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Abstract—This paper explores a passive control strategy with during a hitting movement. In a similar problem, Hondo and
variable stiffness actuation for swing movements. We consider Mizuuchi [13] have discussed the issue of determining the
brachiation as an example of a highly dynamic task which re- ;nertia narameter and spring constant in the design of serie
quires exploitation of gravity in an efficient manner for successful . . . .
task execution. First, we present our passive control strateg elastic aCtuatorS_ to increase the peak velocity. In romm'“g’.
considering a pendulum with variable stiffness actuation. Then, Karssen and Wisse [16] have presented numerical studies to
we formulate the problem based an optimal control framework demonstrate that an optimized nonlinear leg stiffness lprofi
with temporal optimization in order to simultaneously find an  could improve robustness against disturbances.
appropriate stiffness profile and movement duration such that In this paper, we focus on the passive control strategy

the resultant movement will be able to exploit the passive with variable stiffness actuation for swing movements in a
dynamics of the robot. Finally, numerical evaluations on a two- 9

link brachiating robot with a variable stiffness actuator (vSA) ~ brachiation task. Indeed, the importance of exploitatibthe
model are provided to demonstrate the effectiveness of our intrinsic passive dynamics for efficient actuation and oaint

approach under different task requirements, modelling errors  has been discussed in the study of passive dynamic walking
and switching in the robot dynamics. In addition, we discuss the \here piped robots with no actuation or minimal actuation
;zfusigggsgt|dtzzf(“g)t('ggu't?0;eirrr]n (S)p?frrfgfcfﬂft’;gﬁ of cost function can exhibit human—like na@ur_al walking behavior [5]. Inghi _
study, we consider brachiation as an example of dynamic
I. INTRODUCTION task involving swing movement. Brachiation is an interegti
form of locomotion of an ape swinging from handhold to
In recent years, there has been growing effort in the dgandhold like a pendulum [[7, 29] which requires explicit
velopment of variable stiffness actuators. Various desigh exploitation of the passive dynamics with the help of gravit
actuators with mechanically adjustable stiffness/coamulé to achieve the task. From a control point of view, designing
composed of passive elastic elements such as springs havrachiating controller is a challenging problem since the
been proposed|[4, 6.111,/12/ 14, 15]. In contrast to conveatio system is underactuated, i.e., there is no actuation at the
stiff actuators, one of the motivations to develop variablgripper. Efforts have been made to develop a control law for a
stiffness actuators is that such actuators are expectedcffss of underactuated systems from a control theoretidlyie
have desirable properties such as compliant actuatiomgyenee.g” (18] 10[ 22 32].
storage capability with potential applications in humabet In our previous study! [23], we have proposed a method
interaction and improvements of task performance in dynanif describing the task using a dynamical system based on a
tasks. nonlinear control approach, and derived a nonlinear cbntro
This paper explores a control strategy for exploiting pessijaw for a joint torque controlled two-link brachiating rabo
dynamics in tasks involving swing movements with variablghe control strategy irl [23] uses an active cancellatiorhef t
stiffness actuation based on optimal control. Despiterg@e plant dynamics using input-output linearization to forte t
benefits of variable stiffness joints, finding an approgriakobot to mimic the specified pendulum-like motion described
control strategy to fully exploit the capabilities of vasle in terms of target dynamics. In contrast, Gomes and Riina [9]
stiffness actuators (VSAs) is challenging due to the irg#€a studied brachiation with zero-energy-cost motions usinly o
complexity of mechanical properties and the number of @ntrpassive dynamics of the body. They sought numerical saisitio
variables. Taking an optimal control approach, recentiefud for the initial conditions which lead to periodically comtious
in [3,18,110] have investigated the benefits of variable s |ocomotion without any joint torques. By extending the (ians
actuation such as energy storage in explosive movemenmts frpje) fixed point solutions in unactuated horizontal bratibia
a viewpoint of performance improvement. Braun et al. [3bund in [9], Rosa et al. [28] numerically studied open-loop
have demonstrated such benefits of VSAs by simultaneoustible (unactuated downhill and powered uphill) bracbiatf
optimizing time-varying torque and stiffness profiles o€ tha two-link model from a viewpoint of hybrid systems control
actuator in a ball throwing task. In![8,/10], an optimal coitr including switching and discontinuous transitions.
problem of maximizing link velocity with variable stiffnes
actuator models has been investigated. It is shown that mucHWuch of the related work has focused on the motion planningnolezac-

