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Abstract We address the optimal control problem of
robotic systems with variable stiffness actuation (VSA)
including switching dynamics and discontinuous state transi-
tions. Our focus in this paper is to consider dynamic tasks that
havemultiple phases ofmovement, contacts and impactswith
the environment with a requirement of exploiting passive
dynamics of the system. By modelling such tasks as a hybrid
dynamical system with time-based switching, we develop
a systematic methodology to simultaneously optimize con-
trol commands, time-varying stiffness profiles and temporal
aspect of the movement such as switching instances and total
movement duration to exploit the benefits of VSA. Numer-
ical evaluations on a brachiating robot driven with VSA
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and a hopping robot equipped with variable stiffness springs
demonstrate the effectiveness of the proposed approach. Fur-
thermore, hardware experiments on a two-link brachiating
robot with VSA highlight the applicability of the proposed
framework in a challenging task of brachiation.

Keywords Hybrid dynamics · Passive and intrinsic
dynamics · Optimal control · Temporal optimization ·
Variable stiffness actuation

1 Introduction

Towards the aim of achieving highly dynamic and flexible
movements in close interactionwith the environment, a num-
ber of variable stiffness actuators (VSAs) have been recently
developed (Van Ham et al. 2007; Catalano et al. 2010; Hurst
et al. 2010; Eiberger et al. 2010; Jafari et al. 2010) (see
(Van Ham et al. 2009) for reviews). VSAs are composed
of mechanically adjustable compliant (passive) mechanisms
with the capability of simultaneous modulation of stiffness
and output torque. In contrast to conventional stiff actua-
tors, VSAs are expected to have desirable properties such as
intrinsic compliance, energy storage capabilitywith potential
applications in human-robot interaction and improvements of
task performance in dynamic tasks.

Despite potential benefits of variable stiffness joints,
finding an appropriate control strategy to fully exploit the
capabilities of VSAs is challenging due to the increased com-
plexity of mechanical properties and the number of control
variables (redundancy in actuation). Taking an optimal con-
trol approach, recent studies have investigated the benefits of
VSA such as energy storage in explosive movements from a
viewpoint of performance improvement (Braun et al. 2012,
2013; Garabini et al. 2011; Haddadin et al. 2011). Such bene-
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fits of VSAs in a ball throwing task has been demonstrated by
simultaneously optimizing time-varying torque and stiffness
profiles of the actuator (Braun et al. 2012) with a focus on an
optimal control formulation under actuation constraints for
complex hardware mechanisms in VSAs (Braun et al. 2013).
An optimal control problemofmaximizing link velocitywith
VSA models has been investigated by Garabini et al. (2011)
and Haddadin et al. (2011). It is shown that much larger
link velocity can be achieved than that of the motor in the
VSA with the help of appropriate stiffness adjustment dur-
ing a hitting movement. In a similar problem, Hondo and
Mizuuchi (2011) have discussed the issue of determining the
inertia parameter and spring constant in the design of series
elastic actuators to increase peak velocity. In robot running,
Karssen and Wisse (2011) have presented numerical stud-
ies to demonstrate that an optimized nonlinear leg stiffness
profile could improve robustness against disturbances.

However, traditional approaches have focused on the opti-
mal control formulation over a predetermined time horizon
with smooth, continuous plant dynamics. When considering
tasks that consist of multiple phases of movements includ-
ing switching dynamics and discrete state transition (arising
from interaction with the environment), an individual phase-
by-phase optimization strategy could result in a suboptimal
solution.

In this paper, we investigate spatio-temporal stiffness opti-
mization in such problems in order to exploit the benefits of
VSA. In addition to optimizing control commands and stiff-
ness, we develop a systematic methdology to simultaneously
optimize the temporal aspect of the movement (e.g., move-
ment duration). We address optimization problems for tasks
with multi-phase movements including switching dynamics,
impacts and contacts with environments in tasks requiring
exploitation of intrinsic dynamics in underactuated systems.

In order to demonstrate the effectiveness of the proposed
approach, we present numerical evaluations of robot brachi-
ation and hopping driven by VSA. In addition, we report
hardware implementation of the proposed approach on a
physical two-link brachiating robotwithVSA to demonstrate
its applicability in achieving highly dynamic movements
under real-world conditions.

1.1 Spatio-temporal optimization of multi-phase
movements

Dynamics with intermittent contacts and impacts such as
locomotion and juggling are often modelled as hybrid
dynamical systems which consist of (multiple sets of switch-
ing) continuous dynamics and discontinuous state transition
determined by switching surfaces (state based switching)
(Bätz et al. 2010; Grizzle et al. 2001; Rosa et al. 2012; Long
et al. 2011). Fromacontrol theoretic perspective, a significant
effort has been made to address optimal control problems

of various class of hybrid systems (Branicky et al. 1998;
Sussmann 1999; Xu and Antsaklis 2003, 2004). However,
illustrative examples in the control literature are confined to
low-dimensional and simple dynamical systems, and only
a few robotic applications can be found for optimization of
movements overmultiple phases (Buss et al. 2002; Long et al.
2011). Instead of using hybrid dynamics modelling, differ-
ent optimization approaches to dealing with multiple contact
events have been proposed. Tassa et al. (2012) have proposed
an iLQG (iterative linear quadratic Gaussian)-based (Li and
Todorov 2007) model based predictive control with smooth
approximation of contact forces for online motion synthesis
of a simulated humanoidmodelwithout the need of switching
dynamics. A direct trajectory optimization method for rigid
body systems subject to collisions by sequential quadratic
programming has been proposed (Posa et al. 2014). In the
study by Posa et al. (2014), contact forces are explicitly
included as constraint forces with complementarity condi-
tions and directly optimized together with trajectories and
control commands.

Solving hybrid optimal control problems with state based
switching is non-trivial even if the number and the sequence
of switching are known a priori. One of the reasons is that
additional constraints need to be satisfied such that the states
must lie on the switching surface at the instance of switching.
Furthermore, it is necessary to find the time of the switching
instance influenced by the control commands, whose ana-
lytical expression is difficult to obtain in general (Xu and
Antsaklis 2004). These conditions are equivalent to hav-
ing several interior-point constraints forming a multipoint
boundary value problem, which is generally known to be
hard to find solutions (Bryson and Ho 1975).

Thus, we suggest an approximate approach to the hybrid
optimal control problem, where themultiple phases ofmove-
ment are modelled as time-based switching hybrid dynamics
assuming that the sequence of switching is known.Necessary
conditions for optimality in the case of time-based switch-
ing is simpler than those of state-based switching (Xu and
Antsaklis 2004) and can be dealt with based on the optimiza-
tion method we use in this paper.

The main ingredients of the proposed optimal control
framework in this paper are as follows:

1. use of nonlinear time-based switching dynamics with
continuous control input to model the dynamics of multi-
phase movements;

2. use of nonlinear discrete state transition tomodel contacts
and impacts;

3. use of realistic plant dynamics with a VSA model;
4. introduction of a composite cost function to describe task

objectives with multi-phase movements;
5. simultaneous optimization of joint torque and stiffness

profiles across multiple phases;
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6. optimization of switching instances and total movement
duration.

