Optimal Control of Multi-phase Movements
with Learned Dynamics
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Abstract In this paper, we extend our work on movement optimisation for variable
stiffness actuation (VSA) with multiple phases and switching dynamics to incor-
porate scenarios with incomplete, complex or hard to model robot dynamics. By
incorporating a locally weighted nonparametric learning method to model the dis-
crepancies in the system dynamics, we formulate an online adaptation scheme capa-
ble of systematically improving the multi-phase plans (stiffness modulation and
torques) and switching instances while improving the dynamics model on the fly.
This is demonstrated on a realistic model of a VSA brachiating system with excellent
adaptation results.

Keywords Optimal control - Variable stiffness actuators :+ Adaptive dynamics
learning - Adaptive control

1 Introduction

The accuracy of model-based control is significantly dependent on that of the models
themselves. Traditional robotics employs models obtained from mechanical engi-
neering insights. Kinematic equations will provide accurate information about the
evolution of a rigid body configuration, given a precise knowledge of its geome-
try. Similarly, the dynamics equation can incorporate well modelled factors such as
inertia, Coriolis and centrifugal effect or external forces.

However, there are certain elements that cannot be fully captured by these models,
such as friction from the joints or resulting from cable movement [22], which can vary
in time. The introduction of flexible elements in the structure of a system increases
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the complexity of the model and makes the identification of accurate dynamics sig-
nificantly more difficult. Additionally, during operation, the robot can suffer changes
in its mechanical structure due to wear and tear or due to the use of a tool (which
modifies the mechanical chain structure) [23].

On-line adaptation of models can provide a solution for capturing all these prop-
erties. Early approaches, such as on-line parameter identification [21], which tunes
the parameters of a predefined model (dictated by the mechanical structure) using
data collected during operation, proved sufficient for accurate control and remained
a popular approach for a long time [1, 7]. The increased complexity of latest robotic
systems demands novel approaches capable of accommodating significant non-linear
and unmodelled robot dynamics. Successful non-parametric model learning meth-
ods use supervised learning to perform system identification with only limited prior
information about its structure—removing the restriction to a fixed model structure,
allowing the model complexity to adapt in a data driven manner.

In this work, we will build on our significant prior efforts to engage this techniques
in the context of robot control [11, 13, 17] and apply this in the context of multiphase
variable impedance movements. Indeed, adaptive model learning has been used suc-
cessfully in a wide range of scenarios such as inverse dynamics control [18, 26],
inverse kinematics [5, 24], robot manipulation and locomotion [6, 20].

1.1 Adaptive Learning for Optimal Control

Classical OC (Optimal Control) is formulated using an analytic dynamics model, but
recent work [2, 10] has shown that combining OC with dynamics learning can pro-
duce a powerful and principled control strategy for complex systems with redundant
actuation.

In [10], using online (non-parametric) supervised learning methods, an adaptive
internal model of the system dynamics is learned. The model is afterwards used to
derive an optimal control law. This approach, named iterative Linear Quadratic-
Gaussian (iLQG) method with learned dynamics (iLQG-LD), proved efficient in a
variety of realistic scenarios, including problems where the analytic dynamics model
is difficult to estimate accurately or subject to changes and the system is affected by
noise [10, 12].

IniLQG-LD the update of the dynamics model takes place on a trial-by-trial basis
[12]. The operating principle (depicted in Fig. 1) is to (i) compute the iLQG solution,
(ii) run the obtained control law on the plant and collect data, (iii) use the plant data
to update the dynamics model.

The initial state and the cost function (which includes the desired final state)
are provided to the iLQG planner, alongside a preliminary model of the dynam-
ics. An initial (locally optimal) command sequence u is generated, together with
the corresponding state sequence X and feedback correction gains L. Applying the
feedback controller scheme, at each time step the control command is corrected by
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Fig.1 The iLQG-LD learning and control scheme as first introduced in [12]

du = L(x — X), where x is the true state of the plant. The model of the dynam-
ics is updated using the information provided by the applied command u + du and
observed state X.