. . . tuated manipulators in a horizontal plane (not necessantieuthe influence
larger link velocity can be achieved than that of the MOLQY the gravity). In such a case, dynamic coupling of link ifeis exploited

in the VSA with the help of appropriate stiffness adjustmenmdther than the passive dynamics due to gravity.
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Motivated by the work in|[9], our goal in this study isthe tracking control of thgiven joint and stiffness trajectories,
to demonstrate that highly dynamic tasks such as brachiatiand the problem of generating such desired trajectories for
can be achieved by fully exploiting passive dynamics withiven specific task is not addressed.
simultaneous stiffness and temporal optimization. In our recent On the other hand, if we rearrange the linearized dynamics
work [24], effectiveness of temporal optimization and fstif of (1)) (sing ~ q) as
ness optimization in periodic movements has been discussed 2. _

However, temporal optimization and stiffness optimizatare Mg+ (mgl + k)g = v 2)
treated separately and a rather simplified, ideal actuatoiets Wherev = kg,,,, another view of the control problem could
were used in the evaluation. In this study, numerical evaluge that varying the stiffness of the actuatoin the second
tions of our approach on a two-link brachiating robot wittierm of the left hand side effectively changes the dynamics
a realistic MACCEPA (Mechanically Adjustable Compliancéroperty, e.g., the natural frequency of the pendulum. From
and Controllable Equilibrium Position Actuator) VSA modethis perspective, the control problem can be framed as find-
[11] (see motivation for this particular VSA in Sectibn B ing an appropriate (preferably small) stiffness profileto

are provided to show the effectiveness of our approach undeedulate the system dynamics (only when necessary) and
different task requirements, modelling errors and vasiaiof compute the virtual equilibrium trajectory,, [30] to fulfill

the robot dynamics. Furthermore, we also discuss the issugfe specified task requirement while maximally exploiting t
and effect of task encoding via an appropriate choice of th@tural dynamics.

cost function for successful task execution. In a realistic situation, it is not straightforward to conga
control command for the actuator to realize such an ideaalue t

Il. PASSIVE CONTROL STRATEGY IN SWING MOVEMENT  the complexity of the system dynamics, actuator mechanisms
WITH VARIABLE STIFFNESSACTUATION the requirement of coordination of multiple degrees of diea
Our goal in this paper is to devise a control strategy @nd redundancy in actuation. Next, we exploit the framework
achieve the desired swing maneuver in brachiation by etxplodf optimal control and spatiotemporal optimization of edlie
ing natural dynamics of the system. To begin with, we discustffness actuation to find appropriate control commands to
our approaches of implementing a passive control strategmwplement the brachiation task.
considering a pendul_um with variable stiffness actuation. Ill. PROBLEM FORMULATION
A natural and desirable strategy would be to make good ,
use of gravity by making the joints passive and compliant. F6- Robot Dynamics
example, in walking, unlike many high gain position conedl The equation of motion of the two-link brachiating robot
biped robots with stiff joints, humans seem to let the lowethown in Fig[l takes the standard form of rigid body dynamics
leg swing freely by relaxing the muscles controlling the &newhere only the second joint has actuation:

joint during the swing phase and increase stiffness onlynwhe ) o ) 0

necessary. In fact, stiffness modulation is observed duan M(q)4 + C(q,9)a + g(a) + Dg = { - } 3)

walking cycle in a cat locomotion stufiy]. - o _
Consider the dynamics of a simplified single-link pendulut¥herea = [ ¢, ¢z |7 is the joint angle vectorM is the

under the influence of gravity. If we consider an idealizelf€rtia matrix,C is the Coriolis termg is the gravity vector,
VSA model of the formr = —k(g — g.,), whereq is the joint D IS the viscous damping matrix, andis the joint torque
angle, 7 is the joint torquej is the stiffness and,, is the @acting on the second joint.