We formulate this problem as an extension of an iterative
linear quadratic regulator (iLQR) algorithm (Li and Todorov
2007) and generalization of switched LQ control with state
jumps (Xu and Antsaklis 2003). iLQR is an effective method
for iteratively solving optimal control problems and has been
employed in our previous work, e.g, by Braun et al. (2012,
2013). To our knowledge, while there exists previous work
separately addressing some of the specific points above (Xu
and Antsaklis 2003, 2004; Egerstedt et al. 2003; Caldwell
and Murphey 2012), we have yet to find a study which has
considered all these issues in conjunction. In addition, the
proposed formulation provides an optimal feedback control
law, while many trajectory optimization algorithms typically
compute only optimal feedforward controls. Discussions on
alternative optimal control approaches such as indirect meth-
ods and direct methods can be found in (Braun et al. 2013).

2 Problem formulation

Wepresent a general formulation of optimal control problems
for taskswithmultiple phasemovements including switching
dynamics and discrete state transition arising from interac-
tions with an environment.

2.1 Robot dynamics with variable stiffness actuation

To describe multi-phase movements, we consider multiple
sets of robot dynamics. An individual rigid body dynamics
model is defined for each associated phase of the movement
as a subsystem. The servo motor dynamics in the VSA is
modelled as a critically damped second order dynamical sys-
tem:

Mi (q)q̈ + Ci (q, q̇)q̇ + gi (q) + Di q̇ = τ i (q,qm) (1)

q̈m + 2αi q̇m + α2
i qm = α2

i u (2)

where i denotes the i th subsystem, q ∈ R
n is the joint angle

vector, qm ∈ R
m is the motor position vector of the VSA,

Mi ∈ R
n×n is the inertiamatrix,Ci ∈ R

n is theCoriolis term,
gi ∈ R

n is the gravity vector,Di ∈ R
n×n is the viscous damp-

ingmatrix, and τ ∈ R
n are the joint torques from the variable

stiffness mechanism. In the equations above, (1) denotes the
rigid body dynamics of the robot and (2) denotes the servo
motor dynamics in the VSA. In (2), α determines the band-
width of the servo motors1 and u ∈ R

m is the motor position
command (Braun et al. 2012).We assume that the range of the
control command u is limited as umin � u � umax . Note that
since themotor dynamics (2) are critically damped, the range

1 α = diag(a1, . . . , am) and α2 = diag(a21 , . . . , a
2
m) for notational

convenience.

constraint on the servo motor positions umin � qm � umax
can also be imposed2 (Braun et al. 2012).

In this paper, we consider a VSAmodel in which the joint
torques are given in the form

τ (q,qm) = AT (q,qm)F(q,qm) (3)

where A is the moment arm matrix and F is the forces gen-
erated by the elastic elements. The joint stiffness is defined
as

K(q,qm) = −∂τ (q,qm)

∂q
. (4)

2.2 State space representation

In order to formulate an optimal control problem, we con-
sider the following state space representation of the combined
plant dynamics composed of the rigid body dynamics (1) and
the servo motor dynamics (2):

ẋ = fi (x,u) (5)

where

fi =

⎡
⎢⎢⎣

x2
M−1

i (x1) (−Ci (x1, x2)x2 − gi (x1) − Dix2 + τ i (x1, x3))
x4

−α2
i x3 − 2αix4 + α2

i u

⎤
⎥⎥⎦

(6)

and x = [ xT1 , xT2 , xT3 , xT4 ]T = [ qT , q̇T , qTm, q̇Tm ]T ∈
R
2(n+m) is the state vector consisting of the robot state and the

servo motor state. For more detailed treatment of modelling
robot dynamics with compliantly actuated systems, please
refer to (Braun et al. 2013).

2.3 Hybrid dynamics with time-based switching and
discrete state transition

In this paper, we employ a hybrid dynamics representation
tomodel multi-phasemovements having interactions with an
environment. Hybrid dynamical systems consist of (multiple
sets of) switching continuous dynamics and discrete state
transition (Xu and Antsaklis 2004) and have been widely
used to model robot dynamics with impacts and contacts
(Bätz et al. 2010; Grizzle et al. 2001; Rosa et al. 2012; Long
et al. 2011). In these physical systems, switching or discrete
state transition occurs based on the state of the system, e.g.,
foot contact in the case of locomotion. However, as men-
tioned in Sect. 1.1, optimal control of state based switching
hybrid dynamics is non-trivial due to difficulty in dealing
with transversality conditions arising from multiple interior-
point constraints. Thus, we consider the following class of

2 � denotes component-wise inequality.
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Fig. 1 A hybrid system with
time-based switching dynamics
and discrete state transition with
a known sequence. The
objective is to find an optimal
control command u, switching
instances Ti and final time T f
which minimizes the composite
cost J = J1 + · · · + JK+1

T1 T2

x

x0

JK+1J2J1

J = J1 + · · ·+ JK+1

switching instances

cost

composite cost:

ẋ= fi0(x,u) ẋ= fi1(x,u) ẋ= fiK(x,u)

Tf

· · · · · ·

· · · · · ·

· · · · · ·

T0

x+=Δi0,i1(x−) x+=Δi1,i2(x−) x+=ΔiK−1,iK(x−)

hybrid systems with time-based switching to represent the
movement with multiple phases (Xu and Antsaklis 2004;
Caldwell and Murphey 2012):

ẋ = fi j (x,u), Tj ≤ t < Tj+1 (7)

x
(
T+
j

)
= �i j−1,i j

(
x

(
T−
j

))
(8)

where fi j : Rn × R
m → R

n is the subsystem i j , x ∈ R
n

is a state vector and u ∈ R
m is a control input vector for

subsystems. For Tj ≤ t < Tj+1, the subsystem i j is active
and at t = Tj , the subsystem switches from i j−1 to i j . At the
moment of dynamics switching, we assume an instantaneous
discrete (discontinuous) state transition, which is denoted by
a map �i j−1,i j in (8), where x(T+

j ) and x(T−
j ) denote the

post- and pre-transition states, respectively. The indices are
defined as j = 0, . . . , K for (7) and j = 1, . . . , K for (8),
respectively.

An example of an instantaneous state transition is an
impact map arising from an inelastic collision of the rigid
body with an environment (Grizzle et al. 2001; Rosa et al.
2012; Bätz et al. 2010). In the proposed framework, equality
constraints at themoment of switchingwill be approximately
imposed by the via-point cost and appropriate time for the
event will be found by optimizing switching instances as we
discuss below. In this paper, the sequence of switching is
assumed to be given. Figure 1 depicts a schematic diagram
of a hybrid system we consider in this paper.

2.4 Movement optimization of multiple phases

For the given hybrid dynamics (7) and (8), in order to describe
the full movement with multiple phases, we consider the fol-
lowing composite cost function

J = φ(x(T f )) +
K∑
j=1

ψ j
(
x

(
T−
j

))
+

∫ T f

T0
h(x,u)dt (9)

where φ(x(T f )) is the terminal cost, ψ j (x(T−
j )) is the via-

point cost at the j th switching instance and h(x,u) is the
running cost.

In our earlierwork (Nakanishi andVijayakumar 2012),we
attempted toobtainmultiple sequenceof swing locomotion in
a robot brachiation example by optimizing each cost function
Ji for each phase separately in a sequential manner, where

J j = ψ j
(
x

(
T−
j

))
+

∫ Tj

Tj−1

h(x,u)dt for j = 1, . . . , K

(10)

and

JK+1 = φ(x(T f )) +
∫ T f

TK
h(x,u)dt (11)

using the terminal state for the j th sequence as the initial
condition for the (j + 1)-st sequence with the discrete state
transition (8). In this case, each cost function can be (locally)
optimized. However, the total cost J = ∑K+1

j=1 J j may be
suboptimal.

