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Abstract— Many robotic tasks require human interaction
through teleoperation to achieve high performance. However, in
industrial applications these methods often require high levels
of concentration and manual dexterity leading to high cognitive
loads and dangerous working conditions. Shared autonomy
attempts to address these issues by blending human and
autonomous reasoning, relieving the burden of precise motor
control, tracking, and localization. In this paper we propose
an optimization-based representation for shared autonomy in
dynamic environments. We ensure real-time tractability by
modulating the human input with the information of the
changing environment in the same task space, instead of adding
it to the optimization cost or constraints. We illustrate the
method with two real world applications: grasping objects in a
cluttered environment, and a spraying task requiring sprayed
linings with greater homogeneity. Finally we use a 7 degree
of freedom KUKA LWR arm to simulate the grasping and
spraying experiments.

I. INTRODUCTION

Satisfactory completion of complex robotic tasks often re-
quires human intervention, via teleoperation, due to high-risk
and unpredictability of the task and environment. However,
there are a number of factors that negatively impact direct
teleoperation, such as:

(L1) inadequate or unintuitive interfaces,
(L2) coarse and highly variant input commands from the

operator,
(L3) poor observability of the task by the operator,
(L4) a limited supply of skilled workers,
(L5) deficient fidelity of the link between operator and the

robot (for instance caused by network latency), and
(L6) operator fatigue due to high levels of concentration

for prolonged periods of time.
These limitations often lead to excessive cognitive loads and
consequently dangerous working environments. An exam-
ple from construction, and our main application example,
is concrete spraying shown in Fig. 1. The operator here
maneuvers the spraying unit by commanding it’s individual
actuators using a number of joysticks, while simultaneously
ensuring job-site safety, achieving high task performance,
and minimizing wastage.

There are numerous shared autonomy methods that ad-
dress some of the above limitations of teleoperation, such
as: predict-then-act [1], next-best viewpoint for an external
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Fig. 1. Concrete spraying in a freshly excavated tunnel, using a 5-DoF
concrete spraying unit. A skilled operator controls the device on a per-
actuator level via a number of joysticks. Image courtesy of Costain Laing
O’Rourke Joint Venture.

camera-in-hand robot [2], learning from demonstration ap-
proaches [3], and sliding autonomy [4]. Shared autonomy is
defined as the blend between teleoperation and autonomous
reasoning that realizes robot actions [5]. The aim of shared
autonomy is to reduce the cognitive load on the human
operator by leveraging autonomous capabilities informed
by available sensory information and task heuristics ad-
dressing, therefore, the limitations of direct teleoperation.
Determining an appropriate balance between human input
and autonomous assistance that is intuitive for the operator
and reliable for the completion of complex tasks is a key
challenge for the robotics community.

A common approach when blending human input and
autonomous reasoning is to allocate specific sub task-space
dimensions as either human or autonomously regulated. For
example, Abi-Farraj et al. [6] proposes a shared control
architecture for a pick-and-place task, that allocates one
translation and three rotational dimensions to the human
and the additional two translation dimensions to a fully
autonomous system. Sub-task allocation is often favorable
since it avoids the difficulty of dealing with conflicting
interests, but fails to address limitation (L2).

Additionally, even though there is literature, e.g. [7], sug-
gesting a “bounded rationality” on the cognitive capabilities
of the human, most shared autonomy methods either consider
a static environment or implicitly assume that the operator
keeps track of all the changes in environment [8], [6], [9],
[10]. Therefore, some of these methods might still lead to
heightened fatigue, highlighted in limitation (L6). The level
of trust between human and the autonomous reasoning is
also evidently a key factor when addressing limitations (L1)



and (L6) [1], [11], however this is out of the scope of our
discussion in this paper.

In our previous work [12] we investigated how various
control spaces (e.g. joint space or task space), in which un-
skilled operators submit commands, and their dimensionality
affect overall task performance for target acquisition tasks,
addressing the limitations (L1) and (L4). A key conclusion
was that unskilled human operators achieve higher perfor-
mance by commanding the robot in a lower dimensional task
space. We leverage this knowledge here in order to design a
more effective shared autonomous system.

