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Abstract— This paper presents an estimation scheme to
control foot placement for achieving a desired dynamic walking
velocity in presence of sensor and model errors. Inevitable dis-
crepancies, such as sensors’ noise, delay, and modelling errors,
degrade the performance of model-based control methods or
even cause instabilities. To resolve these issues, an on-line pa-
rameter estimation approach based on Tikhonov regularisation
is formulated using measurement data, which is particularly
robust for more accurately approximating the dynamics. The
proposed scheme initially uses the foot placement predicted
by the linear inverted pendulum model, while the control
parameters are being optimised using adequate measurements
to represent the real dynamics within and in-between steps; and
then, the estimation based control is used to predict the future
foot placement accurately in the presence of discrepancies.

I. INTRODUCTION

Humanoid robots, designed with a human morphology,
offer advantages of traversing environments that are easily
accessible by humans, such as stairs, passageways, rugged
terrains, etc. [1] as well as using human-oriented tools [2].
A humanoid robot is a floating-base system of two-legs [3]
with morphological adaptation to various surfaces, providing
adaptability and maneuverability [4]. They have potentials
to be indispensable in emergency and disaster responses,
where wheeled robots are limited by the terrain irregularities.
In turn, the mechanical complexity of humanoids imposes
control challenges compared to wheeled robots.

Many model-based approaches have been studied to ad-
dress the problem of bipedal locomotion. Kajita et al. [5]
proposed the Linear Inverted Pendulum (LIP) model, which
regards the robot as a point mass, to generate horizontal
motions and keep the Centre of Mass (COM) height constant.
Given a target COM motion, the corresponding Zero Moment
Point (ZMP) or Centre of Pressure (COP) for achieving it can
be analytically computed. LIP model and its extensions have
been widely applied in bipedal walking, and its simplified
modelling is illustrated in Fig. 1.

However, model-based approaches, e.g. LIP model-based
foot placement control, generally have fixed coefficients and
parameters manually tuned off-line for controlling legged
locomotion [6]. For example, Raibert’s control of a one-
leg hopping robot has decoupled regulation of hoping height
by delivering a fixed vertical thrust during stance, forward
speed by foot placement, and an upright posture by exerting
a torque around the hip [7]. Therefore, proper tuning of all
variables was very crucial and usually relied on experience,
which could only be done by experimental trial and error.
However, this manual tuning has limitations because param-
eters might be time-varying or state-dependent. The same

(a) Valkyrie robot (b) COM motion

Fig. 1: Bipedal walking control of the Valkyrie robot using the
Linear Inverted Pendulum model (sagittal scenario).

problems exist in other model-based approaches, especially
when unexpected changes occur [8].

To resolve this, auto-tuning of parameters has been ex-
plored given a known control structure [9]. Nakanishi et
al. [10] developed a framework to learn bipedal locomotion
through movement primitives by locally weighted regression
while the frequency of the learnt trajectories is adjusted auto-
matically. You et al. [11] used linear regression based on past
measurements for updating the coefficients of an extended
formulation based on Raibert’s model to achieve accurate
velocity tracking. This method improved the system’s flexi-
bility to unknown changes, such as a mass offset, and was
later extended to bipedal walking and running [12]. However,
the convergence rate in You’s method is significantly limited,
because its formulation has two coefficients coupled with
the measured velocity: one is directly for the velocity, and
the other is for the velocity error where measured velocity
appear as well. Hence, the coupling of these two coefficients
resulted in the fluctuation of estimated values.

We propose an online estimation approach derived from
the analytic insights of the LIP model, which has a major
advantage in comparison with Raibert’s linear model, i.e.
the decoupling between the current forward velocity and the
desired one. As a consequence, we expect a much faster
and stable convergence of the coefficients needed for foot
placement, thus better adaptation to unexpected changes, e.g.
an unknown mass offset. We elaborated on a more robust
calculation of the coefficients as well as on the effects of
downgraded sensory information.

This paper contributes in the following aspects:

• A rigorous analysis of the propagation of sensor errors
in walking control, and the inevitable uncertainties of
model-based methods;

• Identification of control parameters derived from the
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model, and solution of the parameter estimation problem
with nominal values using optimization [13];

• Online estimation for both the continuous dynamics
within a step and the discrete dynamics between steps.

