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Abstract— We present a novel framework for stiffness and
temporal optimization of periodic movements, with an em-
phasis on exploiting the intrinsic passive dynamics to realize
efficient actuation and control. We use a dynamical systems
based representation tuned to the requirements of rhythmic
movements and propose a systematic methodology to optimize
for control commands, temporal aspect of movements and time-
varying stiffness profiles from first principles of optimality.
Evaluations on a single pendulum and underactuated two-link
robot simulation highlight the benefits, achieving remarkable
actuation efficiency on complicated, highly dynamic tasks such
as swing-up and brachiation.

I. INTRODUCTION

Optimality principles have been drawing much attention

in motor control of biological and artificial systems. Op-
timal control theory has been used as a theoretical model
of movement generation in biological motor control [1].

From a practical point of view, there is growing interest
in the design and control of robotic systems using variable
stiffness mechanisms with the aim of achieving compliant

and energy efficient movement, including methods that use
optimal control approaches [2].

Periodic movements are an interesting family of move-
ments, with examples such as walking and running, that
make maximally effective use of the intrinsic dynamics of the

system. However, to our knowledge, while there have been
a number of previous studies on optimal control of discrete
movements such as point-to-point reaching tasks, there is a

limited amount of work on the optimal control of periodic
movements; relevant studies include optimization of biped
locomotion using differential dynamic programming (DDP)

[3], Poincaré map based optimization of biped locomotion
[4], [5], [6], and stabilization of periodic systems and move-
ments [7], [8], respectively, from a control theoretic point of

view.
In this paper, we present an approach to stiffness and

temporal optimization in periodic movements with a focus

on exploiting the intrinsic dynamics of the system. Dy-
namical systems based state-space representations of peri-
odic movements have significant merits over time indexed

representations [9]—some key aspects include ease of fre-
quency, amplitude and offset modulation while providing
robustness to perturbations during control. We formulate a

phase oscillator based dynamical system representation that
maintains all the key benefits while using Fourier basis

functions instead of Gaussian basis functions [10], primarily
because frequency space representations are more appro-
priate for periodic trajectories, i.e., Fourier basis functions
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form orthonormal bases. Given an appropriate representation

of periodic movements, we formulate an appropriate cost
function and employ an optimal feedback control framework
[11] to compute an optimal sequence of driving commands.

In addition to obtaining an optimal control law, we are

interested in optimizing the temporal aspect of the move-
ment pattern itself in order to exploit the intrinsic passive
dynamics of the system and achieve energy efficient control.

Specifically, we consider the problem of finding the optimal
speed of the periodic movement, i.e., the frequency or period
of the pattern. This problem is motivated by the observation

that, for example, the ‘natural’ walking cycle appears to be
closely coupled to the dimensions and mass properties of
the limbs, i.e., it should have some relationship with the

intrinsic dynamics to achieve energy efficient behavior. In
order to exploit this insight, we extend our time-optimal
control framework proposed in [12] to optimize the temporal

aspect of periodic movements.

When executing periodic movements, there is strong ev-
idence of time-varying stiffness profiles in biological sys-
tems, e.g., human elbow joint stiffness modulation during

cyclic movement [14]. Optimization of stiffness for periodic
movements has been considered by a few studies, e.g., [15],
[16]. However, in the majority of cases, constant stiffness is

assumed during one period of movement. In this paper, we
would like to go beyond the minimization of the stiffness
norm approach employed in reaching and via-point tasks [17]

and optimize for temporal stiffness modulation by exploiting
the target periodicity and plant dynamics. We evaluate our
proposed approach in numerical studies using realistic, full-

physics dynamics. Simulation results demonstrate that it is
possible to achieve energy efficient control of periodic move-
ments by exploiting the intrinsic dynamics of the system as

a result of optimization.