equilibrium position of the elastic actuator, then the dyied B, \Ariable Siffness Actuation

can be written as: We consider a MACCEPA model [11] as our VSA imple-
mi?§+mglsing =7 = —k(q — qm) (1) mentation of choice. MACCEPA is one of the designs of
mechanically adjustable compliant actuators with a passiv
wherem is the mass] is the length ang is the gravitational ejastic element (see Fifjl 1). This actuator design has the de
constant. In this idealized VSA model, we assume thand  sjrable characteristics that the joint can be very comptam
qm are the control variables. From a viewpoint of positiofhechanically passive/back-drivable: this allows freergirig
control, one way of looking at this system is as a manipulat@jith a large range of movement by relaxing the spring, highly
with a flexible (elastic) joint, where we solve a tracking Boh  gjitable for the brachiation task we consider. MACCEPA is
problem [31]. Recently, Palli et al. [25], proposed a tragki equipped with two position controlled servo motogs,; and
variable stiffness actuation to achieve asymptotic tegKD the spring pre-tension, respectively. The parameters ef th
the desired joint and stiffness trajectories based on inpypot we use in this study (Fi§l 1(c)) are based on a 2-link

output linearization, effectively an active cancellatiohthe \accEPA joint (Fig.[A(b)) constructed in our lab [3].
intrinsic robot dynamics. Note that the main focus lofi [25] is The joint torque for this actuator model is given by

2To our knowledge, there are a large number of studies of btrefitexes . Tdqm2 — (C — B)
modulation in human walking, however, something that spedifiealdresses 7 =K Sln(le —q)BC {1+ 5 5

stiffness modulation is very limited. In human arm cyclic movem&ennett \/B + C?—2BC cos (¢m1—q)
et al. [2] reported time-varying stiffness modulation in thieogv joint. 4



Robot parameters i=1 i=2

Mass m; (kg) 042 0.23
Moment of inertia | Z; (kgm?) | 0.0022 | 0.0017

Link length l; (m) 0.25 0.25
COM location l.; (m) 0.135 | 0.0983

Viscous friction | d; Nm/s) | 0.01 0.01

MACCEPA parameters value
Spring constant r (N/m) 771
Lever length B (m) 0.03
Pin displacement C (m) 0.0125
MACCEPA model Drum radius rq (M) 0.01
(a) Brachiating robot model with VSA (b) 2-link MACCEPA joint (c) Model parameters
Fig. 1. Model of a two-link brachiating robot with a MACCEPAable stiffness actuator.
and the joint stiffness can be computed as where
0 in?(a)B2C? X2
k:——T:/{cos(a)BC' <1+B>—W (5) M~ (x1) (- C( s — )~ Do+ 0
dq Y Y f= (x1 X1, X2)X2 —g(X1 X2 7(x1,X3)
where x is the spring constantr; is the drum radius, 5 X4 9
—a“x3 — 2ax4 + a“u
O = Gui — ¢ B = raqma — (C - B) and v = (10)
tﬁﬁﬁ.?j”?ﬁf"s <q5n1|*q) (Sete F'g-%(a) .agf' ©for x = [x1, %2, x3, x4 " =[ @ & G, G |” € RS,
e definition of the model parameters and varia es). a=1aq, &7 dm = | w1, qme |7 andu = [u1, us 7.
The spring tension is given by Note thata in (I0) denotesa = diag{a;} anda? is defined
F = w(l— 1) ©6) asa? = diag{a?} for notational convenience.
wherel = \/BZ+ C% — 2BC cos(qmi — ) + radms is the D. Optimal Feedback Control with Temporal Optimization
current spring length any = C — B is the spring length at  For plant dynamics
rest. The joint torque equatiofl (4) also can be rearranged in )
terms of the moment arm and the spring tension as x=f(x,u), (11)
BC'sin(gm1 — q) @) the objective of optimal control [33] is to find a control law
=— F.
v u* = u(x,t) (12)

Note that MACCEPA has a relatively simple configuration in hich minimi th ¢ functi
terms of actuator design compared to other VSAs, howewer, ghich minimizes the cost function
torque and stiffness relationships [d (4) ahHl (5) are depeind T
on the current joint angle and two servo motor angles in a J = 2(x(T)) +/0 h(x(t), u(t))dt (13)
complicated manner and its control is not straightforward. ) ) )

