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Abstract. Optimal feedback control has been proposed as an attractive
movement generation strategy in goal reaching tasks for anthropomor-
phic manipulator systems. Recent developments, such as the iterative
Linear Quadratic Gaussian (iLQG) algorithm, have focused on the case
of non-linear, but still analytically available, dynamics. For realistic con-
trol systems, however, the dynamics may often be unknown, difficult to
estimate, or subject to frequent systematic changes. In this paper, we
combine the iLQG framework with learning the forward dynamics for
a simulated arm with two limbs and six antagonistic muscles, and we
demonstrate how our approach can compensate for complex dynamic
perturbations in an online fashion.
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1 Introduction

In this work, we focus on the issues related to planning and control of reaching
movements for anthropomorphic manipulators with redundant actuation based
on antagonistic muscles. While such systems are becoming more and more pop-
ular especially where compliance and interaction with humans is required, con-
trolling these systems remains a big challenge: Apart from the problem of often
highly non-linear and hard to model system dynamics, the controller has to make
a choice between many different possible trajectories (kinematics) and a multi-
tude of applicable motor commands (dynamics) for achieving a particular task.
How do we resolve this redundancy?

Optimal control theory [1] answers this question by establishing a certain cost
function, and selecting the solution with minimal cost (e.g., minimum jerk [2]).
Quite often these control schemes are only concerned with trajectory planning

and an “open loop” optimisation of the control commands, while the correction
of errors during execution is left to simple PID controllers.

As an alternative, closed loop optimisation models are aimed at providing a
control law which is explicitly based on feedback from the system. In the ideal
case, the system state is directly mapped to control signals during execution,
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and the form of this mapping is again governed by a cost function. A key prop-
erty of such optimal feedback controllers (OFC) is that errors are only corrected
if they adversely affect the task performance (minimum intervention principle
[3]). This is important especially in systems that suffer from control dependent
noise, since task-irrelevant correction could destabilise the system beside expend-
ing additional control effort. Empirically, OFC also accounts for many motion
patterns that have been observed in natural, redundant systems and human
experiments [4] including the confounding trial-to-trial variability in individual
degrees of freedom that, remarkably, manages to not compromise task optimality
[5, 6]. Therefore, this paradigm is potentially a very attractive control strategy
for artificial anthropomorphic systems (i.e., many degrees of freedom, redundant
actuation, flexible lightweight construction, variable stiffness).

Unfortunately, finding a globally valid optimal control law is a very hard
problem especially for non-linear and high-dimensional systems. We therefore
resort to hybrid algorithms that present a compromise between open loop and
closed loop optimisation, that is, algorithms which iteratively compute an op-
timal trajectory together with a locally valid feedback law. Examples of these
are differential dynamic programming (DDP) [7, 8], iterative linear-quadratic
regulator designs [9], or the recent iterative Linear Quadratic Gaussian (iLQG)
framework [10], which will form the basis of our work.

A major shortcoming of iLQG (and DDP) is the dependence on an analytic
form of the system dynamics, which often may be unknown or subject to change.
We overcome this limitation by learning an adaptive internal model of the sys-
tem dynamics using an online, supervised learning method. We consequently
use the learned model to derive an iLQG formulation that is computationally
efficient, reacts optimally to transient perturbations, and most notably adapts
to systematic changes in the plant dynamics.

The idea of learning the system dynamics in combination with iterative opti-
misations of trajectory or policy has been explored previously in the literature,
e.g., for learning to swing up a pendulum [11] using some prior knowledge about
the form of the dynamics. Similarly, Abeel et al. [12] proposed a hybrid reinforce-
ment learning algorithm, where a policy and an internal model get subsequently
updated from “real life” trials. In contrast to their method, however, we employ
a second-order optimisation method, and we refine the control law solely from
the internal model. To our knowledge, learning dynamics in conjunction with
control optimisation has not been studied in the light of adaptability to chang-
ing plant dynamics. In this paper, we successfully apply our adaptive control
formalism to a movement system with six antagonistic muscles, which exhibits
large redundancies and complex non-linearities of the dynamics.