II. PROBLEM FORMULATION

A. Representation of Periodic Movement

We start by considering an appropriate representation

for rhythmic movement trajectories. A time-indexed Fourier
series expansion with N harmonics can be written as

y(t) = a0 +

N
∑

n=1

(

an cos
2nπt

T
+ bn sin

2nπt

T

)

(1)

where T is the period of oscillation, and an and bn are
Fourier coefficients. These coefficients can be computed
efficiently using a method presented in [18] to fit any given

sampled periodic trajectory. The number of harmonics N
controls the complexity of the trajectory. In this paper,
instead of using the time-indexed representation above, we

suggest the following reformulation of (1) in terms of an
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Fig. 1. Fitting and modulation of hip joint trajectory of human walking data taken from [13] using (2) and (3). Left: original trajectory and fitting using
5 harmonics. Second: Amplitude modulation with r = 2. Third: Frequency modulation with 3ω. Right: Offset modulation with yoff = 30.

autonomous dynamical system including phase oscillator
dynamics φ:

y(t) = r ψT (φ)θ + yoff (2)

φ̇ = ω (3)

where

ψ(φ) = [1 cosφ · · · cos(Nφ) sinφ · · · sin(Nφ)]
T

is the Fourier basis function vector,

θ = [a0 a1 · · · aN b1 · · · bN ]
T

(4)

is the parameter vector composed of Fourier coefficients, y
is the trajectory, φ is the phase, ω is the angular frequency
(ω = 2π

T
), r is the amplitude, and yoff is the offset of the

trajectory. With such a formulation, as previously seen with

Dynamic Movement Primitives (DMPs) [10], it is possible
to easily scale the frequency, amplitude and offset of the

reference trajectory and potentially incorporate additional
coupling with external signals. As an illustrative example,
in Fig. 1, we show the fitting and modulation of a hip

joint trajectory of human walking taken from [13] using
the representation of periodic trajectories introduced here in
(2) and (3). The period of the trajectory is T = 1.167 sec

and N = 5 harmonics are used. The left plot in Fig. 1
shows the fitting result. Note that the accuracy of fitting
can be improved by increasing the number of harmonics

N . The next three sub-plots show examples of amplitude,
frequency and offset modulation by changing r, ω and yoff ,
respectively, in (2) and (3).

It is important to note that the Fourier series expansion
based representation introduced here includes Lissajous fig-

ures [19] which can produce a large number of interesting
complex periodic trajectories, allowing for a rich movement
repertoire. In the following, we use the output y(t) given by

(2) as a reference (desired) movement trajectory as defined
in (6) below.

B. Optimal Feedback Control for Rhythmic Tasks

Next we consider the optimization of control commands

for a periodic trajectory tracking task with a given fixed
frequency ω. For plant dynamics

ẋ = f(x,u), (5)

consider the task of tracking a desired periodic trajectory

xref (t) = [ y, ẏ ]T (6)

given by the output of (2) while reducing the control effort
u. Note that ẏ can be obtained by analytical time derivative

of (2). We use the cost function

J = Φ(x(0),x(T )) +

∫ T

0

h(x(t),u(t))dt. (7)

where h(x(t),u(t)) is the running cost defined as

h(x(t),u(t)) = (x− xref )
TQ(x− xref ) + uTRu, (8)

Q and R are positive (semi)definite matrices and
Φ(x(0),x(T )) is the terminal cost defined as

Φ(x(0),x(T )) = (x(T )− x(0))TPT (x(T )− x(0)) (9)

where PT is a positive definite matrix and T is the duration
of the movement (i.e., period of the trajectory). Note that the
terminal cost Φ is introduced to enforce the periodicity of the

resultant trajectory by minimizing the difference between the
states at the beginning and end of the periodic trajectory as
motivated in [3]. However, since the criterion in the terminal

cost (9) is redundant when the tracking error criterion is
explicitly specified in the running cost (8), the term (9) can
be removed or have small weight in practice.

Since solving general nonlinear optimal control problems

is not analytically tractable, we employ the Iterative Linear
Quadratic Gaussian (ILQG) algorithm [11] to obtain a locally
optimal feedback control law

u(x, t) = uopt(t) + L(t)
(

x(t)− xopt(t)
)

(10)

where uopt(t) is the feedforward optimal control sequence,
L(t) is the optimal feedback gain matrix, and xopt(t) is the

locally optimal trajectory. ILQG [11] is one of a number
of iterative methods to approximately solve such nonlinear
optimal control problems and has been widely applied to

point-to-point and via-point reaching tasks, e.g., in biological
[20] and robotic [2] motor control.

