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Abstract

We introduce a robust probabilistic approach
to modeling shape contours based on a low-
dimensional, nonlinear latent variable model.
In contrast to existing techniques that use
objective functions in data space without ex-
plicit noise models, we are able to extract
complex shape variation from noisy data.
Most approaches to learning shape models
slide observed data points around fixed con-
tours and hence, require a correctly labeled
‘reference shape’ to prevent degenerate so-
lutions. In our method, unobserved curves
are reparameterized to explain the fixed data
points, so this problem does not arise. The
proposed algorithms are suitable for use with
arbitrary basis functions and are applicable
to both open and closed shapes; their effec-
tiveness is demonstrated through illustrative
examples, quantitative assessment on bench-
mark data sets and a visualization task.

1. Introduction

Statistical shape models of 2D contours are used in
medical image analysis, object recognition and image
retrieval. To learn an accurate model of shape vari-
ability one must either know the correct correspon-
dence between all shapes of the training set a priori,
or learn the correspondences and the model simulta-
neously; in this paper, we consider the latter situa-
tion (Figs. 1 and 2). Many of the previous approaches
to this problem are conceptually similar (Kotcheff &
Taylor, 1998; Davies et al., 2002; Ericsson & Astrom,
2003b; Thodberg & Olafsdottir, 2003; Hladuvka &
Buhler, 2005): given some observed points from mul-
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tiple contours, fit curves (often polylines) to the data
and then slide points around each curve to find the
optimal correspondence with respect to an objective
function. Noise in the data is usually not modeled and
a ‘reference shape’ with fixed points/parameterization
is typically required to prevent degenerate solutions
whereby points cluster about a single region of the
contour.

The method proposed by Kotcheff and Taylor (1998)
forms the basis of much recent work in this area.
Given a Procrustes alignment of the training shapes,
they monotonically reparameterize each training shape
so as to minimize the determinant of the sample co-
variance matrix. A Gaussian noise model with pre-

specified variance is introduced to avoid numerical
problems. Davies et al. (2002) use a similar for-
mulation, assuming a Gaussian model over the train-
ing shapes and using the minimum description length
(MDL) framework to learn smooth reparameterization
functions (RFs). MDL is typically used for model se-
lection whereby model complexity is balanced against
the ability of the model to explain the data. However,
in the approach of Davies et al. (2002) the model is
fixed and the objective function is similar to that used
by Kotcheff and Taylor (1998).

A number of modifications to the MDL approach have
been proposed. Thodberg has incorporated curva-
ture information (Thodberg & Olafsdottir, 2003) and
extended the MDL technique to appearance models
(Thodberg, 2003). Efficient gradient-based techniques
for learning RFs have been introduced for discrete (Er-
icsson & Astrom, 2003b) and continuous shape repre-
sentations (Hladuvka & Buhler, 2005). Ericsson and
Astrom (2003a) have proposed an alternative formu-
lation to MDL which is invariant to affine transforma-
tions.

In this paper, we introduce the Probabilistic Con-
tour Model (PCM) and the Nonlinear Probabilistic
Contour Model (NPCM). The generative model for
PCM/NPCM can be summarized as follows:
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Figure 1. (a) 4 of the 10 point sets from the box-bump data
set; color represents the value of the arc length parameter.
(b) Curves associated with equal increments along the 1-
dimensional latent space of a probabilistic contour model
(PCM) that does not learn reparameterization functions
(RFs). (c) Latent space: the circles are the posterior means
of the 10 data shapes, the crosses are the latent variables
of the curves in (b).

