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Abstract— Novel anthropomorphic robotic systems increas-
ingly employ variable impedance actuation in order to achieve
robustness to uncertainty, superior agility and efficiency that
are hallmarks of biological systems. Controlling and modulating
impedance profiles such that it is optimally tuned to the con-
trolled plant is crucial to realise these benefits. In this work, we
propose a methodology to generate optimal control commands
for variable impedance actuators under a prescribed trade-
off of task accuracy and energy cost. In contrast to classical
optimal control methods that typically require an accurate
analytical plant dynamics model, we employ a supervised
learning paradigm to acquire both the process dynamics as
well as the stochastic properties. This enables us to prescribe an
optimal impedance and command profile (i) tuned to the hard-
to-model stochastic characteristics of a plant and (ii) adapt to
the systematic changes such as a change in load.

I. INTRODUCTION

Humans have remarkable abilities in controlling their
limbs in a fashion that outperforms most artificial systems in
terms of versatility, compliance and energy efficiency. The
fact that biological motor systems suffer from significant
noise, sensory delays and other sources of stochasticity [3]
makes its performance even more impressive. Therefore, it
comes as no surprise that biological motor control is often
used as a benchmark for robotic systems. Biological motor
control characteristics, on the one hand, are a result of the
inherent biophysical properties of human limbs and on the
other hand, are achieved through a framework of learning
and adaptation processes [18], [7].

In this paper, we focus on issues related to adaptive motor
control of antagonistically actuated robots. Antagonistic actu-
ator designs are based on the biological principle of opposing
muscle pairs. Therefore, the joint torque motors, for example,
of a robotic arm are replaced by opposing actuators, typically
using mechanical springs [10]. Such series elastic actuators
(SEA) have found increasing attention over the last decades
[16] as they provide certain beneficial properties over classic
joint torque actuated systems.

Through the use of antagonistic actuation, the system is
able to vary co-contraction levels which in turn change the
system’s mechanical properties – this is commonly referred
to as impedance control [5]. The impedance in a mechanical
system is defined as a measure of force response to a
movement exerted on the system and is made of constituent
components such as inertia, damping, and stiffness. This
additional degree of freedom in the limb dynamics, i.e,
the same joint torque can be achieved by different muscle
activations, can be used beneficially in many motion tasks,
especially those involving interaction with tools or manip-
ulation. It has been shown through many studies (e.g. [2])

that humans are capable of modulating this impedance in an
optimal way with respect to the task demands, trading off
selectively against energy consumption. For example, when
you use a drilling machine to drill holes into a wall, you
will learn to co-contract your muscles such that the random
perturbations of the drilling has minimal impact on your
task. In general, impedance modulation is an efficient way
to control systems that suffer from noise, disturbances or
sensorimotor delays.

On the down-side, the introduction of antagonistic actua-
tion imposes higher demands on the redundancy resolution
capabilities of a motor controller. Optimality principles have
successfully been used in biological [12] and in artificial
systems [9] as a principled strategy to resolve redundancies
in a way that is beneficial for the task at hand. More
specifically, stochastic optimal control (SOC) [1], [11], [13]
appears to be an especially appealing theory as it studies
optimality principles under the premise of noisy and un-
certain dynamics. Another important aspect when studying
stochastic systems is how the information, for example, about
noise or uncertainty is obtained without prior knowledge.
Supervised learning methods can provide a viable solution
to this problem as they can be used to extract information
from the plant’s sensorimotor data directly.

Here, we propose a control strategy for antagonistic sys-
tems which is based on stochastic optimal control theory
under the premise of a minimal energy cost. We propose to
extend SOC by learning the dynamics model of the plant,
which enables us (i) to adapt to systematic changes of the
plant and (ii) extract its stochastic properties. By incorporat-
ing this stochastic information into the optimisation process,
we show for the first time, how impedance modulation
and co-contraction behaviour emerges as an optimal control
strategy from first principles.

II. A NOVEL ANTAGONISTIC ACTUATOR DESIGN FOR

IMPEDANCE CONTROL

To study impedance control, we developed an antagonistic
joint with a simple mechanical setup. Our design is based
on the SEA approach in which the driven joint is connected
via spring(s) to a stiff actuator (e.g., a servo-motor). A
variety of SEA designs have been proposed in the past (for
a recent review see [16]). Antagonistic SEA have one motor
per opposing spring and the stiffness is controlled through
a combination of both motor commands which means that
the relationship between motor commands and stiffness must
be resolved by the controller. This additional computational
cost is the trade-off for a biologically plausible architecture.
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Fig. 1. Schematic of the variable stiffness actuator. The robot dimension
are: a = 15mm, L = 26mm, d = 81mm, h = 27mm.

