®) ©)
and
2A:c (7) = (1 - ’Y) zA]c + ’Ydiag(ﬁ:c)a

The two regularization approaches are orthogonal, and can
be thus combined into:

0<y<1. (10)
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The model described by Eq. (11) leads to a general family
of models which treats as special cases various well-known
classifiers including LDA, QDA, Gaussian naive Bayes

Fig. 2. Sensor placement for an able-bodied and an amputee subject.
TABLE I
EXPERIMENTAL DATASETS
Dataset Numl‘)er of Medical condition Sensn_n 8
subjects modalities

1 40 Able-bodied sEMG, ACC

2 10 Transradial amputees sEMG, ACC

. sEMG, ACC,

3 20 Able-bodied GYRO., MAG

. sEMG, ACC,

4 2 Transradial amputees GYRO. MAG

(GNB), and diagonal linear discriminant analysis (DLDA),
that is, an LDA model with diagonal pooled covariance
matrix. A schematic representation of this family of models
is shown in Fig. 1. It is worth noting, that the GNB model
is occasionally referred to as diagonal quadratic discriminant
analysis (DQDA).

III. METHODS
A. Datasets

In this study, we used four datasets to evaluate and com-
pare the performance of the family of classifiers introduced
in the previous section. The first two datasets are publicly
available, as part of the Ninapro project! (databases 2 and 3
in Atzori et al. [3]). The latter two datasets were collected by
the authors by using the Ninapro protocol and made available
on the same repository. One difference between the two pairs
of datasets is that, for the first pair, the standard Delsys®
Trigno™ sensors’> were used which incorporate surface
electromyogram (sEMG) electrodes and accelerometers. For
the latter two datasets, the Delsys® Trigno™ IM system
was used which also includes gyroscopes and magnetome-
ters. The inertial measurement data (acceleration, angular
velocity, magnetic field) were used in their raw format along
with SEMG measurements to decode hand motion intention
[6]. General information about all four datasets, including
number of participants, medical conditions and input sensing
modalities are presented in Table 1.

In all experiments, eight sensors were equally placed
around the subjects’ forearm, and four sensors targeted the
extensor digitorum communis, flexor digitorum superficialis,
biceps, and triceps brachii muscles (Fig. 2). The participants
sat in a chair and performed six repetitions of 40 move-
ments which were instructed to them on a computer screen.
The exercises included individuated finger, wrist, grasp and
functional movements [3]. Myoelectric and inertial data were

'http://ninapro.hevs.ch
2http://www.delsys.com/
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Fig. 3. Decoding performance comparison. The balanced classification accuracy is shown for five discriminant analysis variants and four datasets.

recorded at sampling frequencies of 2 KHz and 128 Hz,
respectively.

B. Signal pre-processing and feature extraction

Myoelectric signals were digitally band-pass filtered in the
range 20 Hz to 500 Hz. By using a shifting window approach,
four time-domain sEMG features were extracted from each
channel, namely the mean absolute value (MAV), waveform
length (WL), 4"-order auto-regressive (AR) and log-variance
(Log-Var) [7]. The length of the window was set to 256 ms
and the increment to 50 ms. For accelerometry (ACC) and
inertial measurements (IMs), the mean value (MV) within
the processing window was calculated. Thus, a total number
of 10 features was extracted from each sensor for datasets 1
and 2 (7 sEMG, 3 ACC features), whereas the same figure
for datasets 3 and 4 was 16 (7 sEMG, 9 IM features). Hence,
the input feature space was 120- and 192-dimensional for the
two pairs of datasets, respectively.

C. Cross-validation (CV) and hyper-parameter tuning

For each subject and movement, data from five repetitions
were used to train models and the left-out repetition data
were used to assess model performance. This procedure was
repeated six times, hence resulting in 6-fold cross-validation
(CV). To tune the regularization hyper-parameters o and -y
for RDA, a grid search was performed in the range [0, 1]
with a step size of 0.05. In this case, inner-fold CV was used
and the parameter values which yielded the highest average
performance were selected.

D. Performance assessment

The class distribution of the test folds was balanced by
removing a large proportion of the instances corresponding
to the rest class. Decoding performance was then evaluated
by using the standard classification accuracy (CA) metric.

IV. RESULTS

A performance comparison of five discriminant analysis
classifiers (LDA, QDA, GNB, DLDA, RDA) is shown in Fig.
3. For all four datasets, RDA consistently outperformed all
other classifiers and it was followed by LDA, GNB, QDA and
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Fig. 4. LDA and RDA performance comparison. Representative confusion
matrices are shown for an amputee subject (dataset 4). Color map represents
balanced classification accuracy scores.