For the given plant dynamics (7) and state transition (8),
the optimization problem we consider is to a) find an opti-
mal feedback control law u = u(x, t) which minimizes the
composite cost (9) and b) simultaneously optimize switching
instances T1, . . . , Tk and the final time T f as well.

3 Spatio-temporal optimization algorithm for
timed switching dynamics and discontinuous
state transitions

In this section, first we extend iLQR—an approximate local
optimal feedback control solver (similar arguments apply for
the stochastic equivalent iLQG (Li and Todorov 2007)) with
generalization of the switched LQ control with state jumps
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(Xu andAntsaklis 2003) in order to incorporate timed switch-
ing nonlinear dynamics with discrete and discontinuous
state transitions. Then, we present a temporal optimization
algorithm to optimize the switching instances and the total
movement duration. Note that traditional single phase move-
ment optimization can be simply treated as a single set of
continuous time dynamics without switching and discontin-
uous state transition.

3.1 Optimal control of switching dynamics and discrete
state transition

In brief, the iLQRmethod solves an optimal control problem
of the locally linear quadratic approximation of the nonlinear
dynamics and the cost function around a nominal trajectory
x̄ and control sequence ū in discrete time, and iteratively
improves the solutions.

In order to incorporate switching dynamics and discrete
state transition, the hybrid dynamics (7) and (8) are linearized
in discrete time around the nominal trajectory and control
sequence as

δxk+1 = Akδxk + Bkδuk (12)

δx+
k j

= �k j δx
−
k j

(13)

Ak = I + �t j
∂fi j
∂x

∣∣∣∣
x=xk

, Bk = �t j
∂fi j
∂u

∣∣∣∣
u=uk

(14)

�k j = ∂�
i j−1,i j

∂x

∣∣∣
x=x−

k j

(15)

where δxk = xk − x̄k , δuk = uk − ūk , k is the discrete time
step, �t j is the sampling time for the time interval Tj ≤ t <

Tj+1, and k j is the j th switching instance in the discretized
time step. The sampling time �t j will be optimized for the
purpose of temporal optimization as described in Sect. 3.2.

The composite cost function (9) is locally approximated
in a quadratic form as3

�J = δxTNφx + 1

2
δxTNφxxδxN

+
K∑
j=1

((
δx−

k j

)T
ψ

j
x + 1

2

(
δx−

k j

)T
ψ

j
xxδxk−

j

)

+
N∑

k=1

(
δxTk hx + δuTk hu + 1

2
δxTk hxxδxk

+ 1

2
δuTk huuδuk + δuTk huxδxk

)
�t j (16)

3 For notational convenience, note that in (16), φx and φxx denote φx =
∂φ
∂x and φxx = ∂2φ

∂x2 , respectively. Similar definitions apply to other
partial derivatives.

Algorithm 1 Complete optimization algorithm for hybrid
dynamics with temporal optimization
1: Input:

• Timed switching plant dynamics fi j (7), discrete state transition
�i j−1,i j (8)

• Composite cost function J (9)

2: Initialize:

• Nominal switching instance and final time T1, . . . , TK and T f
and corresponding discrete sampling time �t0, . . . , �tK as in
(31) and (32)

• Nominal control sequence ū and corresponding x̄

3: repeat
4: repeat
5: Optimize control sequence ū:

• Obtain linearized time-based switching dynamics (12) and
state transition (13) around x̄ and ū in discrete time with
current �t j

• Compute quadratic approximation of the composite cost
(16)

• Solve local optimal control problem to obtain δu (18)
• Apply δu to the linearized hybrid dynamics (12) and (16)
• Update nominal control sequence ū ← ū + δu, trajectory

x̄ and cost J

6: until convergence
7: Temporal optimization: update �t j :

• Update the vector of temporal scaling factor β and corre-
sponding sampling time �t0, . . . , �tK in (29) via gradient
descent.

• Obtain corresponding switching instances Tj (31) and final
time T f (32)

8: until convergence
9: Output:

• Optimal feedback control law u(x, t): feedforward optimal con-
trol sequence uopt , optimal trajectory xopt(t) and optimal gain
matrix Lopt(t):
u(x, t) = uopt(t) + Lopt(t)(x(t) − xopt(t))

• Optimal switching instance T1, . . . , TK and final time T f
• Optimal composite cost J

and a local quadratic approximation of the optimal cost-to-go
function is defined as

vk(δxk) = 1

2
δxTk Skδxk + δxTk sk . (17)

The local control law δuk of the form

δuk = lk + Lkδxk (18)

is obtained from the Bellman equation

vk(δxk) = min
δu

{hk(δxk, δuk) + vk+1(δxk+1)} (19)

by substituting (12) and (17) into the Eq.(19), where hk is
the local approximation of the running cost in (16) (see Li
and Todorov 2007 for details).
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For the dynamics (12), the cost-to-go parameters Sk , sk in
(17) are updated with a modified Riccati equation4

Sk = hxx + AT
k Sk+1Ak + LT

k HLk + LT
k G + GTLk (20)

sk = hx + AT
k sk+1 + LT

k Hlk + LT
k g + GT lk (21)

where

H = huu + BT
k Sk+1Bk (22)

G = hux + BT
k Sk+1Ak (23)

g = hu + BT
k sk+1. (24)

At the instance of discrete state transition k = k j , the
following cost-to-go parameter update is added (cf. Xu and
Antsaklis 2003):

S−
k j

= ψ
j
xx + �T

k jS
+
k j

�k j (25)

s−k j = ψ
j
x + �T

k j s
+
k j

(26)

which is derived from the Bellman equation

vk j (δx
−
k j

) = ψ
j
k j

(δx−
k j

) + vk j (δx
+
k j

) (27)

at k = k j , where ψ
j
k j

(δx−
k j

) is the local approximation of the
via-point cost (16).

Once we have a locally optimal control command δu, the
nominal control sequence is updated as ū ← ū + δu. Then,
the new nominal trajectory x̄ is computed by running the
obtained control ū and the above process is iterated until
convergence (no further improvement in the cost within cer-
tain threshold). In (Tassa et al. 2012), methods for improving
convergence and robustness properties of the iLQR/iLQG
algorithms are presented in the context of online trajectory
optimization.

3.2 Temporal optimization

In our priorwork, a temporal optimization algorithmhas been
proposed to simultaneously optimize the control commands
and temporal parameters (Rawlik et al. 2010). A mapping
β(t) from the real time t to a canonical time t ′ is introduced
as

t ′ =
∫ t

0

1

β(s)
ds, (28)

and then β(t) is optimized to scale the temporal aspect of the
movement. In the case of single phase movement optimiza-
tion, (28) can be discretized with an assumption that β(t) and
�t are constant throughout the movement as �t ′ = 1

β
�t .

4 At the final time k = N , SN = φxx and sN = φx.

In order to optimize the switching instances and the total
movement duration, we introduce a scaling parameter and
sampling time for each duration between switching as (cf.
(14), (16))

�t ′j = 1

β j
�t j for Tj ≤ t < Tj+1 (29)

where j = 0, . . . , K . By optimizing the vector of temporal
scaling factors β = [ β0, . . . , βK ]T via gradient descent

β ← β − η∇β J (30)

where η > 0 is a learning rate, we can obtain each switching
instance

Tj+1 = (k j+1 − k j )�t ′j + Tj (31)

and total movement duration

T f =
K∑
j=0

(k j+1 − k j )�t ′j + T0 (32)

where k0 = 1 and kK+1 = N . In the complete optimization,
computation of optimal feedback control law and tempo-
ral scaling parameter update are iteratively performed until
convergence. A pseudocode of the complete algorithm is
summarized in Algorithm 1.