2 A Simulation Model of Redundant Actuation

We wish to study a two degrees of freedom (DoF) planar human arm model,
which is actuated by four single-joint and two double-joint antagonistic muscles
(Fig. 1, left). The arm model described in this section is based on [13]. Although
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kinematically simple, the system is over-actuated and therefore an interesting
testbed for our control scheme, because large redundancies in the dynamics
have to be resolved. The dimensionality of the control signals makes adaptation
processes (e.g., to external force fields) quite demanding.
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Fig. 1. Left: Human arm model with 6 muscles (adapted from [13]). Right: Same
arm model with three selected targets (circles) and iLQG generated trajectories as
benchmark data. The physics of the model is simulated using the Matlab Robotics
Toolbox [14].

The dynamics of the arm is in part based on standard equations of motion.
For our planar 2-DoF manipulator the joint torques τ are given by

τ = M(q)q̈ + C(q, q̇)q̇, (1)

where q and q̇ are the joint angles and velocities, respectively; M(q) is the
two-dimensional symmetric joint space inertia matrix and C(q, q̇) accounts for
Coriolis and centripetal forces.

Given the antagonistic muscle-based actuation, we can not command joint
torques directly, but rather we have to calculate effective torques from the muscle
activations u. For the present model the corresponding transfer function is given
by

τ (q, q̇,u) = −A(q)T T(l, l̇,u), (2)

where A represents the moment arm. For simplicity, we assume A to be constant
and independent of the joint angles q:

A(q) = A =

(

a1 a2 0 0 a5 a6

0 0 a3 a4 a7 a8

)T

. (3)

The muscle lengths l depend on the joint angles q through the affine relationship
l = lm −Aq, which also implies l̇ = −Aq̇. The term T(l, l̇,u) in (2) denotes the
muscle tension, for which we follow the Kelvin-Voight model [15] and define:

T(l, l̇,u) = K(u)
(

lr(u) − l
)

− B(u)l̇. (4)
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Here, K(u), B(u), and lr(u) denote the muscle stiffness, the muscle viscosity
and the muscle rest length, respectively. Each of these terms depends linearly
on the motor commands u, as given by

K(u) = diag(k0 + ku), B(u) = diag(b0 + bu), lr(u) = l0 + ru. (5)

The elasticity coefficient k, the viscosity coefficient b, and the constant r are
given from the muscle model. The same holds true for k0, b0, and l0, which are
the intrinsic elasticity, viscosity and rest length for u = 0, respectively. For the
exact values of these coefficients please refer to [13].

Please note that in contrast to standard torque-controlled robots, here the
dynamics (1) is not linear in the control signals, since u enters (4) quadratically.

3 Locally-Optimal Feedback Control

Let x(t) denote the state of a plant and u(t) the applied control signal at time
t. In this paper, the state consists of the joint angles q and velocities q̇ of the
arm, and the control signals u are the muscle activations. If the system would
be deterministic, we could express its dynamics as ẋ = f(x,u), whereas in the
presence of noise we write the dynamics as a stochastic differential equation

dx = f(x,u)dt + F(x,u)dω. (6)

Here, dω is assumed to be Brownian motion noise, which is transformed by a
possibly state- and control-dependent matrix F(x,u). We state our problem as
follows: Given an initial state x0 at time t = 0, we seek a control sequence u(t)
such that the system’s state is x∗ at time t = T . Stochastic optimal control theory
approaches the problem by first specifying a cost function which is composed
of (i) some evaluation h(x(T )) of the final state, usually penalising deviations
from the desired state x∗, and (ii) the accumulated cost c(t,x,u) of sending a
control signal u at time t in state x, typically penalising large motor commands.
Introducing a policy π(t,x) for selecting u(t), we can write the expected cost of
following that policy from time t as [10]

vπ(t,x(t)) =
〈

h(x(T )) +

∫ T

t

c(s,x(s), π(s,x(s)))ds
〉

. (7)