In this work we build on the work of [1] and blend the
human and autonomous input within the same task space,
rather than the common approach of allocating specific task
spaces for each to operate within [13]. We assume that the
human gives coarse input, i.e. we assume unskilled operators,
and our goal is to modulate that input to produce optimal
robot motion with respect to some objective function and
motion constraints, effectively addressing the limitation (L2).
Additionally, we address limitation (L6) by incorporating
information about the environment changes in the objec-
tive function. Thus, the human acts as a guide and the
autonomous reasoning is responsible for the environment and
precise motor control in order to reduce the cognitive load.
In summary, in this paper

• we propose an optimization-based representation for
shared autonomy that accounts for the environment
changes while remaining computationally tractable, by
modulating the human input with the task/environment
information within the same task space,

• we describe how to apply our method to the following
two case studies, by defining various objective terms,
– a grasping task where the human guides the robot and

is assisted in collision avoidance and, by a prediction
scheme, choosing appropriate grasp orientations, and

– a spraying task that demonstrates how to modulate
the human input with changes in the environment
introduced by the sprayed material, and

• finally, we implement our method and the different
objective terms for the previous case studies using a
simulated 7 degrees’ of freedom (DoF) KUKA LWR
arm.

The paper is organized as follows. Section II details a
problem formulation for the type of problems our method
applies to in the scope of numerical optimization, and Section
III describes the related work. In Section IV we describe
the proposed method and in Section V we expand on how
to realize it for a shared autonomous pick-and-place and
spraying tasks. Section VI covers the experiments and results
and Section VIII covers the discussion. Finally, in Section
VIII we conclude our work and discuss future avenues.

II. PROBLEM FORMULATION

Let us model motion generation as a discrete time state-
dependent policy function

xt+1 = π(xt, ut, e0:t), (1)

where xt represents the robotic system state at the current
time t, ut the control input, and et the state of the environ-
ment. We assume the (t+1)th order Markovian property for
the policy π and that the initial state x0 is known.

There are, in the literature, multiple approaches for de-
scribing a policy π. From simple analytical expressions for
trivial examples to various heuristic algorithms purposely
suited for a given application. Recent years have popular-
ized descriptions based on numerical optimization, since
they are able to account for multiple motion constraints
whilst minimizing a given objective function. Moreover,
an optimization-based problem description allows for the
use of readily available robust optimization algorithms and
libraries (such as SNOPT and IPOPT), instead of ad-hoc
implementations.

In this work we formulate π as the optimization problem
of finding the next-best state with respect to an objective
function describing task goals that consider the full history
of the environment, and motion constraints as

xt+1 = argmin
x

f(x;xt, ut, e0:t) (2a)

subject to
ceq(x) = 0 and cineq(x) ≤ 0 (2b)

where f is some real-valued objective function, and ceq ,cineq
describe the equality and inequality constraints respectively.

For complex tasks in dynamic environments it is often
very difficult to find robust methods that specify appropriate
control ut to autonomously complete the task. Complexities
in tasks often derive from poor situational and contextual
awareness of the part of the autonomous system, often
translating as a poor representation or handling of et. Ad-
ditionally, common methods such as trajectory optimization
suffer from large computation times rendering these methods
inappropriate for use in real-time systems.

As an alternative, teleoperation methods express the con-
trol input ut as a function of the human input ht (often
ut ∝ ht and projected in the joint or task space). These
systems typically consider the human as an observer of the
environment and assume that et is a parameter of the humans
inherent model of the task, rather than a parameter of (2). We
can therefore think of those control schemes as an one-to-one
mapping between the human input and robot motion. Shared
autonomy attempts to relax this assumption and redefine the
control input as a blend of human and autonomous reasoning.

III. RELATED WORK
A. Motion planning

Various methods allow robots to operate in dynamic
environments. For example, sampling based planners use
sensory data in the current time frame [14]. Whilst typically
robust, this method is generally unable to ensure accuracy
and efficiency.