This iterative temporal optimization algorithm with alter-
native update of control commands and temporal parameters
has been proposed in the general context of an inference
based stochastic optimal control framework in (Rawlik et al.
2010; Rawlik 2013). As discussed in (Rawlik 2013), because
it is generally intractable to obtain the combined optimal
policy at once, the idea of the two step procedure has been
introduced. In each iteration, improvement of control com-
mands and temporal parameters will be performed to jointly
reduce the cost function. In addition, in the control theo-
retic literature, a similar iterative two stage strategy has been
proposed for a class of switching systems to optimize control
commands and switching instances (Xu andAntsaklis 2004).

As a result of these iterative optimization procedures,
at best, convergence to a locally optimal solution could be
expected. Effectiveness of this approach has been illustrated
in variable distance and via-point reaching tasks (Rawlik
et al. 2010; Rawlik 2013) and in simple numerical examples
of a class of switching systems (Xu and Antsaklis 2004).
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Fig. 2 Two-link brachiating robot model with the VSA joint with the
inertial and geometric parameters. See Sect. 5.3 for the description of
the hardware platform. The parameters of the robot are given in Table 1.
Note that the indices i denote the link number in this figure and Table 1

4 Exploitation of passive dynamics with
spatio-temporal optimization of stiffness

We explore the benefit of simultaneous variable stiffness and
temporal optimization for tasks exploiting intrinsic dynamics
of the system. We consider brachiation (Saito et al. 1994;
Nakanishi et al. 2000; Gomes and Ruina 2005; Rosa et al.
2012) as an example of highly dynamic maneuver requiring
utilization of passive dynamics for successful task execution.

4.1 Brachiating robot dynamics with VSA

The equation of motion of the two-link brachiating robot
shown in Fig. 2 (See Sect. 5.3 for the description of the
hardware platform) takes the standard form of rigid body
dynamics where only the second joint has actuation:

M(q)q̈ + C(q, q̇)q̇ + g(q) + Dq̇ =
[

0
τ(q,qm)

]
(33)

where q = [ q1, q2 ]T is the joint angle vector, M is the
inertia matrix, C is the Coriolis term, g is the gravity vector,
D is the viscous damping matrix, τ is the joint torque acting
on the second joint given by the VSA, and qm is the motor
positions in the VSA as described below.

We use MACCEPA (Van Ham et al. 2007) as our VSA
implementation of choice. MACCEPA is one of the designs
of mechanically adjustable compliant actuators with a pas-
sive elastic element (cf. Fig. 2). This actuator design has
the desirable characteristics that the joint can be very pas-
sively compliant. This allows free swinging with a large
range of movement by relaxing the spring. Thus, it is highly
suitable for the brachiation task we consider. MACCEPA is
equipped with two position controlled servo motors, qm =

[ qm1, qm2 ]T , which control the equilibrium position and
the spring pre-tension, respectively.

The joint torque for this actuator model is given by

τ = BC sin(qm1 − q)

γ
F (34)

where γ = √
B2 + C2 − 2BC cos (qm1 − q), q is the joint

angle5, F is the spring tension,

F = κ(l − l0) (35)

κ is the spring constant, l = γ + rdqm2 is the current spring
length, l0 = C − B is the spring length at rest and rd is
the drum radius (see Fig. 2 for the definition of the model
parameters). The joint stiffness can be computed as

k = −∂τ

∂q
. (36)

Note that MACCEPA has a relatively simple configuration
in terms of actuator design compared to other VSAs, how-
ever, the torque and stiffness relationships in (34) and (36)
are dependent on the current joint angle and two servo motor
angles in a complicatedmanner and its control is not straight-
forward.

In addition, we include position controlled servo motor
dynamics approximated by a second order system with a PD
feedback control (Braun et al. 2012)

q̈m + 2αq̇m + α2qm = α2u (37)

where u = [ u1, u2 ]T is the motor position command, α

determines the bandwidth of the actuator. In this study,weuse
α = diag(20, 25). The range of the commands of the servo
motors are limited as u1 ∈ [−π/2, π/2] and u2 ∈ [0, π/2].

We use the model parameters of the hardware platform
(see Sect. 5.3 for details) shown in Table 1 and the MAC-
CEPA parameters with the spring constant κ = 771 N/m, the
lever length B = 0.03 m, the pin displacement C = 0.125
m and the drum radius rd = 0.01 m.

4.2 Optimization of single phase movement in
brachiation task

A natural and desirable strategy for a swing movement in
brachiation would be to make good use of gravity by making
the joints passive and compliant. For a system with VSAs,
our idea in exploiting passive dynamics is to frame the control
problem in finding an appropriate (preferably small) stiffness
profile tomodulate the systemdynamics onlywhennecessary
and compute the virtual equilibrium trajectory (Shadmehr
1990) to fulfill the specified task requirement.

5 In the brachiating robot model, q = q2.
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Table 1 Model parameters of the two-link brachiating robot

Robot parameters i=1 i=2

Mass

mi (kg) 1.390 0.527

Moment of inertia

Ii (kgm2) 0.0297 0.0104

Link length

li (m) 0.46 0.46

COM location

lci (m) 0.362 0.233

Viscous friction

di (Nm/s) 0.03 0.035

To implement this idea of passive control strategy, we
consider the following cost function to encode the task (the
specific reason will be explained below)

J = (y(T ) − y∗)TQT (y(T ) − y∗)

+
∫ T

0

(
uTR1u + R2F

2
)
dt (38)

where y = [ r, ṙ ]T ∈ R
4 is the position and the velocity of

the gripper in the Cartesian coordinates, y∗ is the target value
when reaching the target y∗ = [ r∗, 0 ]T and F is the spring
tension in the VSA. This objective function is designed in
order to reach the target located at r∗ at the specified time
T while minimizing the spring tension F in the VSA. Note
that the main component in the running cost is to minimize
the spring tension F by the second term while the first term
uTR1u is added for regularization with a small choice of
the weights in R1. In practice, this is necessary since F is a
function of the state and iLQR requires a control cost in its
formulation to compute the optimal control law.

Notice that the actuator torque (34) can be expressed in
the form

τ = −F sin(q − qm1)/γ
′ (39)

where γ ′ = γ /BC . In this Eq. (39), it can be conceived
that F has a similar role to the stiffness parameter k as in
the simplified actuator model τ = −k(q − qm). Another
interpretation can be considered in such a way that if we
linearize (34) around the equilibrium position assuming that
qm1 − q 
 1, the relationship between the joint stiffness k
in (36) and the spring tension F can be approximated as

k ≈ 1√
B2 + C2 − 2BC

F. (40)

Thus, effectively, minimizing the spring tension F corre-
sponds to minimizing the stiffness k in an approximated way.

Note that it is possible to directly use k in the cost func-
tion. However, in practice, first and second derivatives of k
are needed to implement the iLQG algorithm which become
significantly more complex than those of F .