One then aims to find the policy π that minimises the total expected cost
vπ(0,x0). Thus, in contrast to classical control, calculation of the trajectory
(planning) and the control signal (execution) is not separated anymore, and for
example, redundancy can actually be exploited in order to decrease the cost.
If the dynamics f is linear in x and u, the cost is quadratic, and the noise
is Gaussian, the resulting so-called LQG problem is convex and can be solved
analytically [1].

In our case of non-linear dynamics, global solutions can in theory still be
found by applying dynamic programming methods [16] based on the Hamilton-
Jacobi-Bellman equations. However, in their basic form these methods rely on a
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discretisation of the state and action space, an approach that is not viable for
large DoF systems. Some research has been carried out on random sampling in a
continuous state and action space [17], and it has been suggested that sampling
can avoid the curse of dimensionality if the underlying problem is simple enough
[18], as is the case if the dynamics and cost functions are very smooth.

As an alternative, one can compute linear and quadratic approximations to
the dynamics and the cost, respectively, and iteratively solve a “local” LQG
problem to improve the control solution, until at least a local minimum of the
cost function is found. The resulting iLQG algorithm has only recently been
introduced [10], so we give a brief summary in the following1.

One starts with an initial time-discretised control sequence ūk ≡ ū(k∆t) and
applies the deterministic forward dynamics to retrieve an initial trajectory x̄k,
where

x̄k+1 = x̄k + ∆t f(x̄k, ūk). (8)

Linearising the discretised dynamics (6) around x̄k and ūk and subtracting (8),
one gets a dynamics equation for the deviations δxk = xk−x̄k and δuk = uk−ūk:

δxk+1 =

(

I+∆t
∂f

∂x

∣

∣

∣

x̄k

)

δxk+∆t
∂f

∂u

∣

∣

∣

ūk

δuk+
√

∆t

(

F(uk) +
∂F

∂u

∣

∣

∣

ūk

δuk

)

ξk. (9)

Similarly, one can derive an approximate cost function which is quadratic in δu

and δx. Thus, in the vicinity of the current trajectory x̄, the two approximations
form a “local” LQG problem, which can be solved analytically and yields an
affine control law δuk = lk +Lkδxk (for details please see [10]). This control law
is fed into the linearised dynamics (eq. 9 without the noise term) and the resulting
δx are used to update the trajectory x̄. In the same way, the control sequence
ū is updated from δu. This process is repeated until the total cost cannot be
reduced anymore. The resultant control sequence ū can then be applied to the
system, whereas the matrices Lk from the final iteration may serve as feedback
gains.

In our current implementation we do not utilise an explicit noise model F

for the sake of clarity of results; in any case, a matching feedback control law
is only marginally superior to one that is optimised for a deterministic system
[10].

4 iLQG with Learned Dynamics (iLQG–LD)

In order to eliminate the need for an analytic dynamics model and to make
iLQG adaptive, we wish to learn an approximation f̃ of the real plant forward
dynamics ẋ = f(x,u). Assuming our model f̃ has been coarsely pre-trained, for
example by motor babbling, we can refine that model in an online fashion as
shown in Fig. 2.

For optimising and carrying out a movement, we have to define a cost function
(where also the desired final state is encoded), the start state, and the number

1 DDP works similarly, but requires quadratic approximations of both the dynamics
and the cost function.
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Fig. 2. Illustration of our iLQG–LD learning and control scheme.

of discrete time steps. Given an initial control sequence ū0, the iLQG iterations
can be carried out as described in the previous section, but utilising the learned
model f̃ . This yields a locally optimal control sequence ūk, a corresponding
desired state sequence x̄k, and feedback correction gain matrices Lk. Denoting
the plant’s true state by x, at each time step k, the feedback controller calculates
the required correction to the control signal as δuk = Lk(xk − x̄k). We then use
the final control signal uk = ūk + δuk, the plant’s state xk and its change dxk

to update our internal forward model f̃ . As we show in Section 5, we can thus
account for (systematic) perturbations and also bootstrap a dynamics model
from scratch.