In addition, we include realistic position controlled servOr @ given movement duratiofl’, where ®(x(T)) is the

motor dynamics, approximated by a second order system wifiminal cost and(x(t), u(t)) is the running cost. We employ
a PD feedback control the iterative linear quadratic Gaussian (ILQG) algorithk#][

to obtain a locally optimal feedback control law
o . 2 .
o 20 il =) =0 (1212 @ uct) = )+ L) (<) - xT0) . (1)
whereu; is the motor position command, determines the
bandwidth of the actuator and the range of the servo mot
are limited asqmi,min S qmi S qmi,maz and Ui, min § Uy S
Ui maz [3]- IN this study, we use; = 50.

dt;gaddition to obtaining an optimal control law, we simukan
ously optimize the movement duratidh using the temporal
optimization algorithm proposed in_[27]. In_[27], a mapping
B(t) from the real timet to a canonical time’
C. Augmented Plant Dynamics tq
t = / ——ds,
o B(s)

The plant dynamics composed of the robot dynamids (3) (15)

and the servo motor dynamidg (8) can now be formulated as ) o ) )
is introduced andg(t) is optimized to yield the optimal

x = f(x,u) (9) movement duratioff’. In this study, we simplify the temporal



optimization algorithm by discretizin§ (IL5) with an assuiop ‘ _ robot mavement with spring tension cost

that 8(t) is constant during the movement as ol . o Targ;t |
1 ! i R /:
At = —At. (16) 01t A 77/ : ]
5 : ( ;
By updatings using gradient descent -0.2f
ﬂnew = B - TIVﬁJ (17) -0.3p
wheren > 0 is a learning rate, we obtain the movement dura- —04
tion 7" = %T whereT = NAt (N is the number of discrete
time steps). In the complete optimization procedure, ILQ@ a -0.5¢
the update ofs in (I7) are iterated in an EM (Expectation- :

I I I I I I I I
-04 -03 -02 -01 0 0.1 0.2 0.3 0.4

Maximization)—like manner until convergence to obtain the (a) Movement of the robot with optimized durati@h= 0.607 (sec)

final optimal feedback control law (IL4) and the associatt joint angles

movement duratiorf™*. Depending on the task objective, il’g Al ‘ e

is further possible to augment the cost by including the tin’y x—‘}__

explicitly as 2 —aq,
J' =J+wrT (18) g ppmmessm --.q,

where J is the cost[(I8) andv; is the weight on the time 0 01 02 03 0.4 05 0.6 0.7

cost, which determines trade-off between the original cbst servo motor positions

and movement duratiof. ‘ ‘
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A. Optimization Results in Brachiation Task of ---0.,
In this paper, we consider the task of swing locomotion fror o0 01 02 013, 04 05 0.6 07

handhold to handhold on a ladder. and swinging-up from tie (b) Joint trajectories and servo motor positions
suspended posture to catch the target bar. Motivated by joint torque
discussions on our passive control strategy in Sedfion &, \ 3 1L ‘ ‘ .
consider the following cost function to encode the task (tt 3 ,
specific reason will be explained below) s nearly 2870 joint torqU6

T :g. 0 011 012 013 014 0.5 0.6 0.7
J:(y(T) _y*)TQT(y(T) _y*)+/ (uTR1u+ R2F2) dt §40 s?ring tensio‘n

0 (19) '§ nearly zero spring tension —F
wherey = [ r, 7 |7 € R* are the position and the velocity *3207 /A/-\*
of the gripper in the Cartesian coordinatgs, is the target £ Vs o1 02 o3 oa . o6 or
values when reaching the target = [ r*, 0 ] and F is "’,6 joint stifiness
the spring tension in the VSA given ifl(6). This objective 22 ‘ T ‘ —
function is designed in order to reach the target located at Z 1f }r'y zero foint St'ﬁ”ess\
at the specified tim& while minimizing the spring tensiof’ % o:—\/\f_\’—-
in the VSA. Note that the main component in the running co £ o o1 02 03 0z 05 06 0.7
is to minimize the spring tensioR by the second term while time (sec)
the first termu” R, u is added for regularization with a small (c) Joint torque, spring tension and joint stiffness

choice of the weights ilR;. In practice, this is necessary sincéig. 2. Optimization of the locomotion task using the cgst (18)(b) and
F is a function of the state and ILQG requires a control co: gray thin lines show the plots for non-optimiz&din the range ofl" =

T . - .5,+-+,0.7] (sec) and blue thick lines show the plots for optimiZEBd=

in its formulation to compute the optimal control law. 0.606. Note that especially at the beginning and the end of the maveme
Notice that the actuator torqul (7) can be expressed in fhigt torque, spring tension and joint stiffness are keptlsaiwing the joint

form to swing passively.