4.3 Benefit of temporal optimization

This section numerically explores the benefit of temporal
optimization in exploiting natural dynamics of the system.
One of the issues in a conventional optimal control formu-
lation is that the time horizon needs to be given in advance
for a given task. While on fully actuated systems, control
can be used to enforce a pre-specified timing, it is not pos-
sible to choose an arbitrary time horizon on underactuated
systems. In a brachiation task, determination of an appropri-
ate movement horizon, i.e., matching the movement duration
corresponding to the property of the natural dynamics of the
pendulum-like swing motion, is essential for successful task
execution with reduced control effort.

Consider the swing locomotion task on a ladder with
the intervals starting from the bar at dstart = 0.42 m to
the target located at dtarget = 0.46 m (cf. Fig. 2). We
optimize both the control command u and the movement
duration T .We useQT = diag(10000, 10000, 10, 10),R1 =
diag(0.0001, 0.0001) and R2 = 0.01 for the cost function in
(38). The optimized movement duration was T = 0.806 s.

Figure 3 shows the simulation result of (a) the optimized
robot movement, (b) joint trajectories and servo motor posi-
tions, and (c) joint torque, spring tension and joint stiffness.
In the plots, trajectories of the fixed time horizon ranging
T ∈ [0.7, 0.75, . . . , 0.9] s are also overlayed for compari-
son in addition to the case of the optimal movement duration
T = 0.806 s. In the movement with temporal optimization,
the spring tension and the joint stiffness are kept small at
the beginning and end of the movement resulting in nearly
zero joint torque. This allows the joint to swing passively. The
joint torque is exerted only during the middle of the swing by
increasing the spring tension as necessary. In contrast, with
non-optimal time horizon, larger joint torque and spring ten-
sion as well as higher joint stiffness can be observed resulting
in the requirement of increased control effort. This result sug-
gests that the natural plant dynamics are fully exploited for
the desirable task execution with simultaneous stiffness and
temporal optimization.

4.4 Benefit of stiffness variation

In this section, we investigate the benefit of time-varying
stiffness modulation. One of the characteristics of VSAs is
its ability to simultaneously modulate joint torque and stiff-
ness. Modulating stiffness effectively alters the properties of
the system dynamics such as natural frequency. Thus, the
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(a)

(b)

(c)

Fig. 3 Simulation result of the single phase brachiation task with tem-
poral optimization. aMovement of the robot (simulation) with optimal
variable stiffness control (optimized duration T = 0.806 s). b Joint tra-
jectories and servo motor positions. c Joint torque, spring tension and
joint stiffness. In b, c, gray thin lines show the plots for non-optimized
T in the range of T = [0.7, 0.75, . . . , 0.9] s and blue thick lines show
the plots for optimized T = 0.806 s. Note that with temporal optimiza-
tion, at the beginning and the end of the movement, joint torque, spring
tension and joint stiffness are kept small allowing the joint to swing
passively in comparison to the non-optimal time cases (Color figure
online)

capability of modulating stiffness during the motion can be
beneficial for improving the task performance.

We demonstrate the benefit of time-varying modulation
of stiffness by comparing optimal variable stiffness control

and optimal fixed stiffness control. In optimal variable stiff-
ness control, both the control commands u1(t) and u2(t) in
u = [ u1(t), u2(t) ]T are optimized in a time-varying man-
ner during the movement to independently control the joint
torque and the joint stiffness. In optimal fixed stiffness con-
trol, the command to the spring pre-tensioning servomotor is
fixed to the optimal constant value throughout themovement,
i.e., u = [ u1(t), u2 ]T where u2 = const. Note that con-
stant command to the pre-tensioning servomotor u2 does not
necessarily mean constant joint stiffness with MACCEPA
(Braun et al. 2012). In the case of optimal fixed stiffness
control, it was possible to achieve the comparable swing
movement for the same intervals of dstart = 0.42 m and
dtarget = 0.46 m as in Sect. 4.3 above. However, in optimal
fixed stiffness control incurs a higher cost J = 9.528 than
that of the corresponding optimal variable stiffness case with
J = 2.979.

In addition, we compare the performance of variable and
fixed optimal stiffness control in terms of the range of dis-
tances that can be reached with the robot. Starting from the
bar at the nominal distance dstart = 0.42m,we vary the target
positions dtarget by 0.01 m and optimize control commands
and movement duration. When the endeffector position at
t = T f is within a tolerance of 0.01 m from the location of
the target, we assume that the trial is successful. With opti-
mal variable stiffness control, the robot was able to reach
the target in the range of dtarget ∈ [0.39, 0.59] m (the range
of 0.20 m) while with optimal fixed stiffness control, it was
dtarget ∈ [0.42, 0.52] m (the range of 0.10 m). These numer-
ical explorations illustrate the benefit of optimal variable
stiffness control in terms of the cost and range of distances
achieved in swing locomotion in comparison to optimal fixed
stiffness control.

5 Spatio-temporal optimization of multiple swings
in brachiation

We evaluate the effectiveness of the proposed approach in
robot brachiation that incorporates switching dynamics and
multiple phases of the movement. We present numerical
simulations and experimental implementation on a physical
two-link brachiating robot with VSA.

5.1 Brachiating robot model in hybrid dynamics
formulation

The dynamics of a two-link brachiating robot with a VSA
model including switching (cf. (1)) are given by

Mi (q)q̈ + Ci (q, q̇)q̇ + gi (q) + Di q̇ =
[

0
τ(q,qm)

]
. (41)
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Transition at handhold

Hand 2 grasping

ẋ = f2(x,u)

x+ = Δ(x−)

ẋ = f1(x,u)
Hand 1 grasping

x+ = Δ(x−)

Hand 1 Hand 2

Fig. 4 Hybrid dynamics modelling of a brachiating robot with generic
asymmetric structure. The dynamics switches at the transition from a
handhold to the next with a discrete state mapping

When considering multi-phase movement optimization, we
assume that the robot has an asymmetric structure in the
dynamics (unequal mass and/or link length), where we have
two sets of subsystems denoted by the subscripts i = 1 (hand
1 grasping) and i = 2 (hand 2 grasping) as depicted in Fig. 4.
The model i = 2 is the flipped configuration of the model
i = 1 with the parameters used in Sect. 4.1. In this model,
the robot has asymmetric configuration with respect to its
unequal inertial parameters.

The joint torque by VSA τ is given in (34) and the sys-
tem includes the servo motor dynamics in (37). The effective
model switches between i = 1 and i = 2 interchangeably at
the switching instance Tk when the robot grasps the bar (see
Fig. 4).

To formulate the optimization problem, we use the state
space representation in (6). At the transition at handhold,
an affine discrete state transition x+ = �(x−) = �x− +
γ is introduced to shift the coordinate system for the next
handhold and reset the joint velocities of the robot to zero,
which is defined as

� = diag(�1, . . . ,�4) (42)

where

�1 =
[
1 1
0 −1

]
,�2 =

[
0 0
0 0

]
,�3 = �4 =

[−1 0
0 1

]
(43)

and γ = [ −π, 0, · · · , 0 ]T . Note that in this example, we
have � = �1,2 = �2,1.