This paper is organised as follows. The limitations and
inevitable uncertainties of LIP model are discussed in Sec-
tion II. The proposed methodology is elaborated in Sec-
tion III. Benchmark results studied in simulation are pre-
sented in Section IV, followed by conclusions in Section V.

II. PROBLEM STATEMENT

Model-based approaches constitute an analytic framework
for controlling robots and therefore are extensively used. In
a classical model-based approximation of bipedal walking–
Raibert’s model, LIP, etc.–an analytical solution is defined
to estimate the next foot placement, which is model specific.
For example, given a certain transition time t, the COM
motion of a LIP model can be computed based on the current
COM state by the hyperbolic functions as [8]:

x f = (x0 − p∗) cosh(τ) + ẋ0Tc sinh(τ) + p∗ (1)

ẋ f = (x0 − p∗)
sinh(τ)

Tc
+ ẋ0 cosh(τ), (2)

where τ = t/Tc is the normalised transition time. The time
constant Tc =

√
zc/g is defined by the fixed COM height zc

in the LIP model. The transition time t is the duration from
the current state to the moment of interest. x0 and ẋ0 are the
initial COM state, x f and ẋ f are the final COM state after
the transition time t, while p∗ is the position of the point
foot. All variables are expressed in a global coordinate.

First of all, tuning of the model’s parameters requires
substantial effort in model-based approaches of bipedal
walking [14]. Secondly, a set of model parameters are still
not adequate to capture the real system dynamics under all
circumstances. Thus, degradation of performance occurs due
to errors and uncertainties in the following sources.
• Sensory errors: limited resolution, bandwidth, etc. result

in noises, residuals or drifts in the measurements [15];
• Delays: latency and phase lag introduced by the com-

munication, signal filtering, etc. can degrade the control
performance and stability [16];

• Model errors: discrepancies between a simplified model
and a real system, un-modeled non-linearities such as
mechanical backlash and deformation.

To mitigate the aforementioned degradation and achieve
robust walking, we exploit an underlying model that governs
the general walking behaviour, and then estimate the model
specific coefficients from the measurements. We first analyse
how the propagation of errors of the current COM state
affects the prediction of the future COM state as well as
the resulting foot placement.

The current COM state x̃0 and ˜̇x0 from the sensor mea-
surements is composed by the true COM state xreal

0 and ẋreal
0 ,

and the measurement errors ex0 and eẋ0 ,

x̃0 = xreal
0 + ex0 , (3)

˜̇x0 = ẋreal
0 + eẋ0 . (4)

In the following, [ ˜ ] and [ ˆ ] indicate measured and pre-
dicted variables, respectively.

To keep intuition and simplicity, we place the coordinate
frame at the n-th step with respect to (w.r.t.) the stance foot.
The predicted future COM velocity can be calculated by the
current COM state, using the analytic solution defined in (2),

ˆ̇xnf = x̃n0
sinh(τla )

Tc
+ ˜̇xn0 cosh(τla )

= xreal,n
0

sinh(τla )
Tc

+ ẋreal,n
0 cosh(τla ) + enx0

sinh(τla )
Tc

+ enẋ0
cosh(τla )

= ẋreal,n
f
+ ênẋ f

, (5)

where τla = tla/Tc is the normalised look-ahead time, and
ênẋ f

is the error of the predicted future COM velocity

ênẋ f
= enx0

sinh(τla )
Tc

+ enẋ0
cosh(τla ). (6)

Clearly, (6) shows that the error propagates through time and
amplifies by the dynamics.

A similar uncertainty exists when errors propagate to the
foot placement for the next step (n+1). In (2), let ẋ f = ẋn+1

d
,

given an initial COM state and the next step time Tstep, the
foot placement for achieving a desired COM velocity is

p∗ = x̃n+1
0 + Tc ẋn+1

0 coth(τs ) − Tc ẋn+1
d csch(τs ), (7)

where τs = Tstep/Tc is the normalised step time. Note that
according to the LIP model, the final velocity of a step is
equal to the initial velocity of the next step, i.e. ẋn+1

0 = ẋn
f
.