— o / . . . . .
7= —Fsin(q = gm1)/7 (20)  Another interpretation can be considered in such a way that i

where 7' = /B? + C% — 2BC cos (¢m1 — q)/BC. In this We linearize[(#) around the equilibrium position assumimaf t
equation[(2D), it can be conceived thathas a similar role to @ = ¢m1 — ¢ < 1, the relationship between the joint stiffness

the stiffness parametdr as in the simplified actuator model % in () and the spring tensiof in (6) can be approximated
as
7= —k(q — gm). (21) k ~ 1 r (22)
VB2 +C?-2BC
3A video clip of summarizing the results is available at

http://goo. gl /i YrFr Thus, effectively, minimizing the spring tensidghcorresponds




servo motor positions and commands robot movement with model mismatch
T T T

() Target

N\ ~with optimal feedback

\
\
Fig. 3. Servo motor commands (dotted line) and actual anglg,,; (solid :
line) for the results with optimal movement durati@gh= 0.606 (cf. Fig.[d o5} DAL b with optimal feedback |
(b) bottom). Servo motor response delay can be observed tharad by feedlomward only |
the servo motor dynamicEl(8). The proposed optimal control freoriefinds
appropriate control commands taking this effect into account Fig. 4. Effect of optimal feedback under the presence of paermeismatch
between the nominal model used to compute optimal control anédheal

L . . . robot. Solid line: the movement with the optimal feedback aanfRed line:

to minimizing the stiffness: in an approximated way. Note the movement with only feedforward command. The result demdastthe

that it is possible to directly us& in the cost function. effectiveness of optimaieedback control under model uncertainty.
However, in practice, first and second derivativeskofire
needed to implement the ILQG algorithm which becom8. Effect of Optimal Feedback under Modelling Error
significantly more complex than those &f since the joint  One of the benefits of using the optinfatdback control
stiffnessk is already the first derivative of as described ”[[5) framework is that in addition to Computing the Opt|ma| famdf
Thus, it is preferable to use the spring tensinThis close ward control command, it provides a locally optimal feedbac
relationship betweer” and & in the general nonlinear casecontrol in the neighborhood of the optimal trajectory, whic
can be observed in the plots, for example, in Eig. 2 (middigiows the controller to make corrections if there is small
and bottom in (c)). In fact, the appropriate choice of thet cogeviation from the nominal optimal trajectory. In this sent
function is critical for successful task execution. We disx we present numerical studies of the effect of 0pt|ma| feehba
the issue of task encoding via cost selection in Se¢fionlIV-gyntrol [I3) under the influence of model mismatch between
in more details. the nominal model and actual robot parameters. We introduce

1) Swing Locomotion: Consider the case where that targes modelling error asn; pominas = 1.05m; (link mass) and
bar is located atl = 0.3 (m). We optimize both the control . ; nominar = 1.1l.; (location of center of mass on the link)
commandu and the movement duratioli. We useQr = fori=1,2.
diag{10000, 10000, 10, 10}, Ry = diag{0.0001,0.0001} and Fig.[4 shows the comparison between the movement using
Ry = 0.1 for the cost function in[{19). As mentioned abovethe optimal feedback control lav_{{14) obtained in the sim-
R; is chosen to be a small value for regularization neededhtion in Sectionl TV-Al above and with only feedforward
for ILQG implementation. The optimized movement duratiofopen loop) optimal control commang = u°?*(¢) under the
wasT = 0.606 (sec). presence of modelling error. Using only feedforward cdntro