In this paper, when we refer to impedance control, we
will solely address a change in stiffness and ignore variable
damping or variable inertia.

For antagonistic SEA, nonlinearity of the springs is es-
sential to obtain a variable impedance [15]. Because forces
produced through springs with linear tension to force char-
acteristics tend to cancel out in an antagonistic setup, an
increase in the tension of both springs (i.e., co-contraction)
does not change the stiffness of the system. Commercially
available springs usually have linear tension to force char-
acteristics and consequently most antagonistic SEA require
relatively complex mechanical structures to achieve a non-
linear tension to force curve [8], [14]. These mechanisms
typically increase construction and maintenance effort but
also can complicate the system identification and controlla-
bility, for example, due to added drag and friction properties.
We directly addressed this aspect in our design of the
SEA, which primarily aims to achieve variable stiffness
characteristics using a simple mechanical setup.

A. Variable stiffness with linear springs

Here we propose a SEA design which does not rely
on complex mechanisms to achieve variable stiffness but
achieves the desired properties through a specific geometric
arrangement of the springs. While the emphasis of this paper
is not on the mechanical design of actuators, we will explain
the salient dynamic properties of our testbed. Fig. 1 shows
a sketch of the robot, which is mounted horizontally and
consists of a single joint and two antagonistic servomotors
that are connected to the joint via linear springs. The springs
are mounted offset with a moment arm a at the joints and
an offset of L at the motors. Therefore, the spring-endpoints
move along a circular paths at the joints and at the motors.
Under the assumption that the servo motors are infinitely
stiff, we can calculate the torque τ acting on the arm as
follows. Let s1 denote the vector from point C to A, and s2

the vector from D to B, and s1 and s2 their respective length.
Putting the origin of the coordinate system at the arm joint,
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Fig. 2. Left: Equilibrium position as a function of the motor positions (in
degrees), with contour lines spaced at 5 degree intervals. Right: Stiffness
profile of the arm, as calculated from (4).

we have

s1 =
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0
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.

Denoting the spring constant by κ and the rest length by
s0, this yields forces

F1 = κ(s1 − s0)
s1

s1
and F2 = κ(s2 − s0)

s2

s2
. (2)

Given the motor positions α and β and the arm position θ,
the torque generated by the springs is

τ(α, β, θ) = ẑT (F1 × a1 + F2 × a2). (3)

To calculate the equilibrium position θeq for given motor
positions α and β, we need to solve τ(α, β, θeq) = 0, which
in practice we do by numerical optimisation. At this position,
we can calculate the joint stiffness as

K(α, β) =
∂

∂θ
τ(α, β, θ)

∣∣∣
θ=θeq

. (4)

Please note that K depends linearly on the spring stiffness
κ, but that the geometry of the arm induces a nonlinear
dependency on α and β. Fig. 2 shows the analytically
computed profiles of the equilibrium position and stiffness,
respectively.

Further denoting the arm’s inertia around the z-axis by Iz

and a damping torque given by τ(θ̇) = −Dθ̇, the dynamics
equation can be analytically written as:

Iz θ̈ = τ(α, β, θ) − Dθ̇. (5)

B. Actuator hardware

Fig. 3 depicts our prototype SEA hardware implementation
of the discussed design. For actuation, we employ two servo
motors (Hitec HSR-5990TG), each of which is connected
to the arm via a spring mounted on two low friction
ball bearings. To avoid excessive oscillations, the joint is
attached to a rotary viscous damper. The servos are controlled



Fig. 3. Photograph of our antagonistic robot. Inset panel (a): Separate servo
motor mounted at the end of the arm to create stochastic perturbations (see
Section IV-B).

using 50 Hz PWM signals by an Arduino Duemilanove
microcontroller board (Atmel ATmega328). That board also
measures the arm’s joint angle θ with a contact-free ro-
tary position encoder (Melexis MLX90316GO), as well as
its angular acceleration θ̈ using a LilyPad accelerometer
(Analog Devices ADXL330). Finally, we also measure the
servo motor positions by feeding a signal from their internal
potentiometer to the AD converters of the Arduino. While
the operating frequency is limited to 50 Hz due to the PWM
control, all measurements are taken at a 4x higher frequency
and averaged on the board to reduce the amount of noise,
before sending the results to a PC via a serial connection
(RS232/USB).