The domain of real-time control demands certain properties of a learning
algorithm, namely fast learning rates, high prediction speeds at run-time, and
robustness towards negative interference if the model is trained incrementally.
Locally Weighted Projection Regression (LWPR) has been shown to exhibit
these properties, and to be very efficient for incremental learning of non-linear
models in high dimensions [19]. In LWPR, the regression function is constructed
by blending local linear models, each of which is endowed with a locality kernel
that defines the area of its validity (also termed its receptive field). During
training, the parameters of the local models (locality and fit) are updated using
incremental Partial Least Squares, and models can be pruned or added on an as-
need basis, for example, when training data is generated in previously unexplored
regions.

LWPR learning has the desirable property that it can be carried out online,
and moreover, the learned model can be adapted to changes in the dynamics
in real-time. A forgetting factor λ [19], which balances the trade-off between
preserving what has been learned and quickly adapting to the non-stationarity,
can be tuned to the expected rate of external changes.

5 Experiments

We study movements of our arm model (Section 2) for a fixed motion duration
of one second, which we discretise into K = 50 steps (∆t = 0.02s). The manip-
ulator starts at an initial position q0 and reaches towards a target qtar. During
movement we wish to minimise the amount of muscle activation (≈ energy con-
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sumption) of the system. We therefore use the cost function

v = wp |qK − qtar | 2 + wv | q̇K | 2 + we

K
∑

k=0

|uk | 2∆t, (10)

where the factors for the target position accuracy (wp), the final target velocity
accuracy (wv), and for the energy term (we) weight the importance of each
component.

5.1 Stationary Dynamics

In order to make iLQG–LD work for our three reference targets (see Fig. 1,
right) we coarsely pre-trained our LWPR model with a focus on a wide coverage
of the workspace. For the arm model we use in this paper, the training data
are given as tuples consisting of (q, q̇,u) as inputs (10 dimensions in total),
and the observed joint accelerations q̈ as the desired two-dimensional output.
We stopped training once the normalised mean squared error (nMSE) in the
predictions reached ≤ 0.005. At this point LWPR had seen 1.2 · 106 training
data points and had acquired 852 receptive fields, which is in accordance with
the previously discussed high non-linearity of the plant dynamics.

We carried out a reaching task to the three reference targets using the feed-
back controller (feedback gain matrix L) that falls out of iLQG(-LD). To com-
pare the stability of the control solution, we simulated control dependent noise
by contaminating the muscle commands u just before feeding them into the
plant. We applied Gaussian noise with 50% of the variance of the signal u.

Figure 3 depicts the generated control signals and the resulting performance
of iLQG–LD and iLQG over 20 reaching trials per target. Both methods show
similar endpoint variances and trajectories which are in close match. As can be
seen from the visualisation of the control sequences, antagonistic muscles (i.e.,
muscle pairs 1/2, 3/4, and 5/6) are never activated at the same time. This is
a direct consequence of the cost function, which penalises co-contraction as a
waste of energy. Table 1 quantifies the control results of iLQG–LD and iLQG
for each target with respect to the number of iterations, the generated running
costs and the end point accuracy.