Fig.[2 shows (a) the optimized robot movement, (b) joirthe robot deviates from the target bar due to the model
trajectories and servo motor positions, and (c) joint tegqumismatch. However, with the optimal feedback control law,
spring tension and joint stiffness. In the plots, trajeie®r the robot is able to get closer towards the target with thp hel
of the fixed time horizon ranging” = 0.5 ~ 0.7 (sec) are of the feedback term. These results suggest the effectigesfe
also overlayed for comparison in addition to the case of titlee optimal feedback control. In future work, we are intezds
optimal movement duratio = 0.606 (sec). In the optimized in on-line learning of the plant dynamics to address theeissu
movement, the spring tension and the joint stiffness are ke model uncertainty [20, 21].
small at the beginning and end of the movement resultin o )
in nearly zero joint torque, which allows the joint to swind>- Switching Dynamics and Tasks Parameters
passively. The joint torque is exerted only during the meddl |n this section, we explore different task requirementswit
of the swing by increasing the spring tension as necessaitching dynamics. In the following simulation, we use the
This result suggests that the natural plant dynamics atg fulobot model with the link length ag; = 0.2 (m) and
exploited for the desirable task execution based on tth(ﬂJIOI’]'[l2 = 0.35 (m) introducing asymmetric configuration in the
strategy discussed in Sectioh Il with simultaneous stifén@nd robot structure. We consider the task of first swinging upnfro
temporal optimization. the suspended posture to the targetdat 0.45 (m), then

In order to illustrate the effect of the servo motor dynamicsubsequently continuing to locomote twice to the targes bar
characterized by (8), Fig.] 3 shows the servo motor positi@t d = 0.4 (m) andd = 0.42 (m) (irregular intervals). Note
commands and actual motor angles with the optimal movemehét every time the robot grasps the target and starts smgngi
duration (cf. Fig.[2 (b) bottom). Delays in the servo motofor the next target, the robot configuration is interchanged
response can be observed in this plot. This suggests théiich significantly changes the dynamic properties for each
the proposed optimal control framework can find appropriagsving movement due to asymmetric structure of the robot.
control commands taking this effect into account. Thus, the stiffness and movement duration need to be adjuste

angle (rad)
o

feedforward only

' L}
H TN
' L
: /r : .
s — 0y (position)
-1k : : —0 (position) | -0.2r
- _u1 (command)
2 4
EN A (command) —03F
2 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6
time (sec)

I I I
-0.4 -0.2 0 0.2 0.4



swing up and locomotion with asymmetric robot configuration

optimized movement time for the swing locomotion 2) and 3)
or (more than 25%). In 2), the lower link is heavier and in 3) the
oal top link is heavier due to the mass of the VSA model. Thus,
' the effective natural frequency of the pendulum movement
o4l is different, which resulted in different movement duratio
The results highlight that our approach can find appropriate
o6k ‘ i T:O L | f | movement dyration and'command sequence to achievg the
04[02 0 02 o406 08 1| 12 14 tas.k under different requirement and condltlor]s (locoomti
1) swing up 2) 1st locomation with 3) 2nd locomotion swing-up, robot dynamics change and target distance change
T=0~2.071 in;gggf;qg;dsi%”fg%agion T=2‘§469:]3‘460 In this example, each maneuver is optimized separately- Opt
' 49 07789) ©ets) mization over multiple swing movements including trarsis
(a) Sequence of the movement of the robot . .
1) swing up jointangles ) 1stlocomotion ) 2nd locomolion will be of our future interest.
g 2 27T r Ve - D. Design and Selection of a Cost Function
a o d ] 2 ~\ ./f’_/q In optimal control, generally, a task is encoded in terms of
E o s A S, a cost function, which can be viewed as an abstract repre-
0 05 1 15 2 25 3 sentation of the task. From our point of view and experience,
s design and selection of the cost function is one of the most
2) fstlocomotion  3) 2nd locomoion important and difficult parts for a successful applicatidn o
g = such an optimal control framework. For a simple task and
8 =T N A~ o] plant dynamics, an intuitive choice (typically a quadratist
- == in the state and control as in an LQR setting) would suffice
0 05 1 ey 25 3 (still_ it is necessary to a_djust the weights). How<_aver, fpr
(b) Joint trajectories and servo motor positions a hlghly dynamic task _W,Ith complex plant dY”am'Csa this
- joint torque increasingly becomes difficult and an appropriate choice of
2 — the cost function which best encodes the task still remains a
e n—"————"—~ """ openissue.
£ “01)Swingupos - — - plalnten %210 coonerir In this section, we explore a few more candidates of the
‘ spring tension ' cost functions. In addition to the cost functidn(19), coesi
Zz —F the following running cost functions = h(x,u) in (I3):
1

o o

spring tension (N)