This methodology employs the Locally Weighted Projection Regression (LWPR)
[8] as the nonparametric learning scheme of choice to train a model of the dynam-
ics in an incremental fashion. In LWPR, the regression function is constructed by
combining local linear models. During training the parameters of the local models
(locality and fit) are updated using incremental partial least squares (PLS). PLS
projects the input on to a small number of directions in the input space along the
directions of maximal correlation with the output and then performs linear regres-
sion on the projected inputs. This makes LWPR suitable for high dimensional input
spaces. Local models can be pruned or added on an as-need basis (e.g., when training
data is generated in previously unexplored regions). The areas of validity (receptive
fields) of each local model are modelled by Gaussian kernels. LWPR keeps a number
of variables that hold sufficient statistics for the algorithm to perform the required
calculations incrementally.

We incorporate the iLQG-LD scheme into our approach involving learning the
dynamics of a brachiation system with VSA (variable stiffness actuator) capabilities
and employing it in planning for locomotion tasks.

2 Problem Formulation

In our previous work [14], we introduced a general formulation of optimal control
problems for tasks with multiple phase movements including switching dynamics
and discrete state transition arising from iterations with an environment. Given a
rigid body dynamics formulation of a robot with a VSA model, a hybrid dynamics
representation with a composite cost function is introduced to describe such a task.
In this section we briefly describe this approach, for details we refer the interested
reader to [ 14]. We also introduce the changes dictated by the use of the LWPR method
in the context of iLQG-LD, for integration within our approach.
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2.1 Hybrid Dynamics with Time-Based Switching
and Discrete State Transition

We employ the following hybrid dynamics representation to model multi-phase
movements having interactions with an environment [4]:

X = fi_/ (x,w), Tj <tr< Tj+1 (1)

X(T}H) = A5 (x(T))) @)

with j =0,..., K for(l)and j =1, ..., K for (2) and where f; : R” x R"” — R”
is the ith subsystem, x € R” is a state vector, u € R is a control input vector.

When the dynamics switch from subsystem i;_; to i; at t = T}, we assume
that instantaneous discrete (discontinuous) state transition is introduced, which is
denoted by a map Al in (2). The terms X(Tj+) and X(Tj_) denote the post- and
pre-transition states, respectively. In this case, the sequence of switching is assumed
tobe given,e.g.,(1,2,..., K, K+1)or (1,2, 1,2, ...). Figure2 depicts a schematic
diagram of a hybrid system we consider in this work.

2.2 Robot Dynamics with Variable Stiffness Actuation

To describe multi-phase movements, we consider multiple sets of robot dynamics,
as described by (1). An individual rigid body dynamics model is defined for each
associated phase of the movement as a subsystem. The servo motor dynamics in the
VSA are modelled as a critically damped second order dynamics:

M;(@)q + Ci(q, )q + g (@) +D;q = 7i(q, qn) 3)

G + 20 G + gy = alu (4)
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-
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Fig. 2 A hybrid system with time-based switching dynamics and discrete state transition with a
known sequence. The objective is to find an optimal control command u, switching instances 7;
and final time 7y which minimises the composite cost J
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where i denotes the ith subsystem, q € R” is the joint angle vector, q,, € R™ is
the motor position vector of the VSA, M € R"*" is the inertia matrix, C € R" is
the Coriolis term, g € R” is the gravity vector, D € R™*" is the viscous damping
matrix, and 7 € R” are the joint torques from the variable stiffness mechanism. In
the equations above, (3) denotes the rigid body dynamics of the robot and (4) denotes
the servo motor dynamics in the variable stiffness actuator. In (4), o determines the
bandwidth of the servo motors! and u is the motor position command [3]. We assume
that the range of control command u is limited between w,,;;, and W;y.

In this work, we consider a VSA model in which the joint torques are given in the
form

7(q, qn) = AT (q, 4n)F(Q, ) (5)
where A is the moment arm matrix and F is the forces by the elastic elements [3]
and the joint stiffness is defined as K = —g—g.

We consider the state space representation as the combined plant dynamics con-
sisting of the rigid body dynamics (3) and the servo motor dynamics (4):

= fi(x,0) (©)
where
X2
f— | M0 (—Cixi, x2)%2 — gi(x1) — Dika + 7 (X1, X3)) )
1
X4

—a?x3 — 2aix4 + afu
and x = [xlT, sz, X3T, XZ]T = [qT, (']T, anl, an1]T € R2#+m) is the state vector
consisting of the robot state and the servo motor state.

