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Abstract

We present a probabilistic technique for matching part-

based shapes. Shapes are represented by unlabeled point

sets, so discontinuous boundaries and non-boundary points

do not pose a problem. Occlusions and significant dissim-

ilarities between shapes are explained by a ‘background

model’ and hence, their impact on the overall match is lim-

ited. Using a part-based model, we can successfully match

shapes which differ as a result of independent part transfor-

mations – a form of variation common amongst real objects

of the same class. A greedy algorithm that learns the parts

sequentially can be used to estimate the number of parts

and the initial parameters for the main algorithm.

1 Introduction

Shape-based object recognition is a key problem in com-

puter vision and content-based image retrieval (CBIR).

Over the last decade, numerous shape matching algorithms

have been proposed leading to a dramatic improvement in

performance on benchmark shape retrieval tests. However,

there are two important limitations common to many algo-

rithms: Firstly, they operate on continuous shape bound-

aries (i.e. the ordering of the boundary points matters) and

have no mechanism for handling occlusion, absent features,

non-boundary points and clutter. Secondly, they struggle to

handle shapes that display significant part-based variation.

The first problem becomes important if working with real

images where often one can only extract incomplete, noisy

shape information. The second is important because many

common objects (natural and man made) have a part struc-

ture – single part objects can be seen as a special case.

Techniques that match unordered point sets [1, 4] are ap-

pealing since they do not require ordered boundary infor-

mation and can work with non-boundary points. The soft

correspondence method described in [2], and the probabilis-

tic methods in [7] and [5] can handle outliers, occlusions

and clutter, but have not been extended to handle part-based

shapes explicitly. We address this issue by first describing

a simple point matching model (Sec. 2), and then extend-

ing it so that the most likely part structure and match are

found simultaneously (Sec. 3). A sequential approach for

estimating the number of parts and initial parameter values

is described in Sec. 5.

2 Probabilistic Point Matching (PPM)

We start by describing the probabilistic point matching

(PPM) algorithm used in [5]. Each shape is represented by

an arbitrary number of points; these need not belong to the

shape boundary and the ordering of the points is irrelevant.

Given two such shapes, X = (x1,x2, . . . ,xM )T ∈ R
M×2

and Y = (y1,y2, . . . ,yN )T ∈ R
N×2 (generally M 6=

N ), our task is to compute the correspondence and match

between X and Y. We assume that the yn are observations

from a mixture model:

p(yn) = p(yn|v1)p(v1) + p(yn|v0)p(v0) (1)

where

p(yn|v1) =

M∑

m=1

p(yn|m, v1)p(m), (2)

yn|v0 ∼ Uniform. (3)

The mixture component v0 represents the ‘background

model’ which ensures that all data points are explained to

some extent, and hence, robustifies the model against out-

liers. The ‘foreground’ component v1 is the interesting part.

The distribution p(yn|v1) is itself a mixture model (eq.(2)),

where the p(yn|m, v1) are assumed to be Gaussian. The

center of each Gaussian depends on xm, but unlike stan-

dard Gaussian mixture models (GMMs), the movement of

the centers is controlled by a single set of transformation

parameters s, Γ and c:

yn|m, v1 ∼ N (sΓxm + c, σ2I), (4)

where s is a scale parameter, c ∈ R
2 is a translation vector

and Γ is a 2D rotation matrix. For now, we assume that m
follows a discrete uniform distribution over {1, . . . , M}.
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Maximum likelihood estimates (MLEs) of the unknown
model parameters ((s, Γ, c) and p(v)) are found using the
expectation maximization (EM) algorithm as follows

E-step: Compute the responsibilities using the current
parameter values and eq.(4):

p(m, v1|yn) =
p(yn|m, v1)p(m)p(v1)

p(yn)
(5)

M-step: Update the parameters using the responsibilities:

p(v1) =
1

N

X
n

p(v1|yn), p(v0) = 1 − p(v1) (6)

(s, Γ, c) = arg min
s,Γ,c

X
m,n

p(m,v1|yn)‖yn − sΓxm − c‖2

(7)

where p(yn)=p(y|v0)p(v0)+
∑

m p(y|m, v1)p(m)p(v1),
and p(v1|yn)=

∑
m p(m, v1|yn). Eq.(7) is a weighted Pro-

crustes matching problem between two points sets, each of

size N×M – the importance of matching the pair (xm,yn)
is given by p(m, v1|yn). This least squares problem can be

solved analytically using a similar approach to that used for

unweighted Procrustes problems (see e.g. [3]). The uniform

distribution p(yn|v0) (eq.(3)) is set to U(yn) ≡ 0.001, and

the variance σ2 (eq.(2)) is fixed at 0.05 in all examples.