III. STOCHASTIC OPTIMAL CONTROL

In many control scenarios it is desirable to be able to
perform in the “best way possible”. For example, one may
wish to move the system to a desired posture and consume as
little energy as possible during the movement. This type of
problem is studied in stochastic optimal control (SOC) theory
[11], the central ingredient of which is the minimisation of
an optimality criterion

J(u0...T ) =
∫ T

0

c(x(t),u(t), t)dt + h(x(T )) or (6)

J(u0...T ) =
∫ ∞

0

c(x(t),u(t), t)dt,

for a task with a finite or infinite horizon. Apart from the
optional final cost h(·), the criterion integrates a cost rate
c(x,u) over the course of the movement. That cost may
depend on both the system’s state x and control commands u,
where the initial state of the system is given as x(0), and x(t)
evolves depending on the commands u(t). The movement of
the system in the most general form is governed by

dx = f(x,u)dt + F(x,u)dξ , ξ ∼ N (0, I). (7)

This formulation, besides the deterministic process dynamics
f(x,u) incorporates stochasticity as a Gaussian noise process
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Fig. 4. Schematic diagram of our proposed combination of stochastic
optimal control (SOC) and learning. The dynamics model used in SOC
is acquired and constantly updated with data from the plant. The learning
algorithm extracts the dynamics as well as stochastic information contained
(noise model from confidence intervals). SOC takes into account both
measures in the optimisation.

dξ, scaled by F(·), which tells us how strongly the noise
affects which parts of the state and control space.

Solving such an SOC problem then corresponds to min-
imising the expected cost1 for the given process dynamics.
If the plant dynamics is linear and the cost function is
quadratic the optimisation problem is convex and can be
solved analytically2. However for high dimensional and non-
linear problems, the solutions are much harder to obtain and
typically approximative methods must be employed (e.g.,
[6]).

In order to simplify the presentation as much as possi-
ble, in this work we control the functional relation from
motor positions u = (u1, u2)T = (α, β)T to joint angle
θ, ignoring velocities and accelerations. During stationary
conditions and in the absence of perturbations, this mapping
reflects the equilibrium position of the arm (Fig. 2, left).
In correspondence to the general dynamics equation (7), the
state x = θeq represents the current equilibrium position,
u the applied motor action, and dx the resulting change in
equilibrium position. Therefore the reduced dynamics used
here, only depends on the control signals, i.e.,

dx = f(u)dt + F (u)dξ , ξ ∼ N (0, 1). (8)

A. Modelling dynamics and noise through learning

Analytical dynamics formulations as described in Section
II-A or in eq. (8) have the tremendous advantage of being
compact and quick to evaluate numerically, but they also
suffer from drawbacks. First, their accuracy is limited to the
level of detail put into the physical model. For example, our
model is based on the assumption that the robot is completely
symmetric, that both motors are perfectly calibrated, and that
the two springs are identical, but in reality we cannot avoid
small errors in all of these. Second, the analytical model does
not provide obvious ways to model changes in the dynamics,
such as from wear and tear, or more systematic changes due
to the weight of an added tool.

While these problems can to some extend be alleviated by
a more involved and repeated system identification process,

1This means we put expectation brackets around the intergrals and h(·)
in (6).

2So called LQ-problem.



the situation is worse if we look at the noise model F (·),
or at stochastic changes to the dynamics. For example, an
arm might be randomly perturbed by tool interactions such
as when drilling into a wall, with stronger effects for certain
postures, and milder effects for others. How should we model
this “noise landscape” analytically?

We therefore propose to include a supervised learning
component and to acquire both the dynamics and the noise
model in a data-driven fashion (Fig. 4). Our learning method
of choice in this paper is LWPR, or Locally Weighted
Projection Regression [17], because that algorithm allows us
to adapt the models incrementally and online, and it is able
to reflect heteroscedastic noise in the training data through
localised confidence intervals around its predictions.

Learning the deterministic mapping f̃ from sensorimotor
data, we can account for asymmetries right away. More in-
terestingly, when we collect data from the perturbed system,
we can acquire a model of the arm’s kinematic variability
as a function of the motor positions. Therefore the learned
dynamics can be used in (slow) position control tasks as
described in the next section.