Employing the iLQG-LD framework we aim to create an accurate model of the
dynamics model of the real hardware using supervised learning. We assume the
existence of a preliminary analytic dynamics model which takes the form presented
in (3), (4), which is inaccurate (due to various factors such as: the inability of the
rigid body dynamics to incorporate all the elements of the system’s behaviour or
changes suffered during operation).

We use the LWPR method to model the error between the true behaviour of the
system and the initial model provided. Thus we replace the dynamics f; in (6) with
the composite dynamics model f;:

% = f;(x,u) = f;(x, u) + f; (x, ) (8)

where f; € R2"*) is the initial inaccurate model and f € RZ"+1) ig the LWPR
model mapping the discrepancy between f; € R?®+") and the behaviour of the

lag = diag{ay, ..., a;} and a? = diag{alz, o, a,zn} for notational convenience.
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system. We note that the changes introduced by iLQG-LD only affect the dynamics
modelling in (1), while the instantaneous state transition mapped by A in (2) remains
unchanged.

2.3 Movement Optimisation of Multiple Phases

For the given hybrid dynamics, in order to describe the full movement with multiple
phases, we consider the following composite cost function:

K ) Tr
5= ox(Ty) + 3wty + [ e ©)

j=1 fo
where ¢(x(Tr)) is the terminal cost, oy (X(Tj_)) is the via-point cost at the jth
switching instance and A (X, u) is the running cost.

2.4 Optimal Control of Switching Dynamics
and Discrete State Transition

In brief, the iLQR method solves an optimal control problem of the locally linear
quadratic approximation of the nonlinear dynamics and the cost function around a
nominal trajectory X and control sequence u in discrete time, and iteratively improves
the solutions.

In order to incorporate switching dynamics and discrete state transition with a
given switching sequence, the hybrid dynamics (1) and (2) are linearised in discrete
time around the nominal trajectory and control sequence as

0Xp 11 = Apoxg + Brduy (10)
5x,':i = T, 0% (11)
o of;
Av=T+A41;5L| | By=A1; 5L (12)
X=Xj u=uy
Ty = 257 (13)

X=ij
where 0X; = Xy — Xg, 0ux = U — Uy, k is the discrete time step, At is the sampling
time for the time interval 7; <t < Tj41, and k; is the jth switching instance in the
discretised time step.

When using the composite model of the dynamics (f¢) introduced in (8) the lin-
earisation of the dynamics is provided in two parts. The linearisation of f is obtained
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by replacing f with f in (10) and (12). The derivatives of the learned model (f)
are obtained analytically by differentiating with respect to the inputs z = (x; u) as
suggested in [2]:

of 0
(ZZ)— ;(ﬂw(zw Al ) Zwk<z>wk<z>za—’

1 f(z)
=W > (D (z — &) + weby) + 5 > wiDi(z— ) (14)
k k

where

of(z)  (of/ox
oz (8?/8u)' (15

Since there are no changes on the encoding of the instantaneous state transition

(2) the equations in (11) and (13) remain unchanged for the iLQG-LD framework.
The composite cost function (9) is locally approximated in a quadratic form as

K
1 _ o1 )
AT =Xy x+ S OXy duxOXy + ,Z_; ((§xkj )yt + 5(5xkj)Tw,{X5xkj)

N
1 1
+ Z (§kahX + 5ukThu + Eéx,{hxxéxk + §5ukThuu5uk + 5ukhuxt5xk) At;

k=1
(16)
and a local quadratic approximation of the optimal cost-to-go function is

e (0X) = —5Xk Skoxy + 5Xk Sk . a7
For notational convenience, note that in (16), ¢x and ¢xx denote ¢px = % and

Pxx = %, respectively. Similar definitions apply to other partial derivatives.

The local control law duy of the form

our = Iy + Lioxg (18)

is obtained from the Bellman equation

vk (0Xx) = mingy{hy (0Xg, Oug) + vgy1(0X41)} (19)
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by substituting (10) and (17) into the Eq. (19), where Ay is the local approximation
of the running cost in (16) (see [9] for details).