Fig. 1 shows how PPM performs on matching problems

involving occlusion, irregular sampling and local dissimi-

larity – a ‘feature’ of one shape is not present or is signifi-

cantly different on the other shape.1 The bold points are the

xm that are collectively transformed to match the faint yn;

the final matches are scaled up for clarity. See that many of

the yn have no counterparts in (a), whereas it is the xm that

have no counterparts in (c). In all cases, the sampling fre-

quency of corresponding sections is different, so there is no

perfect point-to-point match. Fig. 2 (first two rows) shows

that PPM struggles to match shapes that display part-based

variation; this limitation is addressed in the next section.

3 Part-Based Probabilistic Point Matching
(PB-PPM)

The PPM algorithm can be seen as a special instance

of a part-based model: it has one background part, v0,

and one foreground part, v1. We now consider models

with one background part, v0, and Q foreground parts,

v1, v2, . . . , vQ, where

y|m, vq ∼ N (sqΓqxm + cq, σ
2I), q = 1, . . . , Q. (8)

Thus, the part label q indexes transformation parameters

where a (foreground) part is implicitly defined as those

points of X that undergo the same transformations. Note

that parts of X are only defined in the context of a given Y

that X is being matched to.

1The shapes in Fig. 1 and many of the other figures are from the MPEG-

7 data set: http://www.cis.temple.edu/∼latecki/research.html#shape
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Figure 1. PPM – examples.

We could proceed by writing p(y, m, v) =
p(y|m, v)p(m|v)p(v) and learning every entry of the

p(m|v) matrix. However, this places no constraints on

what a part should look like – for example, the points

belonging to a single part could be spread across the shape.

Intuitively, we expect that the correct correspondence and

match is more likely to be found if the learnt parts have

some perceptual meaning. Even when this is not the case,

it seems reasonable that difficult correspondence problems

may be solved by splitting shapes into spatially localized

pieces. With this in mind, we look for foreground parts that

are spatially coherent by replacing the uniform distribution

of m with

p(m|vq) =
exp{−(xm − µq)

T Σ−1

q (xm − µq)/2}
∑

m exp{−(xm − µq)
T Σ−1

q (xm − µq)/2}
,

(9)

where µq ∈ R
2 is a mean vector and Σq ∈ R

2×2 is a co-

variance matrix.2 In words, we identify m ∈ {1, . . . , M}
with the point xm that it indexes and assume that the xm

follow a bivariate Gaussian distribution. Since m must take

a value in {1, . . . , M}, the distribution is normalized using

the points x1, . . . ,xM only. This assumption means that the

xk themselves are essentially generated by a GMM with Q
components. However, this GMM is embedded in the larger

model and maximizing the data likelihood will balance this

GMM’s desire for coherent parts against the need for the

parts and transformations to explain the actual data (the yn).
The EM algorithm is similar to that used for PPM

(eqs.(5-7)), but now we run over each of the Q foreground
parts, and there are the additional parameters µq and Σq to
estimate:

E-step: (compute responsibilities)

p(m, vq|yn) =
p(yn|m, vq)p(m|vq)p(vq)

p(yn)

2The likelihood of a point yn given the background v0 remains uni-

form (p(yn|m, v0) = p(yn|v0)) so p(m|v0) is not important here.
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Figure 2. Part-based variation.

M-step: (update parameters)

p(vq) =
1

N

X
n

p(vq |yn), q = 0, . . . , Q

(sq, Γq, cq) = arg min
s,Γ,c

X
m,n

p(m,vq |yn)‖yn − sΓxm − c‖2

µq =

P
m,n

p(m,vq |yn)xmP
m,n

p(m,vq |yn)

Σq =

P
m,n

p(m,vq |yn)(xm − µq)(xm − µq)
TP

m,n
p(m,vq |yn)

For the examples in Sec. 4, we used the initial values

p(vq) = 1/(Q + 1) (there are Q+1 parts including the

background component), Σq = 103I, and the µq were po-

sitioned at randomly chosen xm.