Table 1. Comparison of the performance of iLQG–LD and iLQG with respect to the
number of iterations required to compute the control law, the average running cost,
and the average Euclidean distance to the three reference targets (left, center, right).

iLQG iLQG–LD
Targets Iter. Run. cost d (cm) Iter. Run. cost d (cm)

Center 19 0.0345± 0.0060 0.11± 0.07 14 0.0427± 0.0069 0.38± 0.22
Left 40 0.1873± 0.0204 0.10± 0.06 36 0.1670± 0.0136 0.21± 0.16
Right 41 0.1858± 0.0202 0.57± 0.49 36 0.1534± 0.0273 0.19± 0.12
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Fig. 3. Illustration of an optimised control sequence (left) and resulting trajectories
(right) when using a) the known analytic dynamics model and b) the LWPR model
learned from data. The control sequences (left target only) for each muscle (1–6) are
drawn from bottom to top, with darker grey levels indicating stronger muscle activa-
tion.

5.2 Adaptation Results

A major advantage of iLQG–LD is that it does not rely on an accurate analytic
dynamics model; consequently, it can adapt ‘on-the-fly’ to external perturbations
and to changes in the plant dynamics that may result from altered morphology or
wear and tear. We carried out adaptive reaching experiments (towards the center
target) in our simulation similar to the human manipulandum experiments in
[20]. We generated a constant unidirectional force field (FF) acting perpendicu-
lar to the reaching movement (see Fig. 4). Using the iLQG–LD model from the
previous experiment, the manipulator gets strongly deflected when reaching for
the target because the learned dynamics model cannot yet account for the “spu-
rious” forces. However, using the resultant deflected trajectory as training data,
updating the dynamics model online brings the manipulator nearer to the target
with each new trial. In order to produce enough training data, as is required for a
successful adaptation, we generated 20 slightly jittered versions of the optimised
control sequences, each with length K = 50. We then ran those 20 trajecto-
ries on the plant, and trained the LWPR model with a total of K × 20 = 1000
samples. We repeated this procedure until the iLQG–LD performance converged
successfully, which was the case after 27000 training samples. At that point, the
internal model successfully accounted for the change in dynamics caused by the
FF. Then, we switched off the FF while continuing to use the adapted LWPR
model. This resulted in an overshooting of the manipulator to the other side,
trying to compensate for non-existing forces. Just as before, we re-adapted the
dynamics online over repeated trials. The arm reached the target again after
7000 training points.

For accelerating the adaptation process, we set LWPR’s forgetting factor
to λ = 0.95 (instead of the default 0.999), which allows the learner to weight
the importance of new data more strongly [19]. It is interesting to note that
since the iLQG–LD control scheme always tries to correct the system towards
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the target, it produces relevant dynamics training data in a way that could be
termed “active learning”.

Figure 4 summarises the results of the sequential adaptation process just
described. Please note how the optimised “adapted” control sequence contains
considerably stronger activations of the extensor muscles responsible for pulling
the arm to the right (denoted by “2” and “6” in Fig. 1, left), while still exhibiting
practically no co-contraction.
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Fig. 4. Left: Adaptation to a unidirectional constant force field (indicated by the ar-
rows). Darker lines indicate better trained models. In particular, the left-most tra-
jectory corresponds to the “initial” control sequence, which was calculated using the
LWPR model before the adaptation process. The fully “adapted” control sequence re-
sults in a nearly straight line reaching movement. Right: Resulting trajectories during
re-adaptation after the force field has been switched off.

6 Conclusion

In this work we introduced iLQG–LD, a method that realises adaptive opti-
mal feedback control by incorporating a learned dynamics model into the iLQG
framework. Most importantly, we carried over the favourable properties of iLQG
to more realistic control problems where the analytic dynamics model is often
unknown, difficult to estimate accurately or subject to changes. As with iLQG
control, redundancies are implicitly resolved by the OFC framework through a
cost function, eliminating the need for a separate trajectory planner and inverse
kinematics/dynamics computation.

Using a non-linear arm model actuated by six antagonistic muscles, we em-
pirically showed that iLQG–LD performs reliably in the presence of noise and
that it is adaptive with respect to systematic changes in the dynamics; hence,
the framework has the potential to provide a unifying tool for modelling (and
informing) non-linear sensorimotor adaptation experiments even under complex
dynamic perturbations.
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