5.2 Simulation results

We consider a brachiating task with multiple phases of the
movement as follows: First, the robot swings up from the sus-
pended posture to the target at d1 = 0.40m and subsequently
moves to the target located at d2 = 0.42 m and d3 = 0.46
m, respectively. The composite cost function to encode this
task is given by

J =
(
y(T f ) − y∗

f

)T
QT f

(
y(T f ) − y∗

f

)

+
K∑
j=1

(
y

(
T−
j

)
− y∗

j

)T
QTj

(
y

(
T−
j

)
− y∗

j

)

+
∫ T f

0

(
uTR1u + R2F

2
)
dt + wT T1 (44)

where K = 3 is the number of phases, y = [ r, ṙ ]T ∈ R
4 is

the position and the velocity of the gripper in the Cartesian
coordinates measured from the origin at current handhold, y∗
is the target value when reaching the target y∗ = [ r∗, 0 ]T
and F is the spring tension in the VSA. Note that this cost
function includes the time costwT T1 for the swing upmaneu-
ver.We useQT = QTj = diag(10000, 10000, 10, 10),R1 =
diag(0.0001, 0.0001) and R2 = 0.01 and wT = 1. In addi-
tion, we impose constraints on the range of the angle of the
second joint during the course of the swing up maneuver as
q2min ≤ q2 ≤ q2max , where [q2min , q2max ] = [−1.745, 1.745]
rad, by adding a penalty term to the cost (44). This is intro-
duced considering the physical joint limit of the hardware
platform used in this paper.

Figure 5a shows the sequence of the multi-phase move-
ment of the robot optimized by the proposed algorithm
including temporal optimization. The optimized switching
instance and total movement duration are T1 = 5.259, T2 =
6.033 and T f = 6.835 s and the total cost is J = 37.815. Fig-
ure 5b shows the optimized joint trajectories and servomotor
positions. Note that at the instance of switching denoted by
vertical lines, discrete state transition canbeobserved in these
trajectories due to the definition of the coordinate transfor-
mation.

To illustrate the benefit of the proposed multi-phase for-
mulation, we performed movement optimization with a
pre-specified nominal (fixed, non-optimal) time horizonwith
T1 = 5.2, T2 = 5.9 and T f = 6.7 s using the same cost
parameters both in sequential and multi-phase optimization.
With sequential individual movement optimization, large
overshoot was observed at the end of the final phase move-
ment (distance from the target at t = T f was 0.0697 m)
incurring significantly large total cost of J = 101.053. In
contrast, for the same pre-specified time horizon, by employ-
ing multi-phase movement optimization, it was possible to
find a feasible solution to reach the target bars. The error at the
final swing at t = T f was 0.0020 m, which was significant
improvement compared to the case of individual optimiza-
tion. The largest error observed in this sequence was 0.0109
m at the end of the first swing up phase. In this case, the
total cost was J = 50.228. These results demonstrate the
benefit of the multi-phase movement optimization in finding
optimal control commands and temporal aspect of the move-
ment using the proposed method resulting in lower cost.
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Fig. 5 Simulation result of the
multi-phase brachiation task
with temporal optimization. a
Optimized multi-phase
movement of the robot
(simulation). b Joint trajectories
and servo motor positions of
complete optimization with
temporal optimization
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5.3 Hardware platform of a brachiating robot with VSA

The configuration of the brachiating robot with VSA is
depicted in Fig. 6. The elbow joint is actuated with a VSA
(MACCEPA (VanHam et al. 2007)) having two servomotors
(Hitec HS-7940TH). Each link is equipped with a gripper
driven by a single servo motor (Hitec HSR-5990TG) to open
and close it through a gear mechanism. The angle of the first
link is obtained through an IMU unit (InvenSense MPU-
6050) attached to the link. The angle of the second link is
measured by a rotary potentiometer (Alps RDC503013A)
at the elbow joint. The servo motor positions are measured
through direct access to its internal potentiometer. The oper-
ating frequency of control and measurement is 1KHz. The
length of each link is 0.46 m and the total mass is 1.92 kg.
The link parameters are obtained from the CADmodel while
friction coefficients and the servo motor bandwidth parame-

ters are estimated by fitting the actual responses of the robot.
Our numerical exploration showed that with an inadequate
mass distribution, itwas difficult to find an optimal solution in
achieving desired swing locomotion behavior. By this reason,
the mass distribution of the robot was chosen to resemble the
desirable natural dynamics required for the task (see Table 1
for the parameters).

5.4 Experimental results

Figure 7 shows the experimental result of swing locomo-
tion on the ladder with the intervals of dstart = 0.42 m and
dtarget = 0.46 m. The optimized control commands with the
optimal movement duration obtained in the corresponding
simulation in Sect. 4.3 are used. In Fig. 7a, the movement of
the robot is depicted while in Fig. 7b the joint trajectories and
servo motor positions are shown. This result corresponds to
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Fig. 6 Configuration of the two-link brachiating robot with VSA in
CAD drawing

the simulation in Fig. 3 with the optimal movement duration.
In the experiments, we only use the open-loop optimal con-
trol command to the servo motors without state feedback as
in (Braun et al. 2012).

Figure 8 shows the experimental result of multi-phase
movements consisting of swing-up followed by two addi-
tional swings which corresponds to the simulation in Fig. 5.
The intervals between the target bars are d1 = 0.40 m,
d2 = 0.42 m and d3 = 0.46 m. Figure 8a illustrates the
movement of the robotmoving from left to rightwhile Fig. 8b
shows the joint trajectories and servo motor positions. The
joint trajectories in the experiment closely match the planned
movement in the simulation. The discrepancy is mainly due
to the inevitable difference between the analytical model and
the hardware system. Due to practical reasons, instantaneous
switching cannot be performed with the gripper mechanism
of the hardware. Thus, a short halt at the end of each phase
was introduced to ensure firm grasping.

Fig. 7 Experimental result of
the single phase locomotion task
with the brachiating robot
hardware. a Optimized
movement of the robot (single
phase locomotion). b Joint
trajectories and servo motor
positions. In b, red and blue
thick lines show the
experimental data, and gray thin
lines show the corresponding
simulation result with the
optimized planned movement
duration T = 0.806s presented
in Sect. 4.3 (Color figure online)
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Fig. 8 Experimental result of
the multi-phase locomotion task
with the brachiating robot
hardware. a Optimized
movement of the robot
(multi-phase movement). b Joint
trajectories and servo motor
positions. In b, red and blue
lines show the actual hardware
behavior, and gray lines show
the corresponding simulation
result presented in Sect. 5.2
(Color figure online)
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The experiments above are presented in the accompa-
nied video. These results demonstrate the effectiveness and
feasibility of the proposed framework in achieving highly
dynamic tasks in compliantly actuated robots with variable
stiffness capability under real-world conditions.

6 Multi-phase optimization in hopping with VSA

In this section, we demonstrate the feasibility of the proposed
approach on an increasingly challenging task of hopping
which includes switching of different mode of dynamics
(flight and stance) and more complex discontinuous state
transition arising from impact at touch-down. Additional
difficulty in this task is to find the flight and stance time
for successful task execution which is highly restricted by
the underactuated nature of the intrinsic dynamics and the
desired task specifications.

We consider the hopping robotmodel in (Hyon and Emura
2004) with an augmentation of variable compliance elements

in the hip and the leg actuators. The objective of optimiza-
tion is to find appropriate leg and hip stiffness to exploit the
passive dynamics and also the required flight and stance time
during one locomotion cycle in a periodic movement based
on a time-based switching approximation. The obtained con-
troller is then applied to achieve multiple hopping cycles of
locomotion on event based switching dynamics. Robustness
of the obtained optimal feedback controller will be evaluated
by applying external disturbances during the multiple hop-
ping cycles to demonstrate the feasibility of the optimized
controller.