DLDA. The average CA median difference between RDA
and LDA was 13.7%. All performance differences between
classifiers were statistically significant (p < 1073, Friedman
Test followed by pair-wise Wilcoxon rank-sum tests with
Sidék correction for multiple comparisons). Representative
confusion matrices for one amputee subject (dataset 4) are
shown in Fig. 4 for LDA and RDA.

The distribution of hyper-parameters « and ~ for RDA as
selected by CV is shown in Fig. 5. The optimal selection
for v was almost consistently 0 (with very few exceptions
where it was 0.05), whereas for « it was in the range 0.15
to 1.

V. DISCUSSION
A. Comparison of models, overfitting and regularization

The RDA classifier consistently outperformed all other
models. This was expected, since the RDA model is flexible
and can treat all other models as special cases (Eq. 11,
Fig. 1). The two hyper-parameters of the RDA classifier
were tuned such that the cross-validated CA was maximized,
therefore, it was guaranteed that its performance would be
at least as good as that of any other model.

The LDA model assumption, that is, classes share a
common covariance matrix, is very strong and fundamentally
wrong. One would expect that QDA should outperform LDA
since it is more flexible and does not make this assumption.
The reason why this is not often the case is that QDA is
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Fig. 5. Normalized count of selected values for RDA parameters o and ~.
The optimal value for v was almost consistently 0 (with very few exceptions
where it was 0.05), whereas for « it varied in the range 0.15 to 1. The
marginal distribution of « selected values is shown separately on the right.

heavily prone to overfitting. The number of free parameters
that have to be estimated in the general class-conditional
Gaussian model is C' (D + 1) D/2, where C is the number
of classes and D is the dimensionality of the feature space. In
our case, the number of free parameters was approximately
2.86 x 10° for datasets 1 and 2, and 7.6 x 10° for datasets
3 and 4. Taking into consideration that a typical CV fold
included on average 3.6 x 102 training samples, it is obvious
that this method suffered profoundly from overfitting. It is,
therefore, not surprising that the classification performance
of QDA for datasets 3 and 4 was inferior to that for datasets
1 and 2 (Fig. 3), since in the former case the feature space
was larger (Section III-B). Conversely, the performance of
the other classifiers was improved, as expected, when the
additional sensory modalities (gyroscopes and magnetome-
ters) were included in the set of features [6].

In the limit of infinite amount of data one should expect
that QDA would always outperform LDA. In practice, how-
ever, it is not feasible to collect vast quantities of training
data, especially with amputees. The benefit of using RDA
lies in that it can make use of the theoretical advantage of
QDA over LDA without being susceptible to overfitting, as
a result of regularizing the class covariance matrices toward
the pooled covariance matrix (o hyper-parameter).

The ~ hyper-parameter is used in the RDA model to
introduce a different form of regularization, that is, it shrinks
the estimated covariance matrices toward diagonal matrices.
In the extreme case (i.e. ¥ = 1). the naive Bayes model
is recovered which assumes class-conditional feature inde-
pendence. Nevertheless, such behaviour should neither be
desired nor expected, since many features originate from
the same measurements (i.e. we extract multiple features
from the same sEMG signals). Input features which do
not stem from the same measurements are still expected to
exhibit strong correlations when they are recorded in nearby
locations on the skin surface, due to signal crosstalk [8]. For
that reason, it should not be surprising that the optimal value

for v was almost consistently 0 (Fig. 5).

B. Computational and memory requirement considerations

One strong advantage of the LDA model is that deci-
sion boundaries are linear in feature space. Consequently,
the time complexity of assigning class probabilities to a
test sample is O (C'D), that is, it scales linearly with the
feature dimensionality. The space complexity for LDA is
also O (CD). For general class-conditional Gaussian models
like QDA and RDA that are implemented efficiently, that
is, when inverse covariance matrices are precomputed and
stored in memory, the computational complexity is O (C’ D2)
and space complexity is O (C’Dg). For small to medium-
sized feature spaces, this would not pose a problem for real-
time implementations.

VI. CONCLUSIONS

In this study, we reviewed and performed a systematic
comparison of discriminant analysis models on hand motion
classification. We demonstrated that a large improvement
in CA can be achieved, both for able-bodied and amputee
subjects, by using the RDA algorithm, as compared to the
commonly used LDA model. The regularizing parameters of
the RDA model can be easily tuned via hold-out or cross-
validation.

Our study suggests that pattern recognition-based myo-
electric control systems have the potential to benefit from
deploying the RDA method in the decoding stage. Further
verification of our results during real-time control paradigms
is required and currently seen as a future research direction.
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