1. Sample a single point from a low-dimensional la-
tent space.

2. Map the point to a 2D curve using a linear (PCM)
or nonlinear (NPCM) mapping.

3. Reparameterize the curve, sample it and add
Gaussian noise to the sample points to generate
the observed data.

The inclusion of an explicit low-dimensional latent
space and noise model contrasts with techniques which
treat major and minor components of variation sepa-
rately in the objective function (Davies et al., 2002;
Ericsson & Astrom, 2003b; Thodberg & Olafsdottir,
2003; Hladuvka & Buhler, 2005). Neither the existing
techniques nor PCM are designed to handle nonlinear
patterns of variation and we extend PCM to NPCM to
address this limitation. Since many data sets contain
noise of unknown magnitude associated with either the
shapes themselves (e.g. due to random factors in the
biological processes that generated them) or the image
capturing and processing techniques used for shape ex-
traction, we estimate the noise variance during learn-
ing rather than specifying it a priori. In PCM/NPCM,
the underlying (noise-free) contours are latent vari-
ables so, unlike other approaches, curves are not fitted
to the data prior to learning the model. Also, the ob-
served data points remain fixed rather than being slid
around, so there is no danger of point clustering and
hence, no need for a reference shape.

2. Shapes, Curves and
Reparameterization Functions (RFs)

We start by introducing the main components that
will be used to construct a shape model. An ordered
2D point set is represented by the matrix X ∈ R

J×2,
where each row contains the coordinates of a single
point and points are stacked in the order they appear
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(c)

(b)

(a)

0

0 2 4 6
0

2

4

6
(d) (e)

R
e

fe
re

n
c
e

 t
im

e

Polygonal arc length

Figure 2. PCM for the bump-box data: (a) The reparam-
eterized data shapes; color represents the value of the ‘ref-
erence time’ parameter. (b) Curves associated with equal
increments along the latent space. (c) The latent space.
(d) The RFs. (e) Graphical model for PCM.

on the underlying contour. We will often consider the
long vector x ∈ R

2J formed by concatenating the x-
coordinates and the y-coordinates: x ≡ vec(X).

A shape model is learnt from N ordered point sets,
X1, . . . ,XN . To avoid complicating the notation, we
assume that each point set contains J points; point

sets of unequal size are easily handled. The 2D curve
responsible for generating Xn is described by a linear
combination of basis functions:

fn(t) = φT (t)[vx
n,v

y
n], (1)

where t is the curve parameter, vx
n,v

y
n ∈ R

K are vec-
tors of coefficients and φ(t) ≡ (φ1(t), . . . , φK(t))T is
a vector of basis functions. Again, we frequently con-
sider the long vectors vn ∈ R

2K formed by concatenat-
ing vx

n and vy
n. For closed curves, the basis functions

are periodic, e.g. Fourier, wrapped Cauchy, von Mises,
or periodic B-spline.

Given a training set, we assume that the same point

(e.g. the top of the bump for the shapes in Fig. 1a)
varies in both its spatial location and the distance
along the shape perimeter at which it appears. The
idea is to solve the correspondence problem by repa-
rameterizing the curves from which the points were
sampled, allowing us to construct a shape model over
the spatial locations of corresponding points. This is
demonstrated in Figs. 1 and 2 where an initial poor
correspondence between training shapes (Fig. 1a – the
color of the bump on the leftmost shape is noticeably
different from that on the rightmost) is improved (Fig.
2a) leading to a better shape model – the generated
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shapes in Fig. 2b resemble the training shapes more
than those in Fig. 1b. For further details of the box-
bump experiment, refer to Sec. 6.1.

We now consider curve reparameterization in more
detail and introduce a monotonic reparameterization
function (RF), gn(t), for each curve, fn(t). RFs can be
expressed as the integral of a linear combination of ba-
sis functions where both the basis functions and the co-
efficients are non-negative (Davies et al., 2002; Hladu-
vka & Buhler, 2005). To avoid these non-negativity
constraints, we use a ‘monotonicity operator’ (Ram-
say & Silverman, 2005): take an unconstrained linear
combination of arbitrary basis functions, exponenti-
ate to ensure positivity and then integrate to ensure
monotonicity. Ramsay and Silverman (2005) have suc-
cessfully applied this idea to curve registration using
an intuitive least-squares error function. Here, regis-
tration is carried out with respect to the latent variable
models introduced in the following sections.