6.1 Dynamics model of a hopping robot

The hopping dynamics switch between the flight phase and
stance phase (with i = 1: flight and i = 2: stance) at the
switching instance Tj when either touch-down or lift-off con-
ditions are met. The configuration vector of the system is
defined as q = [xcom, ycom, θ, φ, r ]T (see Fig. 9).
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Flight Stance

ẋ = f1(x,u) ẋ = f2(x,u)

x+=Δ1,2(x−)
Touch down

r
φ

θ

T0 TfT1

(xcom, ycom)

(xfoot, yfoot)
yground

Fig. 9 Hybrid dynamics of a hopping robot model and locomotion
phases during one cycle

The flight dynamics (i = 1) are given as

{
Mẍcom = 0, Mÿcom = −Mg
Jl θ̈ = −τhip, Jbφ̈ = τhip

(45)

with r = r0. The stance dynamics (i = 2) are given as

⎧⎨
⎩

(Jl + Mr2)θ̈ + 2Mrṙ θ̇ − Mrg sin θ = −τhip
Jbφ̈ = τhip
Mr̈ − Mr θ̇2 + Mg cos θ = τleg

(46)

with xcom = −r sin θ + xfoot and ycom = r cos θ + yfoot . M
is the mass of the body, Jl is the leg inertia, Jb is the body
inertia, g is the gravitational constant, r0 is the nominal length
of the leg spring. τhip and τleg are the torque applied to the hip
joint and the force applied to the leg by the VSAs as given
in (48) and (49) below, respectively. We use the parameters
M = 11.0 kg, Jb = 2.5 kgm2, Jl = 0.25 kgm2 and r0 = 0.7
m adopted from (Ahmadi and Buehler 1997).

In a general form, the flight and stance dynamics can be
written as

Mi q̈i + Ci (qi , q̇i )q̇i + gi (qi ) = τ i (qi ,ui ) (47)

where q1 = [xcom, ycom, θ, φ]T and q2 = [θ, φ, r ]T are the
partial configuration vector for the flight and stance phase,
respectively.

τ 1(q,u) = [0, 0,−τhip, τhip]T and τ 2(q,u)

= [−τhip, τhip, τleg]T are the VSA torque/force applied to
each degree of freedom where

τhip(q,u) = u1 − u3(φ − θ) (48)

τleg(q,u) = u2 − u4(r − r0) (49)

and u = [u1, u2, u3, u4]T is the control command vector
defined, where u1 is the hip torque, u2 is the leg force, u3 is
the hip joint stiffness and u4 is the leg stiffness. The range
of the control and stiffness is limited as umin � u � umax

where umin = [ −100, −100, 10, 2000 ]T and umax =
[ 100, 100, 150, 25000 ]T .

For the purpose of optimization, the dynamics will be for-
mulated in a state space representation of the form of ẋ =
fi (x,u) as in (5) with the full state vector x = [ qT , q̇T ]T
and q = [xcom, ycom, θ, φ, r ]T . In this hopping robot, we
consider a simplified parallel elastic VSA model with direct
force/torque and stiffness control as in (Hyon and Emura
2004), which does not include the motor dynamics6 (2).

The discontinuous impact map at touch-down is defined
as

x+ = �1,2(x−) =
[
I 0
0 �(q)

]
x− (50)

where x = [qT , q̇T ]T , q+ = q− and q̇+ = �(q)q̇−. The
matrix �(q) is the transition map between the pre-impact to
post-impact velocities based on a rigid body collision model
(Grizzle et al. 2001; Rosa et al. 2012). The specific form of
the velocity transition map is given in the study of passive
running with an additional analysis of energy dissipation at
impact (Hyon and Emura 2004). At lift-off, the velocity of
the leg is reset to zero as ṙ = 0 at r = r0.

6.2 Design of composite cost function

In this paper, we consider a task of achieving periodic move-
ment of continuous hopping which is a repetition of one
hopping cycle while exploiting the passive dynamics and
the benefits of stiffness modulation. For this purpose, first,
we design a composite cost function for one hopping cycle
including both the flight and stance phases and the desir-
able touch-down condition. Then, the obtained controller is
applied to achieve multiple cycles.

Consider the following cost function:

J = (x(T f ) − x0)TQT f (x(T f ) − x0) + �
(
x

(
T−
1

))

+
∫ T f

0
uTRu dt (51)

whereQT f is a positive semi-definite matrix andR is a posi-
tive definite matrix. The purpose of the first term is to achieve
periodicity of the trajectory where x0 denotes the initial state.
The second term consists of two criteria:

�
(
x

(
T−
1

)) = QT1,1

(
y−
foot − yground

)2 + QT1,2(μ
−)2 (52)

where QT1,1 and QT1,2 are positive weights. The first term
QT1,1(y

−
foot − yground)2 penalizes the height of the foot from

6 This form of VSA in (48) and (49) can be equivalently written in the
form of (3) with a change of coordinates (see discussions in Sect. II-D
in Nakanishi et al. 2011) assuming that motors have ideal responses,
i.e., infinitely high bandwidth (α → ∞).
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the ground yground = 0 to approximately encode the touch-
down condition in a time-based formulation. In order to
minimize this term, it is important to find an appropriate
flight time T1 as the trajectory of the center of mass cannot
be directly controlled in the flight phase for a given initial
lift-off condition. The second term QT2,2(μ

−)2 minimizes
energy loss at touch-down where μ− is called the energy
dissipation coefficient

μ− = ẋ−
com cos θ− + ẏ−

com sin θ− + r0θ̇
−

= ẋ−
foot cos θ− + ẏ−

foot sin θ− (53)

motivated from the study of passive running by Hyon and
Emura (2004) to find an appropriate leg angle and foot veloc-
ity relative to the ground at touch-down. Note that ifμ− = 0,
there is no energy loss at impact. In the running cost, wemin-
imize the control effort u1 and u2 while small weights are
used for penalizing the magnitude of stiffness u3 and u4 for
regularization.

The initial conditions are obtained by choosing the desired
initial horizontal velocity and lift-off angle of the leg (ẋ0, θ0)
and computing the remaining parameters with the assump-
tion of synchronization between the oscillatory movements
of the leg swing and compression in the passive run-
ning model (Ahmadi and Buehler 1997; Hyon and Emura
2004).

6.3 Simulation results

We choose the desired initial condition at lift off as ẋ0 =
2.0m and θ0 = −6.0 deg (−0.105 rad). The rest is obtained
based on an approximated condition of passive running
(Hyon and Emura 2004) for the nominal model of Ahmadi
and Buehler (1997). With this initial condition, the passive
dynamics (no control) of the robot can achieve several steps
of running as reported by Ahmadi and Buehler (1997) and
Hyon and Emura (2004). However, eventually, it will fail
since passive running is intrinsically unstable.

Using the proposed method, we simultaneously obtained
the optimal feedback control for the control commands
(u1, u2) and stiffness (u3, u4), and found the flight time T1
and the period for one complete cycle T f for one hopping
cycle. The optimized flight time and one hopping cycle were
T1 = 0.410 s and T f = 0.487 s. Since the obtained controller
is based on an assumption of time-based switching, there
could be some mismatch in the exact timing in the switching
condition when applied to realistic event based switching
dynamics (flight to stance at touch-down yfoot = yground ,
stance to flight when r = r0) to achieve multiple cycles of
locomotion. One of the benefits of our approach is that it
provides a locally optimal feedback control, deviations from
the optimal trajectory can be corrected, which will be illus-

trated in the following examples. These simulation results
are presented in the accompanied video.