Since the swing foot cannot be placed instantaneously, a
look-ahead time τla is needed to predict a the future foot
placement. We can substitute ẋn+1

0 in (7) by a predicted
future velocity ˆ̇xn

f
in (5). Also, a relative foot placement

w.r.t. the body, defined as p without [∗], is of more interest

pn+1 = p∗,n+1 − x̃n+1
0

= Tc ( ẋreal
f + enẋ f

) coth(τs ) − Tc ẋn+1
d csch(τs )

= preal,n+1 + ên+1
p . (8)

Based on ênẋ f
in (6), the uncertain error term êp in (8) is

ên+1
p = Tc coth(τs )

[
enx0

sinh(τla )
Tc

+ enẋ0
cosh(τla )

]
, (9)

where the uncertainty and error of foothold prediction in-
creases in an exponential manner by the look-ahead time τla
and the next step time τs , which provides further insights on
how the current COM errors, enx0

and enẋ0
, propagate.

It can be inferred from (9) that since enx0
and enẋ0

vary from
time to time and are perhaps phase-dependent, proper tuning
of τla and τs is rather challenging; especially when Tc (zc )
can be a variable due to different robot configurations, e.g.
squatting, standing, walking, or carrying a payload.

If each parameter in (3) and (4) can be precisely known,
then simple subtraction of the error terms ex0 and eẋ0 could
correct the resulted errors in prediction. However, since these
terms are multiple and influenced by all factors contributing
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Fig. 2: Foot placement control for the n+1 step based on the COM
state (x̄n0 , ẋn0 ) at the current n step and the target velocity ẋn+1

d
at

the n + 1 step (sagittal scenario).

to the performance degradation, their accurate estimates are
very difficult to obtain. Hence, an online estimation approach
is proposed here that considers the foot placement controller
as a grey box, and estimates only the lumped-up terms
that are the resulted coefficients including the uncertainties
caused by errors, delays, and unmodelled quantities.

III. FOOT PLACEMENT CONTROL BASED ON
REGULARISED LEAST SQUARES

Legged locomotion is characterised by hybrid dynamics
including continuous and discrete phases, which can be
viewed as a continuous dynamical system undergoing dis-
crete transitions during the touch-down or take-off of support
legs. Hence, our proposed optimization approach (Fig. 2)
is firstly applied for estimating the state transition of the
COM during the continuous phase (Section III-A). Then,
based on the predicted final velocity of the current step, a
similar optimization problem is formulated to account for the
discrete transitions. The final result is the computation of an
accurate foot placement which achieves the desired walking
velocity with minimum steady state error (Section III-B)
based on the imperfect real-time sensory feedback.

A. Optimization of Velocity Estimation During a Step

The inevitable uncertainty of predicting the future COM
state can be understood from (5). From past steps, a dataset
Xs can be created to hold the corresponding measurements
x̃0, ˜̇x0, x̃ f , ˜̇x f , and the final foot placement p̃.

Furthermore, if we substitute equations (3) and (4) in (5),
the measured final velocity of a step expressed in the local
stance foot frame is

˜̇xnf = ẋreal,n
f
+ enẋ f

= xreal,n
0

sinh(τla )
Tc

+ ẋreal,n
0 cosh(τla ) + enẋ f

= − p̃n sinh(τs )
Tc

+ ˜̇xn0 cosh(τs ) − enx0

sinh(τs )
Tc

− enẋ0
cosh(τs ) + enẋ f

, (10)

where the foot placement p̃n is w.r.t. the COM (p̃ = −x̃0).
Thus, (10) can be expressed in a more general form by

defining a vector of coefficients α = [α1,α2,α3]T as

˜̇x f = −p̃nα1 + ˜̇xn0α2 + α3, (11)

where α1 and α2 capture the uncertainties of the model-based
coefficients, and α3 accounts for the lumped terms of both
propagated and current measurement errors.

By indexing (11) in each step, we can extract k measure-
ments from the dataset Xs that correlate the state transition
from the beginning until the end of each step

ẋ f =



˜̇xn−k
f
...

˜̇xn−1
f

k×1

, X1 =



−p̃n−k ˜̇xn−k0 1
...

...
...

−p̃n−1 ˜̇xn−1
0 1

k×3

. (12)

To solve α in a way that reflects the dynamics in the
collected data, while having minimum deviation from the
values calculated by the LIP model, it can be achieved by
introducing a penalised least-squares problem in the form of

min
α

X1α − ẋ f


2

P1
+ ‖α − α0‖

2
Q1
, (13)

where ‖·‖2M denotes a weighted euclidean norm.
It shall be noted that the second term ‖α − α0‖

2
Q1

in (13)
is important, because our study found that the prior work
[12] using only the least square term sometimes produced
undesirable fluctuation of α. With (13), α0 serves as an initial
guess and a very large deviation is penalised.