Another approach for handling dynamic environments is
to track the changes using some representation, e.g. an
occupancy grid, and to continuously check for the inter-
section between the predicted robot motion or pre-defined



plan and the collision map [15]. Our method is similar in
approach to these methods, however, we consider tasks such
as spraying where the full history of the task affects the
future motion of the robot, as opposed to a snapshot of the
current environment state.

When demonstrations are available, Dynamic Movement
Primitives (DMP) [16] can encode the demonstrated tra-
jectories as a set of differential equations, being able to
adapt the robot motion and to handle perturbations during
execution. Motivated by the dissimilarities between job sites
in the concrete spraying application, we assume no access
to demonstrated trajectories.

A dynamical system approach [17] also allows the adap-
tation of the robot motion on-the-fly with respect to some
original plan while ensuring collision-free motions with
multiple convex shaped objects. The approach only considers
collisions with the end-effector.

The potential field approach [18] generates collision-
free motion within some static environment by summing
attractive and repulsive virtual forces defined by some known
goal position and obstacle positions, respectively. In order to
produce more robust plans, [19] extends it to handle dynamic
obstacles. However, the main drawback of the potential field
approach is its propensity to local minima, especially in high
dimensions.

A number of methods in the literature handle dynamic
environments by projecting task goals into alternative repre-
sentations. For example, [20] uses a relative distance space
representation for real-time null-space motion adaptation
to avoid self-collisions and collisions with known objects.
Topological-based representations using a combination of
writhe and interaction mesh space, as in [21], can handle
complex tasks such as wrapping. Another method [22]
leverages a computation scheme typically used to estimate
electric flux in the field of electro-dynamics for coverage
tasks involving wrapping.

The methods discussed above propose various approaches
to deal with dynamic environment without incorporating
human-level intervention, thus, being unable to handle com-
plex tasks that require situational and/or contextual aware-
ness.

B. Shared autonomy

There exists a body of research based on shared autonomy
that addresses the limitations of direct control. A subset of
these works develop arbitration frameworks utilizing operator
intent prediction that assumes a probability distribution over
the possible goals of the operator. These methods typically
attempt to address problems (L1, L2). Hauser [8] and Javdani
et al. [23] develop intent recognition systems that blend
assistance based on a prediction of the operators goal. These
works enable assistance even when the confidence in the
prediction is low and are important when it is difficult to
predict a single goal from multiple possibilities. Dragan and
Srinivasa [1] propose a policy blending formalism that relies
on the concept of arbitration for blending operator input
with a prediction of the operators intent. From their user

study, they verify the importance of the confidence in the
prediction for moderating the level of arbitration. In our work
we assume a given intention/goal and show how to integrate
it within our shared autonomy framework.

To address (L1, L2, L5) and to prevent unsafe robot
motions, forbidden regions can be defined by specifying
virtual fixtures in the task space. These can be pre-specified
by an expert [9], or computed on-the-fly with respect to
sensory data [24]. However, in both cases the misplacement
of such virtual fixtures due to human error or sensor noise
can still lead to unsafe motions.

Rakita et al. [2] address problem (L3) by continuously
providing an effective viewpoint to a remote user using an
additional camera-in-hand robot arm. Abi-Farraj addresses
problem (L4) by encoding tasks as trajectory distributions
demonstrated by expert operators using direct control. The
proposed system assists an unskilled operator in manipula-
tion tasks by providing force cues to the user via a haptic
interface based on the demonstrated trajectory distributions.

Several works, demonstrated at the DARPA Robotics
Challenge Finals, address problems (L5) and (L6). For
example, Marion et al. [10] proposes a piloting system,
called DIRECTOR for the ATLAS robot, where the pilot
specifies task sequences using high-level motion primitives,
and the shared autonomous system incorporates perception
and optimization-based trajectory motion planning.

IV. PROPOSED METHOD

In this section we detail our shared autonomy
optimization-based approach for obtaining the robot
policy, using the formulation (2). In order to achieve
real-time tractability when solving this optimization, we
must take special care in setting up our shared autonomy
problem. For instance, providing an analytical Jacobian of
the cost function f to the optimizer, as opposed to some
estimation method, considerably speeds up solving times.
In the next section, we will extend on the specification of f
via various objective terms.