The standard rigid body dynamics (RBD) of a movement
system including viscous friction is given by

M(q)q̈+C(q, q̇)q̇+ g(q) +Dq̇ = τ (11)

where q is the joint angle vector, M is the inertia matrix, C
is the Coriolis term, g is the gravity vector, D is the viscous

damping matrix, and τ is the joint torque vector. Therefore,
the plant dynamics given in (5) takes the specific form

f =

[

x2

M−1(x1)(−C(x1,x2)x2 − g(x1)−Dẋ2 + u)

]

where x = [ xT
1 , xT

2 ]T = [ qT , q̇T ]T and u =
τ . The cost function described above is formulated as a



trajectory tracking problem. However, note that the suggested
formulation in this paper can also be interpreted as finding
an optimal control law u for the augmented autonomous

dynamical system

ẋ = f(x,u) (12)

y = r ψT (φ)θ + yoff (13)

φ̇ = ω (14)

z = x− y, where y = [y, ẏ] (15)

such that the plant dynamics (12) would behave like the

target dynamics given in (13) and (14) with the running cost

h(z,u) = zTQz+ uTRu (16)

in the cost function (7). By doing this, it is also possible
to formulate an on-line optimization based on a receding
horizon approach when external coupling is incorporated to

the phase dynamics to modulate the desired movement.

C. Temporal Optimization of the Periodic Movement

The optimal control formulation above computes an op-
timal feedback control law (10) for the reference trajectory

given in (3) with a fixed frequency ω. However, we are also
interested in optimizing the temporal aspect of the periodic

movement.

Extending our approach for temporal optimization [12],

we define a mapping β(t) from the real time t to a canonical

time t′

t′ = γ(t) =

∫ t

0

1

β(s)
ds, (17)

where β(·) > 0. Assuming that the β(t) is constant during

the movement and discretizing (17) yields:

∆t′ =
1

β
∆t. (18)

By exploiting the fact that the angular frequency and the

period of oscillation are related through the total movement
duration T as ω = 2π

T
and using (18), we can write:

β =
ω′

ω
=

∆t

∆t′
, (19)

where ω′ is the canonical frequency. The mapping β is
optimized, e.g., using our temporal optimization algorithm
[12], to yield an optimized ω.

The optimized ω is fed back to modify the reference

trajectory through (3) and a new set of control signals are
computed using the ILQG iterations (Section II-B) until
convergence. In many of the rhythmic movement tasks we

considered (see Section III-A), we did not have to explicitly
introduce a ‘time’ cost during the temporal optimization, in
contrast to discrete movement tasks. The potential explana-

tion is that a movement period closer to the corresponding
natural or resonant frequency of the system will require less
control effort—reflected in a (local) minimum in the cost

function corresponding to an optimal ω.

D. Time-varying Stiffness Optimization

Stiffness is the property of a mechanical component
characterizing the relationship between the change in the

applied force (or torque) and the resultant displacement, and
is defined by

δτ = Kδq (20)

where K is the joint stiffness, τ is the joint torque and q
is the joint angle. For the plant dynamics (11), consider an
actuator model with variable stiffness mechanism whose joint
torques τ are given in the form

τ = τ (x,u) = −K(x,u)(q− q0(x,u)) (21)

where x = [ q, q̇ ]T , qo is the equilibrium position of
the joint angles by solving τ (x,u) = 0 for q by setting
τ = 0 and q̇ = 0, K is the joint stiffness matrix and u

is the control command [21]. The simplest model of such a
variable stiffness actuator can be described by

τ = −Kq+ u. (22)

where the stiffness K and control inputs u can be directly
and independently controlled. This model can be re-written
in the form of (21) by introducing the change of coordinates

u = Kq0. There are several examples of practical mechani-
cal designs of variable stiffness actuators: examples include
one that relies on antagonistic actuation [2] or a design

with relatively decoupled stiffness and position control [22]
(MACCEPA) .