Closed curves are more difficult to model than open
curves since the start point on each shape is gener-
ally unknown and hence, each RF must contain a shift
parameter. Focusing on the closed curve problem, we
define the RF for the n-th shape, gn(t) : [0, 2π] →
[cn, 2π + cn] as

gn(t) ≡ 2π

∫ t

0 exp(ψT (τ)αn)dτ
∫ 2π

0
exp(ψT (τ)αn)dτ

+ cn, (2)

where ψ = (ψ1(t), . . . , ψQ(t))T is a vector of basis
functions and αn ∈ R

Q is a vector of coefficients. The
values t = cn and t = 2π + cn initially correspond to
the same point on the curve so, assuming that smooth
RFs are desired, we should ensure that the derivative
of gn(t) is equal at cn and 2π+ cn. This is most easily
achieved by using smooth 2π-periodic basis functions.

For each curve n, we approximate the value of the
arc length parameter at each observed point using the
polygonal approximation to the contour. These values
are normalized to lie in [0, 2π] and then stored in the
vector

tn = (tn1, tn2, . . . , tnJ)T . (3)

Combining eqs.(1),(2) and (3), we can see that the
point set Xn is approximated by evaluating the com-
posite function fn(gn(t)) at the entries of tn. The same
approximation can be written in terms of the long vec-
tors xn and vn and expressed as a generalized linear
regression on gn(t):

xn ≈ Φnvn, (4)

where Φn ∈ R
2J×2K is the design matrix defined as

Φn ≡

(

Ωn 0
0 Ωn

)

; [Ωn]jk ≡ φk(gn(tnj)). (5)

By initializing each gn to the identity function, we ini-
tially estimate the correspondences using arc length.
During learning, the tn remain fixed but the gn change.
We are now in a position to define the probabilistic
model.

3. Probabilistic Contour Model (PCM)

We assume that the intrinsic dimensionality of the
data is low and accordingly, use a latent variable model
with a low-dimensional latent space – Fig. 2e. Letting
zn ∈ R

L be the latent variable associated with shape
n (typically L≪ K ≪ J), the prior distribution of the
i.i.d. zn is assumed to be a spherical Gaussian

zn ∼ N (0, IL). (11)

The key component of the model is the conditional
distribution

xn|zn ∼ N (Φn(Wzn + µ), σ2I2J ), (12)

where σ2 ∈ R is the noise variance, W ∈ R
2K×L

is a linear mapping from latent space to coefficient
space (which contains the vn introduced in the pre-
vious section) and µ ∈ R

2K is the mean coefficient
vector. There is independent Gaussian noise of equal
magnitude on all output dimensions which amounts to
a circular Gaussian about each of the J observed 2D
points. It is easily shown that the marginal distribu-
tion of xn is

xn ∼ N (Φnµ,ΦnWWTΦT
n + σ2I2J ), (13)

and that the posterior distribution is given by

zn|xn ∼ N (M−1
n WTΦT

n (xn − Φnµ), σ2M−1
n ), (14)

where

Mn ≡ WT ΦT
nΦnW + σ2IL. (15)

The generative model is strongly related to proba-
bilistic principal component analysis (PPCA) (Bishop,
2006). However, rather than learning a linear map-
ping from the latent space directly to the data
space, we map the latent space to the coefficients of
the curve. The curve associated with these coeffi-
cients is then evaluated at the warped time points
gn(tn1), gn(tn2), . . . , gn(tnJ ) and the data points are
generated by small isotropic Gaussians centered at
each of the evaluated points. Note that once the pa-
rameters have been estimated, all new curves gener-
ated from the model are functions of the same ‘ref-
erence time’ parameter (i.e. they are correctly corre-
sponded) and need not be reparameterized.
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Table 1. ECM algorithm for learning a Probabilistic Contour Model (PCM).