Once we have a locally optimal control command du, the nominal control
sequence is updated as i <— u + du. Then, the new nominal trajectory X is computed
by running the obtained control u and the above process is iterated until convergence.

In order to optimise the switching instances and the total movement duration, we
introduce a scaling parameter and sampling time for each duration between switching
as (cf. (12) and (16)):

1
At}:—Atj for Tj <t <Tjs1, wherej =0,..., K. (20)
)

By optimising the vector of temporal scaling factors 3 = [ By, ..., fx 17 via
gradient descent [19] we obtain each switching instance 7’1 and the total movement
duration 7. This approach was applied previously [15, 16] to optimise the frequency
of the periodic movement and the movement duration of swing locomotion in a
brachiation task.

In the complete optimisation, computation of optimal feedback control law and
temporal scaling parameter update are iteratively performed until convergence. A
pseudocode of the complete algorithm is summarised in Algorithm 1.

3 Brachiation System Dynamics

We evaluate the effectiveness of the approach on a robot brachiation task which
incorporates switching dynamics and multiple phases of the movement in a realistic
VSA actuator model. We consider a two-link underactuated brachiating robot with
a MACCEPA [25] variable stiffness actuator. The equation of motion of the system
used takes the standard form of rigid body dynamics where only the second joint is
actuated:

M@ + C(g. @)d + g(@) + Dg = [T(q?qm)} @1

where q = [q1, q2]T is the joint angle vector, M is the inertia matrix, C is the
Coriolis term, g is the gravity vector, D is the viscous damping matrix, 7 is the joint
torque acting on the second joint given by the VSA, and q,, is the motor positions
vector in the VSA as described below.

The MACCEPA actuator is equipped with two position controlled servo motors,
aqn = [qm1, qmz]T, which control the equilibrium position and the spring

2For notational simplicity, the subscript i is omitted.



Optimal Control of Multi-phase Movements with Learned Dynamics 69

Algorithm 1 Complete optimisation algorithm for hybrid dynamics with temporal
optimisation
1: Input:
— Timed switching plant dynamics f; (1 or 8), discrete state transition Al (2) and switching
sequence
— Composite cost function J (9)
2: Initialise:

— Nominal switching instance and final time Ty, --- , Tx and T¢
— Nominal control sequence il and corresponding X

3: repeat

4: repeat

5: Optimise control sequence u:

- Obtain linearised time-based switching dynamics (10 or 14) and state transition (11)
around X and u in discrete time with current At;
- Compute quadratic approximation of the composite cost (16)
- Solve local optimal control problem to obtain du (18)
- Apply du to the linearised hybrid dynamics (10) and (16)
- Update nominal control sequence i < u + du, trajectory X and cost J
6: until convergence
7: Temporal optimisation: update A¢;:
— Update the vector of temporal scaling factor 3 and corresponding sampling time

Ato, - - -, Atg in (20) via gradient descent [19].
8: until convergence
9: Output:

— Optimal feedback control law u(x, ¢): forward optimal control sequence u,,, optimal trajec-
tory Xop (t) and optimal gain matrix L, ():
u(x, 1) = Uopt ) + Lopt (@) — Xopt )

— Optimal switching instance T, - - - , Tk and final time Ty

— Optimal composite cost J

pre-tension,® respectively. The servo motor dynamics are approximated by a sec-
ond order system with a PD feedback control, as mentioned in (4):

G + 20y + @’qy = @’u (22)

where u = [u1, u2]7 is the motor position command, o determines the bandwidth
of the actuator. In this study, we use o¢ = diag(20, 25). The range of the commands
of the servo motors are limited as u € [—n/2, m/2] and uy € [0, 7/2].

We use the model parameters shown in Table 1 and the MACCEPA parameters
with the spring constant x = 771 N/m, the lever length B = 0.03 m, the pin
displacement C = 0.125 m and the drum radius ry = 0.01 m (Fig. 3).