As a toy case, consider a simplified linearized pendulum

with a variable stiffness actuator

q̈ + gq = −kq + u. (23)

The resonant frequency of (23) is given by ω =
√
g + k

since (23) can be rearranged as

q̈ + (g + k)q = u. (24)

If the magnitude of the stiffness k and the frequency of the
forcing periodic input ω satisfied the relationship

g + k = ω2, (25)

it would be possible to achieve the desired periodic move-
ment at the frequency of ω with minimum control effort
u by exploiting the resonance property of the oscillatory

dynamics. We suggest a generic method for stiffness opti-
mization by using an augmented system dynamics approach

as described next.
1) Proposed Formulation: Consider the plant and actuator

dynamics with variable stiffness mechanism characterized by
k:

ẋ = f(x,k,u). (26)

In the proposed formulation, we augment the plant dynamics,
state and commands as

ẋaug = faug(xaug,uaug) =

[

f(x,k,u)

k̇

]

(27)

where

xaug = [ x, k ]T , uaug = [ u, k̇ ]T . (28)

In order to specify an appropriate control cost, we define a

quadratic cost of the form vT
augRvaug where vaug is some



Algorithm 1 Temporal and stiffness optimization algorithm

1: Input:

• ẋaug = faug(xaug,uaug): augmented plant dynam-
ics (27) with augmented state and commands (28)
including stiffness parameter k

• ydemo(t): demonstrated trajectory
• J(xaug ,uaug;ω): cost function (7) with augmented

state and commands (28)

2: Extract initial ω from ydemo, fit demonstrated trajectory

ydemo using (2) and (3) to obtain θ in (4), and compute
y(t)

3: Compute xref in (6) from y and ẏ obtained above

4: Initialize uaug and k

5: repeat

6: Optimize uaug: use ILQG to obtain uaug(xaug , t) in
(10) with augmented state and commands by mini-
mizing J(uaug) with fixed ω.

7: Update ω: minimize J(ω) with uaug obtained above

• compute ∂J
∂ω
≈ ∆J

∆ω
with finite difference by

running the time-scaled control uaug using the

relationship (19)
• update ω by gradient descent ωnew = ω − α∆J

∆ω

8: Recompute xref : using updated ωnew above, recom-
pute reference trajectory xref using the output of (2)

and (3)
9: Redefine J: using updated ωnew above, redefine cost

J with new xref and T = ω
ωnew

10: until convergence
11: Output:

• uaug(xaug , t): augmented optimal feedback control
law (10)

• u(t) and k(t): optimal control law and time-varying
optimal stiffness profile extracted from uaug(t) and
xaug(t) as defined in (28)

• ω: optimal frequency as defined in (3)

function of xaug and uaug . As a special case of the above,
for the actuator model defined in (22), it is sufficient to use

uT
augRuaug as the running cost. One of the motivations of

this formulation is that when not using a penalization of
the command and stiffness norm in the cost function (e.g.,

as used in reaching), the solution of the optimal stiffness
is ill-posed. The augmented stiffness velocity term avoids
this problem while providing the added benefit of ensuring

a (realisable) smooth time-varying stiffness profile. Once we

obtain u and k̇, it is possible to use the method in [21]
to achieve the desired joint angles and stiffness profiles on

various practical variable stiffness actuators whose charac-
teristics are given in (21).

The complete temporal and stiffness optimization algo-

rithm is summarized in Algorithm 1.

III. EVALUATIONS

A. Single Pendulum

Under the influence of gravity, mechanical systems exhibit
oscillatory movement with a particular frequency depending

on the intrinsic dynamics of the system, e.g., a pendulum,
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Fig. 2. Results of temporal optimization in a pendulum. Comparison of the
joint trajectory q and control input u: initial, during and after optimization of
ω. As ω is updated (converging to near the natural frequency), the magnitude
of the required control command is progressively reduced.

or human and robot legs. Consider a single pendulum as an

example of an oscillatory system and a special case of (11):

ml2q̈ + dq̇ +mgl sin q = τ (29)

where q is the joint angle, m is the mass, l is the length,
d is the viscous friction coefficient and g = 9.80665 is the
gravitational constant. When the amplitude of the oscillation

is small, i.e., q ≪ 1, the natural frequency and the resonant
frequency of the linearized dynamics of (29) are given by
ω0 =

√

g
l

in the case of d = 0.

Fundamentally, if the frequency of the external input ω
matches the natural or resonant frequency ω0, it should be
possible to achieve the desired periodic movement while

requiring minimal control input.

To test the optimization capability of our method against
a benchmark, we consider a pendulum (29) with specific

parameters m = l = 1, which suggests a natural frequency
ω0 =

√
g ≃ 3.132 when q ≪ 1 in the absence of damping.