However, for complex and dynamic environments, the
analytical Jacobians for the collision map are typically un-
available or slow to compute, easily rendering the problem
intractable for real-time purposes. In this work, instead of
neglecting the dynamic environment from (2) altogether, we
offload its representation from the users inherent model to the
autonomous system by incorporating it in the control input
function as

ut(ht, e0:t) := gH(ht) + gA(e0:t), (3)

where gH and gA respectively map the human input ht and
the full task history e0:t to a control action. Therefore, within
this formulation, the environment information is a parameter
of the control, rather than incorporated in the optimization.

We assume that et appropriately describes the task and the
environment, and that at each time-step we can keep track
of all e0:t. For example, in a shared autonomous spraying
system, et can be the current surface location being sprayed,



easily computed by the forward kinematics and a model of
the surface.

Blending the human input and task/environment infor-
mation in the same space by means of a summation as
in (3) raises questions about conflicting input. We resolve
that conflict by treating the human input ht as a goal that
attracts the robot into some particular task position, and the
task/environment information e0:t either as an attractor or
a repeller conditioning the robot task motion. Because both
human input and task goals/environment vary with time, we
can think of this blending as essentially building a different
task potential field for each time iteration, which determines
the corresponding control action.

We express gH as

gH(ht) := αH
(
ht − φt

)
(4)

where 0 < αH ∈ R is some scalar parameter representing
the strength of the human part, and φt = φ(xt) maps
the system state space to the task space of interest, e.g. φ
typically maps the robot joint positions to the translation
and rotational components of the end-effector. In a spraying
task, φ could represent the two dimensional position on the
spraying surface that the robot end-effector is pointing.

We express gA as

gA(e0:t) := αA

t∑
τ=0

βτ (eτ − φt) (5)

where 0 < αA ∈ R is some scalar parameter representing
the strength of the autonomous part, and βτ ∈ R is a scalar
parameter tuned with respect to every point eτ . We assume
that the choice of each βτ can be either constant or updated
by some strategy during the task. If βτ > 0 then this implies
eτ is a goal, otherwise if βτ < 0 then eτ is an obstacle.

V. CASE STUDIES

We can apply the proposed method to various tasks such
as grasping, welding, wiping, and spraying. In this section,
we illustrate how to use our optimization-based approach for
a shared autonomous grasping task and a shared autonomous
spraying task. We model the goals of each task as a weighted
objective function

f(x;xt, ut, e0:t) =
∑
i

ρifi(x;xt, ut, e0:t) (6)

where 0 6= ρi ∈ R is a weighting term that reflects the
importance of each sub-task, and each fi models a specific
sub-task. In the following sub-sections we specify possible
objective terms fi for the grasping and spraying tasks. For
brevity, we omit their analytical Jacobians which we use for
computational efficiency.

A. Shared autonomous grasping

Scenarios such as assistive robots in every day tasks [1]
and nuclear waste disposal [6] motivate the use of teleop-
erated grasping. One typical example is clearing, where the
robot has to grasp a number of static or dynamic objects in a
particular order and in a changing and cluttered environment,

Fig. 2. Example of a shared autonomous grasping task. We assume that
the objects poses and grasp locations are known via appropriate sensory
data.

whilst avoiding collisions. Such tasks require contextual and
situational awareness, as shown in Fig. 2.

Under direct control, in order to complete this task, the
operator must decide the ordering in which to grasp the
objects, track the changes in environment, and maneuver
the grasping tool to pick and place the items at a goal
position (e.g. in the bin) whilst avoiding collisions. The
combination of planning motion for multiple goals, tracking
and localization, and ensuring precise collision-free robot
motion undoubtedly results in high cognitive loads for the
operator.

Let us assume the human provides commands in the three-
dimensional end-effector velocity space. We can represent
collision-free end-effector motion using

fEffPos := ‖φpos(x)− (φpos(xt) + ut(ht, e0:t))‖2 (7)

where φpos is the forward kinematics mapping that computes
the position of the end-effector, and ut is the modulated input
(3). In this case the user is assisted to produce collision-free
motions by merging the operators goal and the environment
model.