The minimisation problem expressed in (13) is also known
as Tikhonov regularisation [13]. The closed-form solution
can be readily computed as

α = α0 +
[
XT

1 P1X1 +Q1
]−1 [

XT
1 P1(ẋ f − X1α0)

]
, (14)

where P1 is the diagonal weighting matrix for the regression
term, and Q1 is the diagonal weighting matrix for the
regularisation term

P1 = gp



w1 · · · 0
...

. . .
...

0 · · · wk


,Q1 = gq



w1 · · · 0
...

. . .
...

0 · · · wk


(15)

with wi the weight for the ith index of sampled walking state
in X1, and k the number of stored data. Here we simply have
a linear weight of wi = i. The scalars gp and gq are used to
weight the influence of the regression and the regularisation
term, respectively.

By solving (14), we obtain an α that best approximates
the state transition from the collected data until the n−1 step.
Once the n step starts, we can measure xn =

[
−p̃n ˜̇xn0 1

]

and predict the future velocity ˆ̇xn
f

at the end of the n step by

ˆ̇xnf = xnα. (16)

B. Optimization of the Foot Placement for the Next Step

Section III-A describes the optimization approach con-
cerning the continuous transition “ẋn0 → ẋn

f
”. This section

elaborates on how the dynamics of the step-to-step transition
“ẋn

f
→ ẋn+1

f
” can be better approximated using a similar

optimization. This is essential because once ˆ̇xn
f

is calculated
by (16), we can predict an accurate foothold if the discrete
transition“ẋn

f
→ ẋn+1

f
” is known. Using prediction and our



optimization for estimating the unknown error terms, we
mitigate the degradation effects in sensing and control.

For each step that has happened, we can measure ˜̇xn−1
f

,
˜̇xn
f
, and p̃n . From (8), the measured foot placement of the

step expressed w.r.t. the stance foot can be described as

p̃n = preal,n + enp
= Tc ẋreal,n−1

f
coth(τs ) − Tc ẋreal,n

f
csch(τs ) + enp

= Tc ˜̇xn−1
f coth(τs ) − Tc ˜̇xnf csch(τs ) − Tcen−1

ẋ f
coth(τs )

+ Tcenẋ f
csch(τs ) + enp , (17)

where the target velocity ẋn
d

can be regarded equal with the
real velocity ẋreal,n

f
at the end of the step.

Hence, the foot placement formula in (17) can be ex-
pressed in a general form using coefficients β1, β2, and β3:

pn = β1 ˜̇xn−1
f + β2 ˜̇xnf + β3, (18)

where β1 and β2 replace the model-based coefficients, and
β3 accounts for the error terms expressed in (6) and (9).

Once the estimation starts, the dataset Xs can be used
to form the matrix X2 that holds a fixed number of the
most recent measurements. The matrix X2 contains the COM
velocities at the end of every step for the last k steps.
The vector p is the concatenation of the corresponding foot
placement locations:

p =



p̃n−k

...

p̃n−1

k×1

,X2 =



˜̇xn−k
f

˜̇xn−k+1
f

1
...

...
...

˜̇xn−1
f

˜̇xn
f

1

k×3

. (19)

The Tikhonov regularisation method can be used again
to calculate the model coefficients. Thus, the vector of
coefficients β =

[
β1 β2 β3

]T
can be estimated by

min
β
‖X2β − p‖2P2

+ ‖β − β0‖
2
Q2
. (20)

The solution and the weighting matrices P2 and Q2 are
defined similarly to those in (14) and (15), respectively. After
calculating β, the next foot placement can be predicted by

pn+1 = xn+1β, (21)

where xn+1 =
[

ˆ̇xn
f

ẋn+1
d

1
]
.

C. Implementation Details of the 2-Stage Optimization

This section explains the implementation for estimating
the continuous “ẋn0 → ẋn

f
” and the discrete “ẋn

f
→ ẋn+1

f
”

transitions: the initial stage before sufficient samples are ac-
quired; the optimization stage once online estimation starts.