The plant dynamics in the form of (5) can be written as

ẋ = f(x, u) =

[

x2

−dx2 − g sinx1 + u

]

(30)

where x = [ x1, x2 ]T = [ q, q̇ ]T and u = τ . In the
following simulations, the damping coefficient d is chosen

as d = 0.01. In the following simulations, the initial control
sequence u(t) used in ILQG is chosen to be zero.

1) Temporal Optimization: Using the techniques proposed

in Section II-C, we consider the problem of optimizing
the temporal aspect of the desired movement for a fixed
set of parameters in the plant dynamics while ensuring the

movement characteristics (e.g., amplitude) is maintained. The
reference movement is given by the sinusoidal trajectory,
y(t) = 0.5 sin(ωt), with the frequency ω to be optimized

and the cost function is formulated as in (7) with xref =
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Fig. 3. Results of stiffness optimization: (a) reference trajectory and the joint trajectories. (b) optimized stiffness k and control u for the plant dynamics
(29). Comparison of the (c) control u (d) stiffness profiles for the plant dynamics (33) for time-varying and constant optimal stiffness profiles.

[ y, ẏ ]T . We choose Q = diag{1000, 1000} ∈ R
2×2,

R = 0.1 ∈ R, PT = 0 ∈ R
2×2 in (8) and (9), respectively.

ILQG and gradient descent with respect to ω are iteratively
computed in order to obtain the optimal control law u(x, t)
in (10) and β in (19) and in turn, optimal ω.

Fig. 2 shows the comparison of the behavior with the
initial ω = 1.0 (before optimization), during optimization
steps of ω at 5, 10, 20 and 40 iterations, and the opti-

mized ω = 3.083 (74 iterations). The results demonstrate
a significant reduction in cost (from J = 35.598 to J =
0.001787) as result of requiring much smaller commands

post optimization. The final optimized frequency ω = 3.083
showed a close match to the theoretically computed natural
frequency ω0 = 3.132. This suggests that the proposed tem-

poral optimization method is able to find an energy efficient
temporal scaling of the movement pattern by exploiting the
intrinsic dynamics of the plant. Notice that as demonstrated

in this example, slow movement does not necessarily imply
smaller control inputs.

2) Stiffness Optimization: Now consider the dynamics of
the same pendulum (29) when driven by a variable stiffness

actuator τ = −kq+ u as in (22). The equation of motion is

q̈ + dq̇ + g sin q = −kq + u. (31)

As discussed in Section II-D, in order to optimize the
stiffness k and obtain an optimal control law u for a given

periodic movement, the dynamics and control commands are
augmented as

ẋaug =





x2

−dx2 − g sinx1 + (−x3x1 + u1)
u2



 (32)

where xaug = [ x, k ]T , x = [ x1, x2 ]T = [ q, q̇ ]T

and uaug = [ u1, u2 ]T = [ u, k̇ ]T . The reference joint
trajectory is given by y(t) = 1.5 sin(ωt) with ω = 2π. The
weights of the cost function used are identical (see Section

III-A) except R = diag{0.1, 0.0001} ∈ R
2×2.

Fig. 3(b) shows the optimal control command u and the
time evolution of the optimized stiffness k. The stiffness is

initialized as k = 20 and it approximately approaches the
desirable value k = ω2 − g = 29.7. Good tracking of the
desired trajectory was achieved with visibly small error as

can be seen in Fig. 3(a). Further, the effectiveness of the
method is validated by comparing the total cost incurred with
optimized time varying stiffness (J = 0.8130) as compared

to the case with a constant stiffness of k = 20 (J = 83.348).

3) Time-varying Stiffness Optimization: In the above sec-
tion, although we allowed for time-varying stiffness, since

the system dynamics could be well characterized by its linear
approximation, optimal solutions reflected nearly constant
stiffness. However, in systems with strong non-linearities

such as

q̈ + dq̇ + g sin q + k̄q3 = τ. (33)

where k̄q3 denotes a nonlinear spring, the concept of a nat-
ural or resonant frequency is more complicated. We perform

an optimization using this modified plant with the same
reference trajectory. Fig. 3(c) and (d) compare the results
between time-varying optimal stiffness and constant optimal

stiffness. In this comparison, constant optimal stiffness is
obtained using a gradient descent update k ← k − α∇kJ
and ILQG is used to obtain the control command iteratively.