B. Energy optimal (equilibrium) position control

Let the task be to hold the arm at a certain position θ̂, while
consuming as little energy as possible. Let us further assume
that we have no feedback from the system3, but that the arm
is perturbed randomly. We can state this mathematically as
the minisation of a cost

J =
〈
wp(f(u) − θ̂)2 + |u | 2〉, (9)

where wp is a factor that weights the importance of being at
the right position against the energy consumption which for
simplicity we model by |u | 2. Taking into account that the
motor commands u are deterministic, and decomposing the
expected position error into an error of the mean plus the
variance, we can write the expected cost J as

J = wp(
〈
f(u)

〉 − θ̂)2 + wp

〈(
f(u) − 〈f(u)〉

)2〉
+ |u | 2,

(10)
which based on the LWPR learned model becomes

J = wp(f̃(u) − θ̂)2 + wpσ
2(u) + |u | 2. (11)

Here f̃(u) and σ(u) denote the prediction and the one-
standard-deviation based confidence interval of the LWPR
model of f(u). The constant wp represents the importance
of the accuracy demand in our task. We then can easily
minimise J with respect to u = (u1, u2)T numerically,
taking into account the box constraints 0◦ ≤ ui ≤ 180◦
4.

3Alternatively, assume the feedback loop is so slow that it is practically
useless.

4For our SEA this optimisation can be performed in real time, i.e., at least
50 times per second, which corresponds to the maximum control frequency
of our system (50Hz).
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Fig. 5. Visualisation of the adaptation process during 10 trials. Left:
Desired (red) and observed arm positions. Right: Motor commands for
the corresponding trials. Darker and thinner lines indicate later stages of
learning.
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Fig. 6. Learned position models during the adaptation process. The white
numbers represent the equilibrium point positions.

IV. RESULTS

In this section we present results from the optimal control
model applied to the hardware described earlier in Section
II. We first highlight the adaptation capabilities of this
framework (Experiment 1) and then show how the learned
stochastic information leads to an improved control strategy
by varying impedance of the arm through co-contraction
(Experiment 2).

A. Experiment 1: Adaptation towards a systematic change
in the system

A tremendous advantage of the learned dynamics
paradigm is that it allows to account for systematic changes
without prior knowledge of the shape or source of the
perturbation. To demonstrate such an adaptation scenario we
setup a systematic change in the hardware by replacing the
left spring, between motor 1 and the joint (i.e., between
points A and C in Fig. 1), with one that has a lower,
“unknown” spring constant. The aim is to hold a certain
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Fig. 7. Left: Learned equilibrium position as a function of the motor
positions (in degrees), with contour lines spaced at 5 degree intervals. One
can observe small asymmetries, e.g., along u1 = u2, which could arise from
construction or sensor calibration errors. Right: “Noise landscape” given by
the heteroscedastic confidence intervals of LWPR.

equilibrium position using the energy optimal position con-
troller described in Section III-B. Expectedly the prediction
about the equilibrium points (i.e., f̃(u)) does not match the
real changed system properties. Next, we demonstrate how
the system can adapt online and increase the performance
trial by trial. We specified a target trajectory that is a linear
interpolation of 200 steps between start position θ0 = −30◦

and target position θ̂ = 30◦. We tracked this trajectory by
recomputing the equilibrium positions (at a rate of 50Hz) as
defined in eq. (11). At the same time we updated f̃(u) during
reaching. Due to the nature of local learning algorithms f̃ is
only updated in the neighbourhood of the current trajectory
and therefore shows limited generalisation. To account for
this, after each trial, we additionally updated the model
with 400 training data points, collected from a 20-by-20
grid of the motor’s range u1 = u2 = [0◦, 180◦]. Fig. 5
depicts the outcome of this adaptation experiment. One can
observe that the controller initially (lighter lines) fails to
track the desired trajectory (red). However there is significant
improvement between each trial, especially between trials 1
to 5. After about 9 trials the internal model has been updated
and manages to track the desired trajectory well (up to the
hardware’s level of precision). A look at the equilibrium
position predictions in Fig. 6 confirms that the the systematic
shift has been successfully learned, which is visible by the
asymmetric shape. Analysing the motor commands shows
that the optimal controller, for all trials, chooses the motor
commands with virtually no co-contraction. This is a sensible
choice as it would contradict the minimum energy cost
function that we have specified.

B. The role of stochastic information for impedance control

Because co-contraction and energy consumption are op-
posing properties our controller will hardly make use of the
redundant degree of freedom in the actuation. Even though
minimum energy optimal control in an antagonistic system
seems to be “unable to co-contract” it remains our favourite
choice of performance index as it also implies compliant
movement and as it follows the biological motivation. But
when should the optimal controller co-contract? If we take
a closer look at the stochastic information that would arise
from task involving random perturbations we can see that

the produced stochasticity holds valuable information about
stability of the system under the discussed learning paradigm.
If the uncertainty can be reduced by co-contracting it will
be reflected in the data as a control dependent “noise
landscape”. Therefore the answer to the previous question
is that the controller should co-contract if and only if it can
reduce the expected noise/stochasticity in the system.