E-step Compute the sufficient statistics using the current parameter values:

E[zn] = M
−1
n W

T
Φ

T
n (xn − Φnµ), E[znz

T
n ] = σ

2
M

−1
n + E[zn]E[zn]T (6)

CM-steps Update the parameters using the sufficient statistics; repeat E-step between each CM step. Numerical opti-
mization (Levenberg-Marquardt algorithm) is used in eq.(10). The ⊗ symbol denotes the Kronecker product.

σ
2
new =

1

2NJ

N
∑

n=1

(

‖xn − Φnµ‖
2 − 2E[zn]T W

T
Φ

T
n (xn − Φnµ) + Tr(E[znz

T
n ]WT

Φ
T
nΦnW)

)

(7)

µnew =

(

N
∑

n=1

Φ
T
nΦn

)−1 N
∑

n=1

Φ
T
n (xn − ΦnWE[zn]) (8)

vec(Wnew) =

(

N
∑

n=1

E[znz
T
n ] ⊗Φ

T
nΦn

)−1

vec

(

N
∑

n=1

Φ
T
n (xn −Φnµ)E[zn]T

)

(9)

{αn, cn}new = arg min
{αn,cn}

−‖xn −Φnµ‖
2 + 2E[zn]T W

T
Φ

T
n (xn − Φnµ) − Tr(E[znz

T
n ]WT

Φ
T
nΦnW) (10)

Procrustes Step Rotate and translate each point set Xn so as to minimize ‖xn − Φn(WE[zn] − µ)‖2 (recall that

xn ≡ vec(Xn)). This is a Procrustes problem with a simple closed form solution (e.g. Cootes and Taylor (1999)).

Having considered all the distributions, the next step
is to estimate the model parameters. In PPCA, the
maximum likelihood estimates (MLEs) of the param-
eters can be computed in closed form or using the EM
algorithm (Bishop, 2006). Here, the presence of the
RFs complicates parameter estimation and there is
no closed form solution for the MLEs and no exact
M-step for the EM algorithm. However, minimizing
the expectation of the complete log-likelihood with re-
spect to one of W,µ, σ2, {α1, c1, . . . ,αN , cN} while
holding the others fixed is reasonably straight for-
ward and leads to the Expectation Conditional Max-
imization (ECM) algorithm (Bishop, 2006) in Table
1. Note that there is no closed form expression for
{αn, cn}new (eq.(10)) so a nonlinear optimization tech-
nique is required; in all experiments, the Levenberg-
Marquardt algorithm was used for this minimization
and the trapezoidal rule was used to evaluate the RFs
(eq.(2)).

As with other approaches, it is assumed that scale,
translation and rotation are nuisance transformations
that do not alter the actual shape of a contour. Rather
than complicating the model by including these trans-
formations in the conditional distribution p(xn|zn)
(eq.(12)), we have found that transforming each point
set Xn so as to maximize the expected complete log-
likelihood works well in practice, i.e. we maximize the
same objective function used for parameter estimation,
but transform the data shapes rather than the model.
Since the posterior distribution p(zn|xn) is Gaussian,
this maximization reduces to a standard Procrustes
matching problem between Xn and the point set cor-

responding to the maximum a posteriori (MAP) esti-
mate of zn. Scale is not included in the optimization
since this would enable the model to produce a high
likelihood by simply shrinking all the point sets. To
remove the impact of scale, all point sets are normal-
ized to have equal size, where size is defined as the
mean squared distance from the centroid.

4. Nonlinear PCM (NPCM)

In PCM, the marginal distribution p(xn) is Gaus-
sian (eq.(13)) and hence, the distribution of each 2D
boundary point is Gaussian. Such a model is not suit-
able for data sets displaying non-linear variation (e.g.
where a single point traces out a curved path), but
this limitation is not unique to PCM; to the best of our
knowledge, none of the existing algorithms for learning

the correspondences and the model simultaneously are
designed to handle nonlinear shape variation. In con-
trast, a variety of techniques have been proposed for
handling complex shape variation when the correspon-

dence between training shapes is known. For example,
one can fit a mixture of Gaussians to a low dimen-
sional representation of the data rather than a single
Gaussian (Cootes & Taylor, 1999). Alternatively, one
can focus on the mapping between data space and la-
tent space. This is the approach taken by Twining and
Taylor (2001), where standard PCA is replaced with
kernel PCA.