As shown in Fig.3(c), using time-varying optimal stiffness
achieves more energy efficient control (J = 0.4421) requir-
ing smaller control commands than using constant optimal

stiffness (J = 2.219).

B. Temporal Optimization in 2 DOF Underactuated System

In this section, we apply the presented framework to the
control of an underactuated system which has fewer actuators
than the number of degrees of freedom. As an example plant,

we consider a planar two-link robot arm under the influence
of gravity where only the second joint has a control input (see
Fig. 6 (left)), as seen in the Acrobot [23] and the brachiating

robot [24], [25]—with characteristics similar to a gymnast
on a high bar. The dynamics take a standard RBD form (11)
with q ∈ R

2 and τ ∈ R with no actuation on the first joint.

Control of underactuated systems with passive joints is a
challenging problem—this is because, while it is imperative
to exploit system dynamics for task achievement, the control

theory of such systems has not been well-established yet.

Specifically, we consider the tasks of (i) swing locomotion
from handhold to handhold on a ladder (ii) swinging-up from
the suspended posture by pumping up the energy in an appro-

priate manner to reach the target bar. The underactuation and
the precise spatiotemporal nature of this statically unstable

task—it is required to reach the target bar exactly at the
correct time to grasp it; if the robot misses the bar, the body
will swing backward due to the influence of gravity—makes

this a challenging problem.

Note that the task objective is slightly different from
the explicit trajectory tracking problems presented in the
previous sections. In this example, the main objective is

to show that it is possible to achieve highly dynamic and
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the optimized T as shown in the embedded plot with a magnified range.

challenging maneuvers which require explicit exploitation
of intrinsic dynamics of the system. We use the following
cost function in both the locomotion and swing-up tasks

considered here:

J = (y − y∗)TPT (y − y∗) +

∫ T

0

Ru2dt (34)

where y = [ r, ṙ ]T ∈ R
4 is the position and velocity of the

gripper in the Cartesian coordinates, y∗ denotes its desired
values when grasping, PT is a positive definite matrix, u
is the elbow joint torque u = τ and R is a positive scalar.

In the following tasks, we consider temporal optimization to
achieve energy efficient maneuvers to find the locally optimal
duration of the movement in addition to finding the optimal

control command u. We use the model of the robot (Fig. 6
(left)) with m1 = 1,m2 = 3, l1 = l2 = lc1 = lc2 = 1, I1 =
I2 = 0 and d1 = d2 = 0.05. In the following simulations,

the initial control sequence u(t) used in ILQG is chosen to
be zero.

1) Locomotion: Consider the task of moving from one
to the next handhold by swinging the arms (from the left
to right in Fig. 6). The distance between the handhold is

dist = 1.2 (m). We optimized the duration of the movement
T and obtained the optimal control command u. Fig. 4 (left)

depicts the optimized movement of the robot moving from
the left to the right to grasp the target bar. Fig. 4 (center,
right) overlays the joint trajectories and control commands

of the fixed time horizon T = 1.3 ∼ 1.55 (sec) at the interval
of 0.05 seconds and the optimized T = 1.421 (sec). With
the fixed time horizon, the cost ranged between J = 1.444
with T = 1.4 and J = 50.44 with T = 1.3 while the cost
after temporal optimization was J = 0.00670.

The joint trajectories of these movements look similar
while we see significant difference in the required control
commands within a narrow 0.25 sec difference in movement

duration. This highlights the sensitivity of such problems
and reinforces the benefits that automated optimization tech-
niques have over hand-tuned ones in fully exploiting the

passive dynamics.

2) Swing-up Task: The swing-up task considers the move-

ment from an initial suspended posture at rest with the aim to
catch the next bar. This task is characterized by the necessity
to move away from the desired goal in order to pump

energy into the system combined with precise spatiotemporal
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Fig. 5. Swing-up task: comparison of the joint angles (top) and elbow
torque (bottom) between non-optimized T = [3.0, ...,4.5] (sec) and
optimized T = 4.437 (sec).

control for grasping. Here, we added an additional term

to the cost that was linear in the movement duration T
as J ′ = J + wTT , where J is the original cost function

given in (34), and wT is a trade-off term that we choose
as wT = 10. Fig. 6 (right) illustrates the obtained swing-up
sequence of the robot followed by the locomotion behaviour.