Now imagine our system experiences some form of small
random perturbations during control. In the hardware we
realise such a scenario by adding a perturbation motor at
the end of the arm, which mimics for example a drilling
tool (panel “a” in Fig. 3). The perturbation on the arm is
created by alternating the servo motor positions quickly every
200ms from A = 40◦ to A = −40◦ degrees. The inertia of
the additional weight produces deflections on the arm from
the current equilibrium position. With these perturbations
we collected new training data and updated the existing
LWPR model f̃ . A look at the collected data reveals that the
arm stabilises in regions with higher co-contraction, where
the stiffness is higher. This information is contained in the
learned confidence bounds (Fig. 7, right) and therefore the
optimal controller computes the trade-off, between accuracy,
energy and control dependent noise in the data.

C. Experiment 2: Impedance control for varying accuracy
demands

Based on the learned LWPR model f̃ from the previous
section we can demonstrate the improved control behaviour
of the stochastic optimisation with emerging impedance
control. We formulate a task to hold the arm at two fixed
positions θ̂ = 15◦ and θ̂ = 0◦ respectively. While minimising
for the stochastic cost function in eq. (11), we continuously
and slowly increased the position penalty within the range
wp = [10−2, 105]. The perturbation motor is switched on
at all times. The left columns in Fig. 8 summarises the
results we discuss next: At wp = 10−2 to approximately
wp = 100 the optimisation neglects position accuracy and
minimises mainly for energy, i.e., u1 = u2 = 0. The
actual joint positions, because of the perturbations, oscillate
around the mean θ = 0◦ as indicated by the shaded area.
Between wp = 100 and wp = 102 the position constraint
starts to “catch up” with the energy constraint; a shift in
the mean position towards θ̂ can be observed. At about
wp = 5 ∗ 101 the variance in the positions increases as the
periodic perturbation seems to hit the resonance frequency
of the system. For wp > 102 the stochastic information
is weighted sufficiently such that the optimal solution co-
contracts increasingly and that the accuracy further improves.

If in contrast we run the same experiment while ignoring
the stochastic part in the cost function, i.e., we minimize for
the deterministic cost function J = wp(f̃(u) − θ̂)2 + |u | 2
only, we see (Fig. 9) that the system does expectedly not
co-contract and hardly improves accuracy performance.

V. CONCLUSION AND OUTLOOK

In this paper we have presented a stochastic optimal
control model for antagonistically actuated systems. We pro-
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Fig. 9. The same experiment as in Fig. 8 where the stochastic information
was not incorporated into the optimisation.

posed to learn, both, the dynamics as well as the stochastic
information of the controlled system from sensorimotor feed-
back of the plant. This control architecture can account for
a systematic change in the system properties (Experiment 1)
and furthermore is able, by incorporating the heteroscedastic
prediction variances into the optimisation, to compensate
for stochastic perturbations that were induced to the plant.
Doing so, our control model demonstrated significantly better
accuracy performance than the deterministic optimisation
(Experiment 2). The improved behaviour was achieved by
co-activating antagonistic motors, i.e., by using the redundant
degree of freedom in the system based on the first principles
of optimality. The presented results demonstrate that this is a
viable optimal control strategy for real hardware systems that
exhibit hard to model system properties (e.g., asymmetries,
systematic changes) as well as stochastic characteristics (e.g.,
using a power tool) that may be unknown a priory.

An advantages of this approach is that motor co-activation
(or impedance) does not need to be specified explicitly as a
control variable but that it emerges from the actual learned

stochasticity within the system (scaled with the specified
accuracy demands of the task). Therefore impedance control,
since it is energetically expensive, will only emerge if it
actually is beneficial for the accuracy of the task. Notably
such a learned optimal tradeoff between energy, accuracy
and impedance has been repeatedly observed in human
impedance control studies [2], [4].

The exploitation of sensorimotor stochasticity through
learning is not solely applicable to govern impedance of
antagonistic systems but could be applied to any kind of
control or state dependent uncertainties. For example, if we
would control a robot arm that suffers from oscillation or
perturbations in certain joint angles or velocities, this would
be visible in the noise landscape (given one has learned state
dependent dynamics) and consequently those regions would
be “avoided” by the optimal controller.
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