Step 1: Data generation using LIP model: In the initial
stage, the LIP model is used to predict the final velocity ˆ̇x f

of the current step based on the COM state x̃0 and ˜̇x0 of each
step, and then calculate the foot placement location p; data
are collected using predefined model-specific parameters.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

 Target Vel
 LIP model
 Online Estimation Start
 Online Estimation

Fig. 3: Sagittal velocity profile generated by LIP model and online
estimation to reach target velocity in Simulation 1
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Fig. 4: Model coefficients α and β in Simulation 1

Step 2: Generation of the dataset Xs: In the beginning of
every step, x̃i0 and ˜̇xi0 measured by the sensors are inserted
in the dataset Xs . The final velocity of the current step
is stored as the initial COM velocity at the beginning of
the next step i + 1, because ˜̇xi+1

0 = ˜̇xi
f

in LIP model. For
any other model where ˜̇xi+1

0 , ˜̇xi
f
, we can apply exactly

the same approach by directly using measured ˜̇xi+1
0 . The

corresponding foot placement that resulted in the measured
initial and final velocity of each step is stored in the dataset
as well. These data are used to form matrices X1 and X2.

The dataset is updated at each touch-down moment, using
a fixed size First-In First-Out (FIFO) buffer. The dataset size
k will be further studied for optimal selection.

Step 3: Estimation of parameters: Based on the data, we
apply the Tikhonov regularisation method as proposed in
Section III-A and Section III-B. Once the online estimation
starts, matrices X1 and X2 are formed using a fixed number
of the last k measurements. The matrix X1 contains the
relative COM positions and velocities at the beginning of
every step, while the vector ẋ f is the concatenation of the
final velocities from the past kvel steps. Then, X1 and ẋ f

are used to estimate the optimal model coefficients α in the
continuous transition “ẋn0 → ẋn

f
” by (14).

Similarly, matrix X2 contains the COM velocities at the
end of each of the kfp steps, while p is the concatenation
of the foot placement locations. Afterwards, they are used
to estimate the optimal coefficients β for the step-to-step
transition “ẋn

f
→ ẋn+1

f
” by (20).

Step 4: Prediction of the next foot placement: While
updating the estimates of α and β, the intermediate values
can be used in order to obtain more accurate predictions of
the final velocity and the next foot placement location for the
current step. The final velocity of the current step ˆ̇xn

f
can be

estimated using xn and the model coefficients α based on



TABLE I: Simulation setup and results.

Cases Noise & delay COM offset Methods Steady state
error (m/s) α β

1 None None LIP model 0 [5.63, 2.21, 0] [0.392, −1.78, 0]
Online Estimation 0 [5.63, 2.21, −2.42 × 10−4] [0.392, −0.178, −4.37 × 10−5]

2 110dB noise
filtering delay None LIP model 8.17 × 10−2 [5.63, 2.21, 0] [0.392, −0.178, 0]

Online Estimation 2.00 × 10−4 [5.63, 2.21, 2.00 × 10−2] [0.392, −0.178, 3.66 × 10−3]

3 110dB noise
filtering delay 10% vertical LIP model 5.56 × 10−2 [4.98, 2.08, 0] [0.418, −0.201, 0]

Online Estimation 2.80 × 10−3 [4.98, 2.08, 1.84 × 10−2] [0.418, −0.201, 2.88 × 10−3]

4 110dB noise
filtering delay −0.01m horizontal LIP model 0.280 [5.63, 2.21, 0] [0.392, −0.176, 0]

Online Estimation 1.30 × 10−3 [5.63, 2.21, 7.51 × 10−2] [0.392, −0.176, 1.24 × 10−2]
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(c) Coefficient estimation.

Fig. 5: Simulation 2 with 110dB noise and filtering delay.
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(a) Velocity Profile.
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(c) Coefficient estimation.

Fig. 6: Simulation 3 with 110dB noise, filtering delay and 10% vertical COM offset.

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

 Target Vel
 LIP model
 Online Estimation Start
 Online Estimation

(a) Velocity Profile.

0 2 4 6 8 10 12 14 16 18 20
-0.015

-0.01

-0.005

0

0.005

0.01

0.015

(b) COM velocity error.

0 2 4 6 8 10 12 14 16 18 20

0

2

4

6

0 2 4 6 8 10 12 14 16 18 20

-0.2

0

0.2

0.4

(c) Coefficient estimation.