Moreover, we can incorporate a goal orientation gt, i.e. a
function of the predicted item the operator intends to grasp,
by using

fEffOri := ‖φori(x)− gt(ht)‖2 (8)

where φori is the forward kinematics mapping that computes
the orientation of the end-effector. For gt we use a simple
prediction rule that chooses the appropriate orientation ac-
cording to the closest object to the end-effector. We refer
to [1] for more elaborate prediction rules.

Another goal for the shared autonomous grasping task
is to have collision free null-space motion, which we can
achieve by introducing an additional cost term (e.g. see [20])
or constraint equation (e.g. see [25]).

B. Shared autonomous spraying

In this example, we take inspiration from our main ap-
plication source, concrete spraying. A criteria for high job
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Fig. 3. Schematic diagrams showing main points of interest for the shared
autonomous spraying task.

quality concrete spraying is to ensure the sprayed lining is as
homogeneous as possible [26]. This requires the operator to
track all the positions along the spraying surface previously
visited in order to ensure minimal overlap. We aim to use our
system to aid the operator to perform more accurate spraying.

For spraying tasks, there are five main task objectives of
interest: (i) given a position on the wall to spray, orient the
end-effector to “look at” this position, (ii) given the normal
to the wall at this point, align end-effector axis with this
normal, (iii) maintain a given standoff distance, (iv) ensure
smooth motion synthesis, (v) help the operator to avoid over-
spraying. Note, all points of interest discussed in the rest of
this section are shown in Fig. 3.

Our LookAt task relies on the cost term

fLookAt := ‖pt − at‖2 (9)

where pt := φt + ut is the target point, a function of the
current sprayed position on the surface φt and control ut,
and at is the orthogonal projection of pt onto the end-effector
approach axis.

The EffAxisAlign task consists in aligning the end-
effector with the spraying surface using the cost term

fEffAxisAlign := ‖ cos(θt)− 1‖2 (10)

where θt denotes the angle between the surface normal n̂
and the end-effector approach axis.

We assume a given optimal standoff distance 0 < δ∗ ∈ R
specified by an operator [27]. In this case we model the
StandoffDist task as

fStandoffDist := ‖c− pt‖2 (11)

where c is a constant point in the end-effector frame such
that its distance away is δ∗.

In order to draw the robot to a more desirable configura-
tion, for example a configuration which keeps an elbow joint
up, we can specify an additional cost term

fNominal := ‖x− xn‖2 (12)

where xn is some given manipulator specific nominal con-
figuration.

To ensure smooth joint motion we minimize joint velocity
ẋ, acceleration ẍ, and jerk

...
x using

fMotionSmooth := ω1‖ẋt‖2 + ω2‖ẍt‖2 + ω3‖...xt‖2 (13)

where 0 < ω1, ω2, ω3 ∈ R are weighting terms, and ẋ, ẍ, and...
x are estimated using backward differencing using a window
of the previous three solutions. Smoothing joint space motion
up to the third derivative is generally beneficial in terms of
wear and tear on the robot.

Let e0:t represent all points previously sprayed. We de-
scribe two potential approaches for avoiding over-spray. The
first uses an inequality constraint, and the second modulates
the input using the sprayed locations information.

a) Inequality constraint approach: We can define the
constraint for every et as

cAvoidLookAtSphere := r2 − d2t , (14)

which ensures that the distance dt between the end-effector
approach axis and the point et is always greater than a given
radius r. Of course, over the duration of the task the number
of points et grows.

b) Input modulation approach: In this approach we
remove the previous inequality constraint and instead directly
use a control input ut that modulates the human input with
the environment model e0:t using (3).

Finally, additional inequality constraints enforce practical
motion constraints such as joint limits. To ensure that the
target point pt is within a spraying cone we can also represent
this as an inequality constraint. Let ψ be the angle of the
spraying cone. We can then use the equation of a cone to
derive an additional inequality constraint

cGazeAt :=

(
px2t + py2t − tan(θ)2pz2t

−pzt

)
(15)

where pt = (pxt , p
y
t , p

z
t )
T is the target point defined with

respect to the end-effector frame. Note, the bottom term in
(15) ensures pt is in-front of the end-effector.