In this section, we extend PCM to nonlinear PCM
(NPCM) by allowing the mapping from latent space to
coefficient space to be nonlinear. This is achieved by
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Table 2. ECM algorithm for learning a Nonlinear Probabilistic Contour Model (NPCM).

E-step Compute the responsibilities using the current parameter values and eq.(20): p(zg|xn) =
p(xn|zg)

∑

g
p(xn|zg)

.

CM-steps Update the parameters; numerical optimization (Levenberg-Marquardt algorithm) is used in eq.(19).

σ
2
new =

1

2NJ

∑

n,g

p(zg|xn)‖xn − Φn(Wγ(zg) + µ)‖2 (16)

µnew =

(

N
∑

n=1

(

G
∑

g=1

p(zg|xn)

)

Φ
T
nΦn

)−1
∑

n,g

p(zg|xn)ΦT
n (xn − ΦnWγ(zg)) (17)

vec(Wnew) =

(

∑

n,g

p(zg|xn)
(

γ(zg)γ
T (zg)

)

⊗
(

Φ
T
nΦn

)

+
σ2

β2
I2KU

)−1

vec

(

∑

n,g

p(zg|xn)ΦT
n (xn − Φnµ)γT (zg)

)

(18)

{αn, cn}new = arg min
{αn,cn}

∑

g

p(zg|xn)‖xn − Φn(Wγ(zg) + µ)‖2 (19)

Procrustes Step Rotate and translate each Xn to match the point set associated with arg maxzg
p(zg|xn).

replacing the conditional distribution in eq.(12) with

xn|zn ∼ N (Φn(Wγ(zn) + µ), σ2I2J), (20)

where

γ(zn) ≡ (γ1(zn), γ2(zn), . . . , γU (zn))T (21)

is a vector of basis functions with γu(z):RL → R and
W is now a 2K×U matrix. Just as PCM is related to
PPCA (Sec. 3), NPCM is related to a well-known non-
linear extension of PPCA: the Generative Topographic
Mapping (GTM) (Bishop, 2006).

The nonlinearity introduced in eq.(20) allows the
marginal distribution p(xn) to be non-Gaussian, en-
abling us to capture more complex types of shape vari-
ation. However, eq.(20) also complicates the expres-
sion for the log-likelihood and we can no longer derive
a clean ECM algorithm (cf. Table 1). As in GTM, we
overcome this by switching from a Gaussian prior to a
discretized uniform prior:

p(zn) =
1

G

G
∑

g=1

δ(zn − zg), (22)

where the zg are grid points of the latent space. For
each n, the grid prior gives rise to a constrained G-
component Gaussian mixture model in data space:
each zg is mapped to a coefficient vector Wγ(zg)+µ,
the curve associated with these coefficients is evaluated
at gn(tnj) (j = 1, 2, . . . , J) and a spherical Gaussian
is placed at each of the J 2D points. Since xn ∈ R

2J ,
each component of the mixture model is formally a
spherical Gaussian of dimension 2J .

As discussed above, the linear PCM model may be too

simple and unable to explain shape variation given the

correct RFs. Conversely, the danger with NPCM is
that the model may be too complex and will be able
explain shape variation given incorrect RFs. The nat-
ural solution to this problem is to guide the algorithm
towards smooth mappings by regularizing W. Again,
we follow the approach used in GTM and define a
radially-symmetric Gaussian prior over the entries of
W:

p(W|β2) =

(

1

2πβ2

)UK

exp

{

−
1

2β2

2K
∑

k=1

U
∑

u=1

w2
ku

}

.