Fig. 5 shows the joint trajectories and elbow torque with
fixed movement duration T = [3.0, 3.5, 4.0, 4.5, 5.0] (sec)
and with optimized movement duration T = 4.437 (sec).

Spatiotemporally optimized trajectories (lowest cost) were
obtained, suggesting the suitability of the framework in even
highly dynamic movements.

IV. CONCLUSION

In this paper, we present a systematic method for stiffness
and temporal optimization in periodic movements, with

an emphasis on exploiting the intrinsic dynamics of the
plant to realize efficient control. The proposed movement
representation allows modulation of amplitude, frequency

and offset of the movements while being particularly tuned
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Fig. 6. (Left) A model of a two-link underactuated robot where only the second joint has a torque input τ . (Right) Optimized swing-up and locomotion
movement of the robot. The robot swings up from the suspended posture using the swing-up controller and moves towards the right by switching into the
locomotion controller. In these maneuvers, the time-optimal control laws obtained in Sections III-B.1 and III-B.2 are used.

to the requirements of periodic or rhythmic movements.
We formulate the optimization problem in the framework
of optimal control and successively incorporate the ability

to optimize for the control commands, temporal aspect of
the movement as well as a time-varying stiffness profile.
Numerical simulations demonstrate the effectiveness of the

proposed approach in various tasks including stiffness and
temporal optimization of oscillatory movements with a single
pendulum, and locomotion and swing-up tasks of an under-

actuated brachiating 2 link robot. All the results highlight
the significant reduction in control command magnitude (and
costs) when using a spatiotemporally optimized actuation

profile, demonstrating the ability of the framework to exploit
the passive dynamics of the plant in a maximally beneficial
way. In our future work, we will address optimization of

periodic movements involving more complex trajectories,
coordination of multiple degrees of freedom and hardware

implementation on variable stiffness mechanisms in tasks
such as walking, hopping or throwing. We would also like to
explore the implication of the insights gained in this study

on human gait analysis.
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cation of poincaré-map-based reinforcement learning,” IEEE Robotics

and Automation Magazine, vol. 14, pp. 41–51, 2007.

[6] I. Manchester, U. Mettin, F. Iida, and R. Tedrake, “Stable dynamic

walking over uneven terrain,” Int. J. of Robotics Research, vol. 30,

pp. 265–279, 2011.

[7] J. Hench and A. Laub, “Numerical solution of the discrete-time

periodic riccati equation,” IEEE Trans. on Automatic Control, vol. 39,

pp. 1197–1210, 1994.

[8] A. Shiriaev, L. Freidovich, and I. Manchester, “Can we make a robot

ballerina perform a pirouette? orbital stabilization of periodic motions

of underactuated mechanical systems,” Annual Reviews in Control,

vol. 32, pp. 200–211, 2008.

[9] A. Ijspeert, “Central pattern generators for locomotion control in

animals and robots: A review,” Neural Networks, vol. 21, pp. 642–

653, 2008.

[10] A. Ijspeert, J. Nakanishi, and S. Schaal, “Learning attractor landscapes

for learning motor primitives,” in NIPS, 2003

[11] W. Li and E. Todorov, “Iterative linearization methods for approxi-

mately optimal control and estimation of non-linear stochastic system,”

Int. J. of Control, vol. 80, pp. 1439–1453, 2007.

[12] K. Rawlik, M. Toussaint, and S. Vijayakumar, “An approximate

inference approach to temporal optimization in optimal control,” in

NIPS, 2010

[13] Y. Ehara and S. Yamamoto, Introduction to Body-Dynamics—Analysis

of Gait and Gait Initiation. Ishiyaku Publishers, 2002, in Japanese.

[14] D. Bennett, J. Hollerbach, Y. Xu, and I. Hunter, “Time-varying

stiffness of human elbow joint during cyclic voluntary movement,”

Exp. Brain Res., vol. 88, pp. 433–442, 1992.

[15] M. Uemura and S. Kawamura, “Resonance-based motion control

method for multi-joint robot through combining stiffness adaptation

and iterative learning control,” in IEEE Int. Conf. on Rob. and Aut.,

2009
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