3Which is used to modulate the stiffness of the joint, for details see [25].
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Table 1 Model parameters of the two-link brachiating robot

Robot parameters i=1 i=2 i=1
Mass m; (kg) 1.390 0.527 1.240
Moment of inertia | /; (kg m?2) 0.0297 0.0104 0.0278
Link length l; (m) 0.46 0.46 0.46
COM location lei (m) 0.362 0.233 0.350
Viscous friction | d; (Nm/s) 0.03 0.035 0.03

The final column shows the change of parameters of the first link of the system under the changed
mass distribution described in Sect. 4

- dstart
¥ ‘ 1
~ Start#

target bar

link 1

servo motor 2

spring\ i

~—

VSA Joint additional mass

S
LN

link 2

servo motor 1

o

gripper

MACCEPA model

Fig. 3 Two-link brachiating robot model with the VSA joint with the inertial and geometric para-
meters. The parameters of the robot are given in Table 1, where the indices i denote the link number
in this figure and Table 1

4 Experimental Setup

To test the efficiency of our approach we create a scenario where the difference
between the true and the assumed model is caused by a change in the mass (and
implicitly mass distribution) on one the links (i.e. the mass of the true model is
smaller by 150 g (located at the joint) on link i = 1). The changed model parameters
are shown in the right column of Table 1.

Due to the nature of the discrepancy introduced, the error in the dynamics man-
ifests itself only in the joint accelerations. Thus, we require to map the error just in
those two dimensions, reducing the dimension of the output of the LWPR model f
from n = 8 to 2, where the predictions are added on the corresponding dimension
of f within f. (8). Note that different discrepancies will necessitate estimation of the
full 8-dim state error.

In line with previous work, we will demonstrate the effectiveness of the proposed
approach on a multi-phase, asymmetric swing-up and brachiation task with a VSA

4The MACCEPA parameters are the same as described in the previous section.
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while incorporating continuous, online model learning. Specifically, in the multi-
phase task, the robot swings up from the suspended posture to the target at d; = 0.40
m and subsequently moves to the target located at d» = 0.42 m and d3 = 0.46 m,
respectively.

Since the system has an asymmetric configuration and the state space of the swing
up task is significantly different from that of a brachiation movement we proceed by
first learning a separate error model for each phase. The procedure used is briefly
described in Algorithm 2. The initial exploration loop is performed in order to pre-
train the LWPR model f; (as an alternative to applying motor babbling), the later loop
is using iLQG-LD to refine the model in an online fashion. In our experiments the
training data is obtained by using a simulated version of the true dynamics, which is
an analytic model incorporating the discrepancy.

Algorithm 2 Description of the learning and exploration procedure

Given: .

— analytic dynamics for one configuration f; and start state xq

— thresholds for target reaching e7 and model accuracy €y,

— the associated cost function J (including desired target x7)

— p number of initial exploration training episodes

Initialise

- fxow e (x w=fix w) + f(x W)

repeat
generate U, X, L using fi (x, u) for an artificial target (a new target at each iteration obtained by
sampling around x7)
apply the solution to the true dynamics and train the model on the collected data

until p training episodes have been performed

repeat
apply iLQG-LD for target xr
until 7 and ¢, conditions are met

4.1 Individual Phase Learning

Using the traditional OC framework in the presence of an accurate dynamics model,
the multi-phase task described previously was achieved with a position error of just
0.002 m. Once the discrepancy detailed in Sect. 4 is introduced, the planned solution
is no longer valid and the final position deviates from the desired target (Fig. 5, blue
line). We deploy the iLQG-LD framework in order to learn the new behaviour of the
system and recover the task performance.

As a measure of the model accuracy we use the normalised mean square error
(nMSE) of the model prediction on the true optimal trajectory (if given access to
the analytic form of the true dynamics of the system). The nMSE is defined as
nMSE(y, ) = # >, (yi — i)? where y is the desired output data set of size n
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and y represents the LWPR predictions. The evolution of the nMSE at each stage of
the training for every phase is shown in Fig.4.

In the first part (pre-training phase in Fig.4) we generate random targets around
the desired x7. A movement is planned for these targets using the assumed model
(f). The obtained command solution is then applied to the simulated version of the
true dynamics, using a closed loop control scheme. We repeat the procedure for a
set of 10 noise contaminated versions of the commands. The collected data is used
to train the model.