(23)
The matrix W is now a latent variable rather than
a point parameter (the graphical model for NPCM is
otherwise unchanged from that for PCM – Fig. 2e).
To avoid integrating over W we use its MAP estimate
(eq.(18), Table 2). The model parameters are esti-
mated using the ECM algorithm in Table 2.1

5. Implementation

To implement PCM, the user must specify the follow-
ing parameters:

L= # latent space dimensions (1; except in Sec. 6.2).
K= # curve basis functions for x and y coords. (50).
Q = # RF basis functions (8).

The numbers in brackets are the values used in our
experiments. The low-dimension of the latent space
combined with the noise model essentially regularizes
the curves – it decides what constitutes genuine shape
variation. Thus, we can choose a large K and not

1A hard assignment is used during the Procrustes step
to improve efficiency.
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worry about overfitting. The RFs are not regularized
but this could easily be incorporated. The choice of
L is an important model selection problem and future
work will consider automatic selection of this parame-
ter.

In all experiments, von Mises shaped unimodal peri-
odic basis functions were used for both the curves and
the RFs: φ(t; ρq, κ) = eκ cos(t−ρq) / eκ, where ρq is the
center and κ is a width parameter. Given K (or Q),
the centers were placed at equal intervals in [0, 2π] and
κ was fixed at K/2 (or Q/2). Note that multiscale
RFs could be investigated by including basis functions
of different widths.

To initialize PCM, the point sets are aligned to a com-
mon mean (with respect to the initial correspondences)
using generalized Procrustes matching, a 2D curve is
fitted to each point set and then PPCA on the coef-
ficient vectors is used to initialize µ, σ and W.2 The
RFs are initialized to the identity function by setting
αn=0 and cn=0 (eq.(2)). The data sets used in Sec.
6 were chosen to enable comparison with other tech-
niques and in all cases, the first point of each shape is
correctly corresponded across training examples. Since
this information may not be available in some applica-
tions, it is worth noting that PCM/NPCM only re-
quires rough initial correspondences and that there
are accurate, efficient algorithms for finding these (e.g.
(McNeill & Vijayakumar, 2006)).

PCM is surprisingly robust and if a data set contains
nonlinear variation, it tends to produce as good a
linear model as we might hope for rather than fail-
ing completely. This suggests using PCM to initialize
NPCM which can be achieved by setting the first L
entries of γ(z) in eq.(21) equal to the entries of z, set-
ting the first L columns of W in eq.(20) equal to the
appropriately scaled W from PCM (eq.(12)) and the
remaining entries to zero. There are alternative ways
in which PCM could be used to initialize NPCM but
we have found this approach to work well in practice.
It is straight forward to assign a different prior vari-
ance to the entries of W associated with different types
of basis function, but in our experiments we used the
single default value given below. The additional pa-
rameters required for NPCM are:

G = # grid points in lat. space (50; except in Sec. 6.2).
U = # basis functions for lat. space → coeff. space

mapping (1 linear + 8 radial basis functions
(RBFs); except in Sec. 6.2).

2For many choices of basis function, isotropic noise on
the coefficients does not equate to noise of equal magnitude
at each boundary point. This is one of numerous problems
associated with modeling curve coefficients directly.

β = prior variance on the entries of W (0.1).

Ideally, G should be large in order to accurately ap-
proximate a continuous latent space, but this must be
balanced against the associated rise in computation
time. Gaussian shaped RBFs were used with centers
placed on a uniform grid containing U − L vertices
and with the variance fixed so that neighboring cen-
ters were two standard deviations apart.

The algorithms were implemented in Matlab on a
1.6GHz Intel Centrino Duo machine. In all experi-
ments, 200 EM iterations were used for both PCM and
NPCM (200 E-steps, 40 each of the CM/Procrustes
steps). Learning the shape model for a data set of 22
shapes, each described by 128 points took <3min for
PCM and <9min for NPCM.