/\A/\/\- /\_[\/\/\/ « quadratic cost with the control command (servo motor
0.5 1 1.5 2

\L £ position command):

o

joint stiffness

N

h=uTRu (23)
AT AVVAV A AN AVATAVAV' AN « quadratic cost with the joint torque. The main term is

— 1 — S — - the cost associated with the joint torqueand u” R u
’ “time (sec) ' is added for regularization (smaR,):
(c) Joint torque, spring tension and joint stiffness

Fig. 5. Simulation results of the sequence of movements. Natetile robot

configuration is asymmetric with the link length = 0.2 (m) andlz = 0.35 Figure[® shows the results using the running chst
(m) . When the robot swings after grasping the bar, the robofigumation

is interchanged, which significantly changes the dynamicatiteristics. u’Ru in 3 W!th R = diag{l, 1}' The_ obtained optimal
movement duration i§" = 0.604 (sec). Figurd17 shows the
_ i ] _ results using the running cost= u” R,u+ Ry7? in (24) with
appropriately to fulfill the desired task requirement. Thstc g = _ diag{0.0001,0.0001} and R, = 100. The obtained
function [I9) with the same parameters are used as in Hgimal movement duration i§ = 0.620 (sec). In both of
previous simulations. For the swing-up task, we add the tifigese two cases, the same terminal cost parameters are used
costwrT with wy = 5 (see [(IB)), i.e., the task requiremengg in the case of (19).
in swing-up is try to swing up quickly while minimizing the  aAs demonstrated in FigE] 6 aftl 7, the robot is also success-
control cost. fully able to reach the target bar by minimizing each specific
Fig. [ shows (a) the sequence of the optimized robobstin addition to the case of the cdstl(19) presented in@ect
movement, (b) joint trajectories and servo motor positionBZA]above. However, with the choice of the running cost
and (c) joint torque, spring tension and joint stiffnesse - (23), significant difference in the resultant robot movetraerd
tained optimal movement duration was The obtained optimauch higher spring tension and joint stiffness can be oleserv
movement duration was 1) = 2.071 (sec) for swing up, 2) in Fig.[@. As can be seen in Figl 7, with the choice of cost
T = 0.778 (sec) for the locomotion with interchanged (upsidassociated with the joint torque in{24), the resultant momet
down) robot model and 3J = 0.611 (sec) for the last swing looks almost identical to the one with the cdstl(19) (seelB)g.
movement, respectively. Notice the significant differeincthe and the joint torque profile is comparable. However, we can

=)

stiffness (Nm/rad)

o

h=u"Riu+ Ry7? (24)
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Fig. 6. Optimization of the locomotion task using the runningté = u” Rju in Z3) with R; = diag{1, 1}. Left: Movement of the robot with optimized
durationT = 0.604 (sec) Center: Joint angles and servo motor angles. Righit thmique, spring tension and joint stiffness. Note thatlevkie task itself