Fig. 7: Simulation 4 with 110dB noise, filtering delay and COM has drifted reading of −0.01m offset horizontally.

(16). Then, ˆ̇xn
f

can used in xn+1 to control the next foot
placement pn+1 together with model coefficients β in order
to achieve the target velocity ẋn+1

d
in (21).

The dataset and the model coefficients in Steps 2, 3, and
4 are recursively updated so as to obtain the optimal model

coefficients α and β, which are used to reach the target
velocity with minimum steady state error.

IV. SIMULATION

The proposed approach was validated in terms of the accu-
racy of the next foot placement prediction, the convergence



of coefficients α and β, and the robustness of walking subject
to delay and unknown mass offset. The performance was also
compared to that of the LIP model with fixed parameters by
the tracking of walking velocity.

In our simulation, the constant height of the LIP model
was 1.2m, matching the COM height of the humanoid
Valkyrie, step time was 0.5s, i.e. 1s stride time similar to
humans. The target end velocity of each step was 0.5m/s.
The initial values of α and β are calculated by the LIP model.

A dataset size kvel = 2 is used during the continuous
transition “ẋn0 → ẋn

f
”, while a size of kfp = 6 is used during

the step-to-step transition “ẋn
f
→ ẋn+1

f
” similar to work in

[12]. Also, we chose weigthing matrices P1 = diag(0.1,0.2),
P2 = diag(0.1,0.2,0.3,0.4,0.5,0.6), and Q1 = Q2 =

diag(0.1,0.1,0.001). In order to examine the robustness of
the proposed method, we introduced noise with a 110dB
signal-to-noise ratio, error and delay in filtering, constant
vertical COM offset, and horizontal COM offset.

Four simulations have been carried out for evaluation, as
summarised in Table I. According to the velocity profile,
the robot started with an initial velocity ẋ0, decreased to
minimum when the COM position was above the stance foot,
and then increased to a new maximum velocity ẋ f at end of
the step. We are interested in reaching the target velocity ẋd

at the end of each step instead of the average velocity.
Figs. 3 and 4 show the ideal case of Simulation 1 as a

baseline, showing that both methods can achieve the desired
velocity. The estimated coefficients agree with the analytical
solution calculated by the LIP model.

In Simulation 2, the noise of 110dB and its filtering delay
caused an average steady state error of 8.17×10−2m/s for the
LIP model (see blue line in Fig. 5a). After a small fluctuation
between 5s to 10s, the online estimation method reached the
desired velocity with a negligible error of 0.0002m/s. Fig. 5b
illustrates the effect of these errors as the subtraction of the
measured by the ground truth value, (eẋ = ˜̇x − ẋ).

In Simulation 3, 10% of vertical COM offset was intro-
duced (see Fig. 6). Note that a higher zc increases the time
constant Tc , hence, the initial value of the model coefficients
α, β decreases (see (10) and (17)) and the effect of the
errors reduces. That is why the steady error in the LIP model
deceases compared to that in Simulation 2. Regardless, the
proposed method was able to compensate for the COM
offset.

In Simulation 4, a −0.01m horizontal COM offset was ap-
plied. As shown in Fig. 7, although there exists a fluctuation
in the estimated coefficients and a slightly longer converge
time (12s), online estimation can still achieve the desired
COM velocity with low steady state error, whereas such a
COM offset has caused a 0.28m/s steady state error to the
velocity profile generated by the LIP model. The first and
second optimal value of the model coefficients (α and β)
in Table I are close to the values based on the LIP model.
However, the third coefficients (α3 and β3) reflect the overall
effect of sensory noise and delay, and hence are different
from those in the LIP model. These are also proved in (10)
and (17).

V. CONCLUSIONS

In this paper, we first analyse how the unknown terms
propagate and affect the accuracy of foot placement, and
further we propose the regularised least squares for elim-
inating these common discrepancies in the LIP model for
bipedal walking. The robustness of the proposed approach
under various types of sensor and model errors is validated
through simulations in four different scenarios. Compared
to traditional model-based methods, the proposed control
achieves smaller steady state error, as shown in Section IV.

In the future, we will investigate a better rule of exploiting
the past dataset, similar to the long-term and short-term
memories, instead of storing only a fixed number of past
samples. Also, we will further extend this method from the
planar case to the 3-dimensional space.
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