Comparison to individual phase optimization As a com-
parison, we optimized the control command, stiffness and the
movement duration in a sequential manner individually for
the flight phase subsequently followed by the stance phase
for one cycle of the movement. The optimized movement
duration for the flight phase was T1,ind = 0.410 s and for the
stance phase was Tstance,ind = 0.080 s, i.e., the total dura-
tion was Tf ,ind = 0.490 s. The total cost for this individual
optimization was Jind = 1.686 which is comparable to the
complete optimization case Jcomp = 1.624mentioned above.
The optimized trajectories, control commands and stiffness
profiles are similar between these two cases. However, inter-
estingly, there are notable difference in the robustness of the
controller when these two were applied to the event based
switching dynamics where the role of the feedback control
becomes prominent.

The controller with complete cycle optimization was able
to achieve continuous stable running over multiple cycles.
However, with the controller obtained by individual opti-
mization, the robot failed to continue to run after 25 steps
of hopping. Although this is an empirical observation, this
difference presumably came from the difference in the opti-
mal feedback gains. In the complete cycle optimization, the
optimal feedback gains take the future goal until the end of
the hopping cycle into account including both the flight and
stance phaseswith the via-point and terminal costs. However,
in the individual optimization, corrections aremade only con-
sidering the immediate goal specified by the terminal cost in
each phase. This result highlights the benefits of optimizing
the whole cycle of the movement in comparison to individ-
ually optimizing the movement in a sequential manner. This
comparison is demonstrated in the accompanied video.

Robustness against perturbations In this simulation, we
evaluate the robustness of the obtained optimal feedback con-
troller by applying external perturbations while the robot is
running. At t = 1.0 s, the robot is pushed forward with
Fx = 150 N and at t = 2.0 s, a backward perturbation is
applied Fx = −250 N for the duration of 0.05 s, respec-
tively. Figure 10a depicts the movement of the robot from
t = 0.7 to t = 3.9 s. Figure 10b show the forward velocity
ẋ (top), body height ycom (middle), and leg angle θ and hip
angle φ (bottom) from t = 0 to t = 6 s. Figure 10c show the
control commands u1 and u2 (top), hip stiffness u3 (center)
and leg stiffness u4 (bottom). The simulation result illustrate
that after the perturbations, the robot was able to stabilize the
periodic running behavior without falling over demonstrat-
ing the robustness of the optimal feedback controller and the
feasibility of the proposed approach in this problem setting.
This result is illustrated in the accompanied video.
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Fig. 10 Application of the optimized controller to achieve steady
state hopping with multiple cycles. a Movement of the hopping robot
(simulation). b Forward velocity, body height, joint angles. c Con-
trol commands, and hip and leg stiffness. External perturbations were

applied in order to evaluate the robustness of the obtained optimal
feedback control law. The robot was able to continue to run after the
application of the perturbations without falling over
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7 Discussion

In this section, we discuss the benefit, practical considera-
tions and possible limitations of the proposed approach.

In Sect. 4.3, benefit of temporal optimization was pre-
sented with an example of swing locomotion in a VSA
actuated brachiating robot in order to exploit the intrinsic
dynamics of the system.Muchmore significant effect of tem-
poral optimization with a torque controlled brachiating robot
in our previouswork (Nakanishi et al. 2011)was illustrated in
terms of the required control torque to achieve swingmotion.
With the optimized movement duration, only a very small
amount of torque was needed to achieve the task. However,
slight change in the movement time resulted in significant
increase in the required control command. Furthermore, in
the case of periodic movement optimization (Nakanishi et al.
2011), finding an appropriate frequency of themotionmatch-
ing the natural frequency of the system could reduce the
required control effort. These results highlight the benefit
of temporal optimization in exploiting the natural dynamics.

In Sect. 5.2, benefit of multi-phase movement optimiza-
tion was presented in a brachiation example in terms of
the improvement in the cost and performance in compari-
son to individual phase optimization. The main difference
from individual phase optimization is that multi-phase opti-
mization takes the future goals into account. The effect of
multi-phase optimization in the brachiation example may be
less intuitive since every time the robot grasps the bar, joint
velocities are reset. In this case, the final positions of the
VSA servomotors in each phase can be appropriately deter-
mined considering the next phase movement to adjust the
spring tension. The example of a via-point reaching task in
(Rawlik et al. 2010; Rawlik 2013) demonstrates the benefit
of multi-phase optimization more clearly where the velocity
and the resultant curvature of the trajectory when passing
the via-point can be determined considering the next target
position.

One of the practical considerations of the time-based
switching approach is the feasibility and accuracy of approx-
imation of the switching condition. In general, accuracy of
this approximation largely depends on the nature of the task
and the design of the cost function since the switching con-
dition is effectively imposed by the via-point and terminal
costs at their corresponding time. In the case of brachia-
tion, considering the design of the gripper in the physical
robot, empirically, small error at the endpoint was tolerated
assuming that the robot was able to grasp the bar. In the
hopping example, as the ground contact condition is more
critical, the weights of the cost were empirically adjusted in
order to reduce the mismatch. In addition, temporal opti-
mization was helpful in reducing the error by finding an
appropriate movement duration which cannot be arbitrar-
ily predetermined. Our empirical results suggest the small

mismatch in the switching condition can be alleviated by
the use of proper state feedback. It would be of our future
interest to evaluate the robustness of the obtained optimal
controller against such amismatch in amore systematicman-
ner.

In terms of feasibility, application of the proposed spatio-
temporal optimization approach could be limited to the cases
where the switching condition can be represented by a cost
function (penalty) with an assumption of known order of
switching and we have a reasonable initial estimate of the
desirable duration of the movement. If the sequence of the
switching is not given a priori, direct trajectory optimization
approaches with state-based switching could be more suit-
able, e.g., (Posa et al. 2014). Ifwedonot considermulti-phase
movement optimization as awhole, i.e., when only individual
movement optimization is considered, it would be possible
to use the event based first-exit strategy as in (Kulchenko and
Todorov 2011). However, this would result in a sub-optimal
solution overall as discussed in (Rawlik 2013). In thesemeth-
ods, temporal optimization becomes more difficult since the
movement time (switching instance) depends on the resul-
tant system’s trajectory as discussed in (Xu and Antsaklis
2004).

8 Conclusion

In this paper, we have presented a systematic methodol-
ogy for movement optimization with multiple phases and
switching dynamics in robotic systems with VSA with the
focus on exploiting intrinsic dynamics of the system. Tasks
including switching dynamics and interaction with an envi-
ronment are approximately modelled as a hybrid dynamical
systemwith time-based switching.Wehave demonstrated the
benefit of simultaneous temporal and variable stiffness opti-
mization leading to reduction in control effort and improved
performance. With an appropriate choice of the composite
cost function to encode the task, we have demonstrated the
effectiveness of the proposed approach in various example
tasks in numerical simulations and hardware implementation
in a brachiating robot with VSA. Future work will aim at
investigation of optimization in biped locomotion with VSA
including variable damping (Enoch and Vijayakumar 2016;
Radulescu et al. 2012) as well as an extension to learning
approaches to address modelling uncertainties of the system
dynamics (Mitrovic 2010).
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