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Abstract—We present a reformulation of the stochastic optimal
control problem in terms of KL divergence minimisation, not
only providing a unifying perspective of previous approaches in
this area, but also demonstrating that the formalism leads to
novel practical approaches to the control problem. Specifically, a
natural relaxation of the dual formulation gives rise to exact iter-
ative solutions to the finite and infinite horizon stochastic optimal
control problem, while direct application of Bayesian inference
methods yields instances of risk sensitive control. We furthermore
study corresponding formulations in the reinforcement learning
setting and present model free algorithms for problems with both
discrete and continuous state and action spaces. Evaluation of
the proposed methods on the standard Gridworld and Cart-Pole
benchmarks verifies the theoretical insights and shows that the
proposed methods improve upon current approaches.

I. INTRODUCTION

In recent years the framework of stochastic optimal control
(SOC) [20] has found increasing application in the domain of
planning and control of realistic robotic systems, e.g., [6, 14,
7, 2, 15] while also finding widespread use as one of the most
successful normative models of human motion control [23]. In
general, SOC can be summarised as the problem of controlling
a stochastic system so as to minimise expected cost. A specific
instance of SOC is the reinforcement learning (RL) formalism
[21] which does not assume knowledge of the dynamics or cost
function, a situation that may often arise in practice. However,
solving the RL problem remains challenging, in particular in
continuous spaces [16].

A recent, promising direction in the field has been the
application of inference methods [1] to these problems, e.g.,
[10, 22, 24]. In this context, we introduce a generic formula-
tion of the SOC problem in terms of Kullback-Leibler (KL)
divergence minimisation. Although the arising KL divergences
can, in general, not be minimised in closed form, we provide
a natural iterative procedure that results in algorithms that
we prove to asymptotically converge to the exact solution of
the SOC problem. Specifically, algorithms for both finite and
infinite horizon problems are derived and their corresponding
formulations in the RL setting are introduced. We show that
the latter corresponds to the independently derived result of
[5] for the specific case of infinite horizon discrete problems;
here, we extend this to problems with continuous actions.

Formulation of SOC problems in terms of KL minimisation
has been previously studied by, amongst others, [22], [11] and
[10], leading to efficient methods for both stochastic optimal
control [22] and RL [7]. However, as we will discuss, these

cases make restrictive assumptions about the problem dynam-
ics and costs which can be relaxed under our framework,
besides providing a unifying and generic formalism.

Finally, we are able clarify the relation of SOC and the
inference control formulation by [24, 17, 26], which allows
for arbitrary problems, showing it to be an instance of risk
sensitive control. The generalisation of this relation given by
our approach makes it possible to apply out of the box infer-
ence methods to obtain approximate optimal policies. This is
of particular interest in the case of continuous problems – here
approximations are unavoidable since explicit representations
are often not available.

II. PRELIMINARIES

A. Stochastic Optimal Control

We will consider control problems which can be modeled
by a Markov decision process (MDP). Using the standard
formalism, see also e.g., [21], let xt ∈ X be the state and
ut ∈ U the control signals at times t = 1, 2, . . . , T . To
simplify the notation, we shall denote complete state and
control trajectories x1...T ,u0...T by x̄,ū. Let P (xt+1|xt, ut) be
the transition probability for moving from xt to xt+1 under
control ut and let Ct(x, u) ≥ 0 be the cost incurred per stage
for choosing control u in state x at time t. Let policy π(ut|xt)
denote the conditional probability of choosing the control ut
given the state xt. In particular a deterministic policy is given
by a conditional delta distribution, i.e. π(ut|xt) = δut=τ(xt)

for some function τ . The SOC problem consists of finding a
policy which minimises the expected cost, i.e., solving

π* = argmin
π

〈
T∑
t=0

Ct(xt, ut)

〉
qπ

, (1)

where 〈·〉qπ denotes the expectation with respect to

qπ(x̄, ū|x0) = π(u0|x0)

T∏
t=1

π(ut|xt)P (xt+1|xt, ut) , (2)

the distribution over trajectories under policy π.
In the case of infinite horizon problems, i.e. we let T →∞,

we will consider the discounted cost setting and specifically
assume that Ct(xt, ut) = γtC•(xt, ut), where C• is a time
stationary cost and γ ∈ [0, 1] a discount factor.
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Fig. 1: The graphical model of for the Bayesian formulation
of the control problem in the finite horizon case. In the infinite
horizon case we obtain a stochastic Markov process.