VI. EXPERIMENTS AND RESULTS
The experiments described in this section consist in two

different tasks inspired by real world industrial applications:
grasping and spraying. Our experiments use a simulated 7-
DoF KUKA LWR arm, and additionally the grasping task
uses a simulated Robotiq 3-finger gripper. In the grasping
task, the user supplies commands to the system using a
Logitech F710 gamepad which streams motion commands to
the robot at a sampling frequency of 50Hz. For the spraying
experiments we use synthetic human input. All experiments
use the EXOTica optimization framework [28].
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Fig. 4. Completion time for the direct control mode versus the input
modulation mode for a clearing task.

A. Shared autonomous grasping

We illustrate the potential benefits of our formulation in
a grasping scenario, as described in Section V-A. The goal
of the task consists of clearing a number of items from the
table in a particular order by grasping each item and placing
it into the bin without collisions and as timely as possible,
as depicted in Fig. 2.

We tested two different modes: in the first, direct control
mode, the human operator regulates the three translation
dimensions of the end-effector; the second, input modulation
mode, is our proposed method. The system has access to a
collision map of the scene, appropriate grasp orientations
for each item, and it is able to keep track of objects. The
operator has to place the objects in a given order according
to their color, and this contextual knowledge is only known
by the human in both modes. The environment is static,
however this need not be the case if tracking is available
via perception.

To compare each mode we collected the completion time
for five trials under each mode. The direct control mode
resulted in an average time of 31.6 ± 3.0 seconds, whilst
the input modulation mode resulted in an average time of
17.6± 1.2 seconds, as shown in Fig. 4.

B. Shared autonomous spraying

1) Direct control versus input modulation: In this section,
the task comprises spraying a surface with minimal sprayed
overlap. Similarly to the grasping experiment, we compare
two modes, a direct control mode, and an input modulation
mode based on our proposed method. In both cases the
human defines a two-dimensional trajectory for the robot
to follow along the spraying surface. The direct control
method tracks this trajectory as best as possible. The input
modulation method uses our proposed method to modulate
this input and avoid sprayed areas.

Fig. 5 shows our experimental setup. For each mode, we
assume the same kinematic model, human-defined trajectory,
and environment model. We synthesize 469 data points
corresponding to the input from the human operator in
the task space. At each iteration in time, the environment
variable et stores the currently sprayed position φt. However,
we introduce a delay when logging et to the environment

Fig. 5. Experimental setup for a mock spraying task. The blue surface
represents the spraying surface and the white line indicates synthesized
human input.

model e0:t in order to avoid large and unrealistic repulsive
potentials.

Fig. 6 shows a color-map representing the sprayed regions,
where brighter colors correspond to over-spraying. We can
qualitatively observe that the precision tracking of the direct
control mode results in a high overlap and minimal coverage,
whereas the input modulation mode results in an increased
coverage and less overlap. However, overlap is still high in
the corners.

2) Inequality constraints versus input modulation: We
compare two strategies for shared autonomy applied to the
spraying task. The sub-task under consideration is to assist
the user to avoid re-spraying. The setup for this experiment is
the same as in the previous section. The first method encodes
e0:t as avoidance regions using the AvoidLookAtSphere
constraint (14) in the optimization formulation (2b). The
second, based on our proposed method, modulates the human
input using (3). The goal of this experiment is to demonstrate
the computational savings our method can have, rendering it
applicable for a real-time system.

We split each control cycle into two phases: a setup phase
and a solver phase. The setup phase initializes a problem by
specifying the target pt. The solver phase parses the problem
to an optimization solver; here we use SNOPT [29]. For the
first formulation, the setup phase consists of specifying target
position pt. For the second formulation, the setup phase
uses our proposed method to modulate the human input. We
repeated each experiment 20 times for each mode and present
the average computation times in Fig. 7.