4 Examples of Part-Based Matching

To visualize the matches found by PB-PPM, each point

yn is assigned to a part v using maxv p(v|yn). Points

assigned to v0 are removed from the figure. For each

Initial alignment

Final match

Part assignment: X

Part assignment: Y

PPM PB-PPM
2 parts

PB-PPM
2 parts

Figure 3. Alternative solutions.

yn assigned to some vq ∈ {v1, . . . , vQ}, we find mn ≡
argmaxm p(m, vq|yn) and assign xmn

to vq . Those xm

not assigned to any parts are removed from the figure. The

means and the ellipses of constant probability density as-

sociated with the distributions N (µq, Σq) are also plotted.

Fig. 2 shows that PB-PPM correctly matches the part-

based shapes considered earlier. Fig. 3 highlights the de-

pendence of PB-PPM on the initial parameter values. In

this case, different solutions are found due to the random

initialization of the µq (see Sec. 5). One of the suggested

decompositions is intuitive (roughly the head and the han-

dle), whereas the alternative decomposition is perhaps the

correct choice since the final match is better and it is clear

from the initial alignment that the significant variation is

concentrated about the point of the hammer. Fig. 4 shows

the matches obtained for different values of Q when match-

ing two human body shapes. Though our objective is to find

the correct correspondence, it is reassuring that the coarse-

to-fine decomposition associated with an increasing num-

ber of parts is closely related to the ‘natural’ part decom-

position (NPD). Most shapes/objects have a NPD and the

significant variation in shape is often restricted to changes

in the individual parts or composites of them. Examples of

this are the possible movements of a single articulated ob-

ject or the variation across a class of part-based objects (e.g.

the head sizes of different tennis rackets). Thus, we would

expect PB-PPM to frequently find natural parts or compos-

ites. Of course, PB-PPM can only recognize parts that have

been transformed and consequently many natural parts are

invisible to it (e.g. it will not identify the upper and lower

arm if the arm does not bend in either image). In some

cases, seemingly minor natural parts are identified due to
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Figure 4. Varying the number of parts.

their contribution to the overall difference in shape (e.g. the

point of the hammer in Fig. 3).

Shapes extracted from real images are often of much

poorer quality than those in Figs. 1-4. It is therefore impor-

tant that a shape matching algorithm can operate effectively

on partial, noisy shape information. Fig. 5 demonstrates

that PB-PPM can be used to successfully match shapes

in real images despite part-articulation, occlusion and sub-

optimal performance of the edge detector.3

The above examples demonstrate that PB-PPM can

match part-based shapes. However, we have found many

examples where it fails to identify the correct part struc-

ture and correspondence. In some cases this is unavoidable

– shape matching is an inherently under-constrained prob-

lem and allowing multiple parts makes it all the more so.

However, local minima may be responsible for many of the

failures since we are attempting to minimize a complicated

objective function (recall that all the parts are learnt simul-

taneously) using random initialization. In the next section,

we describe a sequential approach where a simpler prob-

lem is solved at each stage. This can be used to select the

number of parts and initialize the parameters of PB-PPM.

5 Sequential Algorithm for Initialization

When part variation is present, one would expect PB-

PPM with Q=1 to find the most significant part and allow

the background to explain the remaining parts (c.f. Fig. 2,

3The output of edge detectors is often noisy, particularly in CBIR where

it is unrealistic to choose different parameters for each image.

-5 0 5

-4

-2

0

2

4

6

-5 0 5

-6

-4

-2

0

2

4

6

(328
points)

(389 points)

X = edge detector output Y = edge detector output

Center and normalize
area of bounding boxes

Final match

Part assignment: X

Part assignment: Y

Figure 5. Matching shapes in real images.

second row). This suggests a sequential approach whereby

a single part is learnt and removed from further consider-

ation at each stage. Each new part/component should fo-

cus on data points that are currently explained by the back-

ground. This is achieved using the idea described in [6].