6. Experiments and Evaluations

6.1. Illustrative Examples: Box-bump Data

Fig. 1a shows a ‘box-bump’ data set similar to those
used by Davies (2002), Hladuvka and Buhler (2005)
and Ericsson and Karlsson (2006). Note that unlike
most natural data sets, the distribution of the shapes is
uniform given the correct correspondence (and ignor-
ing minor effects due to alignment transformations).
For example, the point at the top of the bump is lo-
cated at equal increments along a straight line as the
bump moves from left to right. The same is true of all
points on the top of the shape (including non-bump
points), whereas points on the side and base of the
shapes do move at all. Given this uniform distribu-
tion in data space and the fact that PCM is a linear
model, we would expect the posterior means of the
training shapes to be uniformly distributed in latent
space if the model is accurate. Fig. 1 shows the results
of learning a model with fixed RFs and demonstrates,
as has been done in the past, that arc length param-
eterization produces a poor shape model for this type
of data. Note that the mean shape (Fig. 1b, center)
has a low, elongated bump, and the posterior means
are neither uniformly distributed nor do they reflect
the Gaussian prior (Fig. 1c).

The results of applying PCM to the box-bumps are
summarized in Fig. 2. The slight rotations of the
shapes in the figures are those applied by PCM during
the Procrustes step; as would be expected, the gen-
erated shapes are similarly rotated. These alignment
transformations are included in the figures for com-
pleteness, but note that the orientation of the shapes
is of no importance when assessing the accuracy of
the shape model. The learnt correspondences in Fig.
2a are better than those associated with arc length in



Generative Probabilistic Models for Shape Contours

......

(a)

(c)

(b)

0

Figure 3. (a) Noisy box-bump data with learnt parame-
terizations. (b) Curves associated with equal increments
in latent space. (c) Latent space.

Fig. 1a – the color distribution on each bump is ap-
proximately the same. The shape of the RFs in Fig.
2d indicates that PCM has captured the point wise
variation discussed in the previous paragraph. Fig. 2c
(circles) shows the 1D latent space with each train-
ing shape represented by its posterior mean – i.e. the
mean of the Gaussian in eq.(14). Note that the cir-
cles are uniformly distributed in latent space despite
the Gaussian prior. Rather than projecting from data
space to latent space, we can go in the opposite direc-
tion by selecting a point in latent space and generating
the corresponding curve. The curves in Fig. 2b corre-
spond to the uniformly spaced crosses in Fig. 2c. Note
that these resemble the training shapes (Fig. 2a), un-
like those generated from the arc length model (Fig.
1b).

In Fig. 3a, each point of the box-bump shapes has
been contaminated with independent Gaussian noise
of standard deviation 0.3. PCM is robust to this type
of noise by construction and learns a reasonably ac-
curate model with an estimated standard deviation of
0.26. Note that the generated shapes in Fig. 3b re-
flect the true shape variation despite the large noise
variance and there being only 10 training shapes.

6.2. Dimensionality Reduction/Visualization

In Fig. 4, PCM/NPCM is used to visualize a data set
of 23 shapes – the 12 shark shapes used in Sec. 6.3
and the 11 fish/shark shapes from Kimia’s data set
(Sebastian et al., 2004). For the 2D NPCM model we
used G=252 and U=27 (2 linear basis functions and
52 RBFs). The standard 200 iterations were used but
it is worth noting that the posterior distributions re-
quired for visualization typically converge after much
fewer iterations. The distribution of posterior means
in Figs. 4b and 4c is perhaps more intuitive than in
4a, but more importantly, 4b and 4c are based on
variation between homologous morphological features
rather than artificial variation arising from a naive arc
length parameterization – see Sec. 6.3 and the second

column of Table 4 in particular.