This pre-training phase seeds the model with information within the region of
interest, prior to using it for planning. This reduces the load on the iLQG-LD by
lowering the number of iterations required for convergence. For each phase of the
movement, at the end of the procedure, the planned trajectory matched the behaviour
obtained from running the command solution on the real plant (the final nMSE has
an order of magnitude of 10™%).
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Fig.5 Phase plot: comparison of the final position achieved (for each individual phase) when using
the initial planning (erroneous model—blue) and the final planning (composite model—black).
Intermediary solutions obtained at each step of the iLQG-LD run are depicted in grey

Overall the discrepancy is small enough to allow reaching the desired end effector
position within a threshold of e7 = 0.040 m accuracy.’ Figure 5 shows the effect
of the learning by comparing the performance of the planning with the erroneous
model and with the composite model obtained after training.

4.2 Multi-phase Performance

In the previous section we showed that our approach to iLQG-LD is able to cope
with the requirements of the task in each phase of the movement. For a full solution
we use the newly learned models from each phase to obtain the global solution
for the multi-phase task wrt. the composite cost function J (9). We use the phase
optimal solutions obtained at the previous stage as the initial command sequence, the
resulting behaviour is displayed in Fig. 6. The planner is able to use the learned model
to achieve the intermediary and final goals, while the expected behaviour provides a
reliable match to the actual system’s behaviour.® The cost of multi-phase optimised
solution (J = 39.17) is significantly lower than the sum of the costs of the individual
phase solutions (J = 58.23).

5The error in the swing up task is 0.033 m, while for brachiations the value is 0.004 m. In future
work we aim to bring the former value to the same magnitude.

6We consider that if the position at the end of each phase is within our prescribed threshold e =
0.040 of the desired target the system is able to start the next phase from the ideal location, thus
resembling the effect of the grabber on the hardware.
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Fig. 6 Performance of the fully optimised multi-phase task using the composite model. Thick grey
lines planned movement. Black and blue lines actual system movement

4.3 Performance of Learning

In the previous experiment, we investigated a single (arbitrarily chosen) mass distri-
bution discrepancy. Next we investigate the capacity of our approach to cope with
a wider range of mismatched dynamics. For this, we consider the magnitude of the
change that is bounded by the capability of the altered system to achieve all the
phases of the movement presented in Fig. 6. We define these bounds as the limit val-
ues of mass change that allow the same accuracy in task execution, under the same
cost function (9). The corresponding values for these limits, found empirically, are
—0.200 kg and +0.300 kg, respectively.’

We apply our framework to the scenarios where the mass has been altered to these
boundary values and demonstrate the result on just one of the phases, namely the
first brachiation move, to study the relative effects.

Figure 7a shows the effect of the alteration introduced, when executing the com-
mands resulting from the initial planning (using the erroneous model). After training
and re-planning the model starts approximating the true behaviour of the system,
such that in less than 10 episodes, the system is once again able to reach the desired
target, as depicted in Fig. 7b, c.

7We note that in our experiments, we assume that modulating the mass distribution does not affect
the motor dynamics—this represents a simplified scenario. In the real hardware, the speed of the
motor dynamics (4) is indeed a function of the overall load distribution.
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Fig.7 Phase plot: a Effect of the discrepancy introduced by the limit values on the mass modulation
(blue lines). The behaviour when the model match is correct is depicted for comparison (green line).
b-c Comparison of the final position achieved (for each individual phase) when using the initial
planning (erroneous model—>blue) and the final planning (composite model—black). Intermediary
solutions obtained at each step of the iLQG-LD run are depicted in grey. Results for the boundary
value discrepancies on the mass distribution

5 Conclusion

In this work we have presented an extension of our methodology for movement opti-
misation with multiple phases and switching dynamics, including variable impedance
actuators. We broaden the approach by incorporating adaptive learning, which allows
for adjustments to the dynamics model, based on changes occurred to the system’s
behaviour, or when the behaviour cannot be fully capture by a rigid body dynamics
formulation. In future work we aim to investigate a wider range of model discrepan-
cies and show the performance of the extended approach on a hardware implemen-
tation.
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