Specifically, assume that the first part has been learnt using

PB-PPM with Q=1. We now learn the second part using the

modified objective function

J ≡
∑

n

z1

n log{p(yn|v2)p(v2)

+U(yn)(1 − p(v1) − p(v2))}, (10)

where p(v1) is known and4

z1

n ≡
(1 − p(v1))U(yn)

p(yn|v1)p(v1) + (1 − p(v1))U(yn)
. (11)

Note that J is essentially a weighted log-likelihood, where

each data point yn is weighted by z1

n – the responsibil-

ity of the uniform component for that yn under the cur-

rent model. This has the desired effect of forcing the new

component (v2) to explain the data currently explained by

the uniform component. The data points generated by the

learnt component v1 are effectively removed (they have

small weights) and accordingly v1 does not play a part in

eq.(10). However, since p(v1) of the available probabil-

ity mass has already been assigned to v1, the mixing co-

efficient of the uniform component in eq.(10) is 1–p(v1)–
p(v2), rather than 1–p(v2). The parameters associated with

v2 are learnt by applying EM to the log-likelihood function

in eq(10). Additional components are learnt in the same

way except for minor adjustments to eqs.(10) and (11) to in-

corporate the previously learnt components. The algorithm

4The superscript of z indicates the number of components that have

already been learnt.
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terminates when the background is responsible for very few

data points or very few xm (evaluated using p(vb|m), where

m|vb ∼ Uniform), or when the mixing coefficient for the

most recently learnt part is very small. The number of learnt

parts provides the Q for PB-PPM, and the other parameters

of PPB-PM are initialized using the values found by this

sequential approach.

As discussed in [6], the sequential algorithm is expected

to have fewer problems with local minima since the objec-

tive function will be smoother (a single component com-

petes against a uniform component at each stage) and the

search space smaller (fewer parameters are learnt at each

stage). This is supported by our own observations that

PPM and PB-PPM with Q=1 often recover from poor ini-

tial alignments. Preliminary experiments suggest that the

sequential algorithm is capable of solving the model selec-

tion problem (choosing the number of parts) and providing

good initial values for PB-PPM. This is demonstrated on

a simple 3-part problem in Fig. 6. The correct number of

parts are found and the suggested parameters are roughly

correct before being improved upon by PB-PPM. We are

currently investigating a number of modifications that may

improve the performance and reliability of the sequential al-

gorithm. These include refining the previously learnt com-

ponents during learning [6] and experimenting with differ-

ent initialization strategies.

6 Summary and Discussion

We have presented a probabilistic technique for match-

ing part-based shapes. Shapes are represented by unlabeled

point sets, so discontinuous boundaries and non-boundary

points do not pose a problem. Occlusions and significant

dissimilarities between shapes are explained by a ‘back-

ground model’ and hence, their impact on the overall match

is limited. A greedy algorithm that learns the parts sequen-

tially can be used to estimate the number of parts and ini-

tialize the main algorithm.

The model is limited by the simple transformations used.

In particular, non-isotropic scaling of parts and shear are

commonly observed transformations that cannot be han-

dled. This limitation could be addressed by modifying PB-

PPM to learn affine transformations. Ideally, we could go

further and allow parts to deform nonlinearly. The tech-

niques described in [2] and [7] allow nonlinear transfor-

mations but are not equipped to deal with the discontinu-

ity associated with part-based variation. Conversely, PB-

PPM struggles to match shapes that have undergone a sig-

nificant nonlinear transformation. Any attempt to combine

parts with nonlinear transformations is likely to suffer from

problems with local minima. These could perhaps be over-

come by incorporating stronger prior knowledge about what

parts are expected to look like or using training data to learn

about valid modes of variation.

We are currently investigating how PB-PPM can be used

to quantitatively assess shape similarity. The similarity

score should depend on the number of parts required to

match the shapes and the extent of the transformations as

well as the match itself. There is currently no ‘cost’ associ-

ated with the part transformations. Thus, the degree of part

rotation, scaling and translation does not alter the likelihood

of X generating Y. It seems appropriate to put prior dis-

tributions over the transformation parameters that encour-

age small transformations. These should reflect the fact that

we are not concerned about transformations common to all

parts, but rather the difference between transformations ap-

plied to different parts.
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