For the setup phase (Fig. 7a), the completion time for
the inequality constraint mode is negligible whereas we
can clearly observe a positive correlation between the CPU
time and the number of points in the scene. For the solver
phase, Fig. 7b shows that the input modulation mode scales
better for high numbers of points in the scene as opposed
to the inequality constraint mode. We additionally report



(a) Direct control.

(b) Input modulation.

Fig. 6. Comparison between direct control mode and the input modulation
mode for a mock spraying task. The white line represents the synthesized
human input. The red line represents the spraying trajectory.

for each mode the average number of iterations for the
solver phase and the mean-variance for the setup and solver
phases. The average number of iterations for the inequality
constraint mode and input modulation mode is 12.73± 5.90
and 12.82 ± 5.72 iterations respectively. For the inequality
constraint mode, the mean-variance for the setup and solver
time was 5.58×10−12 and 3.57×10−6 respectively. For the
input modulation mode, the mean-variance for the setup and
solver time was 6.11× 10−8 and 5.84× 10−7 respectively.

VII. DISCUSSION

We compared a direct control mode versus our proposed
input modulation mode for a grasping task. The experiments
demonstrate that the input modulation mode leads to sig-
nificantly faster completion times. The completion time for
the direct control mode is nearly double that of our method.
This is unsurprising, since we modulate the operator input
in order to produce collision-free motion whereas for the
direct control this is a responsibility of the human. This
modulation removes the need for precise input relegating it
to the autonomous system relaxing, therefore, the burden on
the operator. However, this is just an illustrative experiment.
More conclusive results require further user-study experi-
ments.

We also compare a direct control mode against our pro-
posed method for a mock spraying task. Fig. 6a shows the
spraying profile when using the direct control mode. We
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Fig. 7. Completion time results plotted against number of points in the
scene for (a) the setup phase, and (b) the solver phase for the shared
autonomous spraying task.

clearly observe there is a large amount of overlap between
the sprayed layers. There is also a significant portion left to
spray in the top part of the plane thus requiring additional,
and consequently, wasted material. Fig. 6b shows a more
homogeneous color distribution. Fig. 6 demonstrates how
our method is able to regulate the robot motion in order
to produce greater homogeneity in the sprayed lining. In
Fig. 6b, we can see the resulting curved edges of the
spraying trajectory which is a desirable motion for obtaining
smoothness of the laid material. Additionally, we can observe
in both modes a high amount of overlap in the corners. In the
experiments we tune every βτ , as in (5), to a constant value.
We could potentially use different βτ at different points in
the trajectory to minimize this overlap effect.

Finally, we compared setup and solver phase completion
times for two different shared autonomy formulations, an
inequality constraint mode and input modulation mode. Fig.
7b shows that the inequality constraint mode requires larger
solver times, whilst Fig. 7a shows the opposite relation for
the setup time. However, given the difference in their order
of magnitude, we can essentially neglect the effect of the
setup time in the total computation time. Therefore, the
total computation time scales better for the input modulation
mode This happens because the input modulation mode only
requires an additional small computation in the task space per
additional point in the scene as in (5), whereas the inequality
constraint mode requires the computation of an additional
Jacobian per additional point in the scene, which is more
costly. We also observe that the number of solver iterations



remains roughly constant when increasing the number of
points in the scene, which suggests that the time per iteration
increases for every additional point in the scene.

VIII. CONCLUSIONS
In this work, we present an optimization based method

that blends human and autonomous reasoning within the
same task space. We achieve computational tractability by
modulating the human input with respect to changes in the
environment rather than including within the optimization
itself. We describe two realizations of our method for two
different case studies and the respective experiments. The
experiments illustrate the effectiveness of the method and
demonstrate its relevance to real world applications. Our
experiments show that modulating the human input, as
opposed to representing task objectives in the constraints of
the optimization formulation, results in large computational
savings.

Future work includes investigating whether this method
significantly improves user performance and experience
while reducing cognitive load, by conducting human-robot
interaction studies. Furthermore, we intend to explore how
to handle non-planar terrain for spraying tasks.
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