6.3. Benchmark Data Sets

Ericsson and Karlsson (2006) recently evaluated state-
of-the-art algorithms using a “ground truth correspon-
dence measure” (GCM) which avoids problems asso-
ciated with the compactness, specificity and general-
ity measures used by Davies (2002). To compute the
GCM, multiple independent observers identify a pre-
specified set of landmarks on each shape. The result-
ing distribution of landmarks is then compared to the
estimated landmark positions given by the algorithm
under evaluation. In simple terms, the GCM is the
error in an algorithm’s approximation of the ground
truth. Table 3 shows the GCM values for five shape
classes. The second row gives the GCM for an arc
length parameterization and subsequent rows give the
GCM for different algorithms as a percentage of the arc

length GCM. The algorithms tested include variants of
the MDL approach: the “cur” algorithms use curva-
ture, algorithms 3-5 use different techniques to pre-
vent degenerate solutions (point clustering – a prob-
lem that does not arise with PCM/NPCM) and the
AIAS+MDL algorithms combine MDL with an affine
invariant approach (Ericsson & Astrom, 2003a). Note
that different algorithms perform well on different data
sets. For example, the AIAS+MDL algorithms per-
form very well on the birds data and curvature infor-
mation seems to be useful for the f.birds data. This
suggests that low-level choices regarding transforma-
tion invariance and shape features are important but
application dependent.

The 128-point shapes and ground truth information
used by Ericsson and Karlsson (2006) was used to com-
pute the results in Table 4.3 Aside from the poor per-
formance on the rats data, PCM performs reasonably
well and NPCM performs very well. It is important
to note at this point that PCM/NPCM is not a vari-
ant of an existing technique (c.f. Table 3). Rather,
it is a novel approach to learning shape models with
application independent advantages over existing tech-
niques (Sec. 1). As with MDL, variants of the ba-
sic PCM/NPCM algorithms (e.g. incorporating cur-
vature) could easily be introduced.

3Six closed curve data sets were provided but we had
difficulty processing the box-bump data and ground truth,
so this data set is omitted (but see Sec. 6.1). Also, we
are trying to identify the cause of small discrepancies be-
tween the arc length GCM values reported here and those
published by Ericsson and Karlsson (2006) (0.1-3.4% – 2nd
row, Tables 3 and 4).
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(a) (b) (c)

Figure 4. Each data shape is shown at the position of its posterior mean. (a) PCM with no RFs. (b) PCM. (c) NPCM.

Table 3. Ground Truth Correspondence Measure for exist-
ing algorithms – from Ericsson and Karlsson (2006).

Algorithm sharks birds f.birds rats forks
Arc length 15.55 22.88 7.12 13.37 19.11
Resid. error (%):
1.MDL 27 65 56 29 19
2.MDL,cur 22 80 45 27 23
3.MDL,me 29 92 62 30 20
4.MDL,nodecost 26 67 56 29 19
5.MDL,par 24 62 48 28 18
6.AIAS,MDL 22 23 58 28 20
7.AIAS,MDL,cur 22 24 48 27 24
8.Eucl 44 60 59 37 27
9.Eucl,cur 29 55 54 35 29
10.Cur 22 111 46 29 31

Table 4. Ground Truth Corresp. Measure: PCM/NPCM.
Algorithm sharks birds f.birds rats forks
Arc length 15.65 22.91 6.93 13.84 19.19
Resid. error (%):
1.PCM 27 56 52 76 20
2.NPCM 21 42 47 51 15

7. Summary and Future Work

We have presented a generative probabilistic approach
to modeling shape contours which overcomes many
of the problems associated with existing algorithms.
Future work will investigate mechanisms for handling
outliers in both latent space (outlying shapes), and
data space (outlying points, often due to occlusion or
missing parts). One possibility is to assume that each
data point is generated by either the PCM/NPCM
model or a high variance outlier distribution. This
mixture model approach to handling outliers has been
successfully applied to unordered point sets in the past
(e.g. Chui and Rangarajan (2000)). Other possibilities
for future work include automated model selection and
extensions to 3D data.
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