is achieved, the movement looks very different from the oneign[® and much higher spring tension and joint stiffness duthe swing movement can be
observed.
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observe that spring tension and joint stiffness are largan t mechanisms. This is in contrast to joint actuation with gdar
those of the cos{(19). This is due to the redundancy in tleéectric motors in many of existing robotic systems. Tyfyjca
variable stiffness actuation and the results depend on hew jeints with geared motors with high gear ratio aimed for po-
resolve it by an appropriate choice of the cost function.sehesition control cannot be fully back-drivable, i.e., joirdannot
results suggest that the choice of the cost function is atucibe made passive to exploit natural dynamics of the link. For
however, its selection is still non-intuitive. example, the brachiating robot in [23] uses a DC motor with
Note that other consideration of cost functions could ke harmonic drive gear and exhibited complex and relatively
possible, e.g., energy consumption. In the brachiatioR, taigh friction. Thus, in this design, it is not possible to Bip
without friction, the mechanical energy of the rigid body the passive dynamics of the second link since the motor is not
dynamics, £ = fOT T¢2 dt, is conserved for the swing fully back-drivable by gravity, and it is necessary to agly
locomotion with the same intervals at the same height startidrive the joint to achieve the swing movement. To make the
and ending at zero velocity (if no potential energy is storgdint fully back-drivable without passive components, waym
in the spring of the VSA at the end of the swing). Thus, ifieed to use high performance direct drive motors which would
we wish to consider true energy consumption, it would Hgpically require precise torque control mechanisms.
necessary to evaluate tletectrical energy consumed at the From the viewpoint of a different controller design ap-
motor level. However, this is not straightforward since wgroach, the target dynamics methad![23] uses input-output
need a precise model of the mechanical and electrical moliwearization to actively cancel the plant dynamics. Whike i
dynamics including all the factors such as motor efficienuy a effectiveness has been demonstrated in the torque cautroll
transmission loss, which could be rather complex to model iabot hardware, it is not straightforward to apply this noeth
practice, and the control strategy would largely depencdhen tto the control of robot with general variable stiffness neech
properties of the actual motors used. nisms since the system dynamics are not easily input-output
linearizable due to redundancy and complex nonlinearity in
actuator dynamics. Furthermore, it turned out that for the
parameter setting used in Section 1V-C, the target dynamics
In this paper, we explore variable stiffness actuation wontroller becomes singular at some joint anglewithin the
exploit passive dynamics in swing movement. One of thange of the movement even for the torque controlled case.
desirable properties of the variable stiffness actuatiom WVith the link mass parameters used in this paper, we did not
consider is that the joint can be fully mechanically passiiend problems with the same link length = I5, however,
by appropriately adjusting the spring tension in the actuattypically, we numerically found that whed, > [, the

E. Remarks on other Joint Actuation and Controller Design
Approaches



target dynamics method encounters an ill-posedness pnoblg0] S. Haddadin, M. Weis, S. Wolf, and A. Albu-Sater. Optimal
of invertibility in the derivation of the control law (cf. Emtion

(15) in [23)).

V. CONCLUSION

In this paper, we have presented an optimal control frame-

work for exploiting passive dynamics of the system for swin
movements. As an example, we considered brachiation on g

two-link underactuated robot with a variable stiffnessiation

mechanism, which is a highly dynamic and challenging task.
Numerical simulations illustrated that our framework wagea [14] J. W. Hurst, J. E. Chestnutt, and A. A. Rizzi. The actuator
to simultaneously optimize the time-varying joint stifise

profile and the movement duration exploiting the passi\{§5]

control for maximizing link velocity of robotic variable stiffness
joints. In IFAC World Congress, 2011.

[11] R. Van Ham,et al. MACCEPA, the mechanically adjustable

compliance and controllable equilibrium position actuator: De-
sign and implementation in a biped robdRob. and Aut. Sys.,
55(10):761-768, 2007.

2] R. Van Ham.et al. Compliant actuator design$EEE Robotics

and Automation Mag., 16(3):81-94, 2009.

T. Hondo and |. Mizuuchi. Analysis of the 1-joint spring-
motor coupling system and optimization criteria focusing on
the velocity increasing effect. IlEEE ICRA, 2011.

with mechanically adjustable series compliand&EE Trans.
on Robotics, 26(4):597-606, 2010.
A. Jafari, N. G. Tsagarakis, B. Vanderborght, and D. G. Cald-

dynamics of the system. These results demonstrate that our well. A novel actuator with adjustable stiffness (AWAS). In
approach can deal with different task requirements (locomo

tion in different intervals, swing-up), modelling errormca [16] J. G. D. Karssen and M. Wisse.

switching in the robot dynamics. In addition, we empirigall

explored the issue of the design and selection of an ap|attepri[17]

cost function for successful task execution.
The approach presented in this paper to exploit the passive stochastic systemint. J. of Control, 80(9):1439-1453, 2007.
dynamics with VSA contrasts to the nonlinear controlldi8] A. De Luca and G. Oriolo. Trajectory planning and control
design with active cancellation of the plant dynamics using
input-output linearization for the same task|[23]. Howevey g
we feel that it shares an important issue of task encoding
(or description) either in the form of target dynamics or in
terms of a cost function based on physical understanding dA@l
insight into the task. We aim to extend our approach to irelud

variable damping [26] for dynamic tasks involving intefans

[21]

with environments.
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