B. Inference Control Model

A Bayesian inference based approximation of the above
control problem can be formulated [24] as illustrated in Fig.1.
In addition to the state and control variables of classical SOC,
a binary dynamic random task variable rt is introduced and
the task likelihood is related to the classical cost by choosing
P (rt = 1|xt, ut) = exp{−ηC(xt, ut)}, where η > 0 is
some constant in analogy with the inverse temperature of a
Boltzmann distribution. For some given policy π and assuming
the artificial observations r0...T = 1, we denote the un-
normalised posterior by pπ(x̄, ū):

pπ(x̄, ū) = P (x̄, ū, r̄ = 1|x0)

= qπ(x̄, ū)

T∏
t=0

exp{−ηCt(xt, ut)} . (3)

C. General Duality

While the Bayesian model has been employed successfully
for trajectory planning, e.g., in [24], it’s relation to the classical
SOC problem remained unclear. Although a specific subset of
SOC problems, studied by [11] and [22], can be formulated
in a similar Bayesian model, as explicitly done by [10] (we
discuss the relation to this work further in III-D3), here,
we establish the formal correspondence between the two
formalisms in the general case with the following result:

Theorem 1. Let π0 be an arbitrary stochastic policy and D
the set of deterministic policies, then the problem

π* = argmin
π∈D

KL (qπ(x̄, ū)||pπ0(x̄, ū)) (4)

is equivalent to the stochastic optimal control problem (1) with
cost per stage

Ĉt(xt, ut) = Ct(xt, ut)−
1

η
log π0(ut|xt) . (5)

Proof: see Supplementary Material1.
As an immediate consequence we may recover any given
stochastic optimal control problem with cost Ct by choosing
π0(·|x) to be the uniform distribution over U2.

1Supplementary Material can be found at http://arxiv.org/abs/1009.3958
2n.b., formally we require U to be finite or bounded

III. ITERATIVE SOLUTIONS

Although Theorem 1 provides the correspondence between
the SOC formulation and the computationally attractive in-
ference control approach, due to the constraint π ∈ D, (4)
remains as intractable as the classical formulation via the
Bellmann equation. However relaxation of this constraint to
allow minimisation over arbitrary stochastic policies provides
a closed form solution, and although it does not directly lead
to an optimal policy, we have the following result:

Theorem 2. For any π 6= π0, KL (qπ||pπ0) ≤ KL (qπ0 ||pπ0)
implies 〈C(x̄, ū)〉qπ < 〈C(x̄, ū)〉qπ0

.

Proof: see Supplementary Material
Consequently, with some initial π0, the iteration

πn+1 ← argmin
π

KL (qπ||pπn) , (6)

where π is an arbitrary3 conditional distribution over u, gives
rise to a chain of stochastic policies with ever decreasing
expected costs.

We would like to note that the conditions imposed by the
above result, in order to guarantee a policy improvement, are
relatively weak. By exploiting this, in addition to the iteration
arising from (6), we present a relaxation, which satisfy The-
orem 2 and leads to practical algorithms for infinite horizon
problems, and the related iteration of Bayesian inference which
leads to risk-sensitive control.

A. Exact Minimisation - Finite Horizon Problems
The general minimisation in iteration (6) can, as previously

indicated, be performed in closed form and the new policy
(for derivation, see Supplementary Material), is given by the
Boltzmann like distribution,

πn+1(ut|xt) = exp{Ψn+1
t (xt, ut)− Ψ̄n+1

t (xt)} , (7)

with energy

Ψn+1
t (xt, ut) = log πn(ut|xt) + logP (rt = 1|xt, ut)

+

∫
xt+1

P (xt+1|xt, ut)Ψ̄n+1
t+1 (xt+1) (8)

and log partition function

Ψ̄n+1
t (xt) = log

∫
u

exp{Ψn+1
t (xt, u)} . (9)

In the finite horizon case, the policy can therefore be computed
backwards in time.

1) Convergence Analysis: Following [12], we bound the
progress of the trajectory posterior under policy πn towards
the corresponding distribution under some chosen π̂, obtaining

Lemma 3. Let the sequence {πn} be generated by (6) and
let π̂ be an arbitrary (stochastic) policy. Then

KL (qπ̂||qπn+1)−KL (qπ̂||qπn)

≤ 〈ηC(x̄, ū)〉qπ̂ − 〈ηC(x̄, ū)〉qπn+1
. (10)

3n.b., formally certain assumptions have to be made to ensure the support
of qπ is a subset of the support of pπn



Proof: See Supplementary Material.
Summing the above bound over 0 . . . N , we can compute the
bound

1

N

N+1∑
n=1

〈C(x̄, ū)〉qπn ≤ 〈C(x̄, ū)〉qπ̂+
1

ηN
KL (qπ̂||qπ0) , (11)

on the average expected cost of the policies π1 . . . πn+1. Now,
since Theorem 2 guarantees that the expected cost for each
πn is non increasing with n, using (11), we can obtain the
following stronger convergence result.

Theorem 4. Let {πn} be a sequence of policies generated by
(6), with π0 s.t. π0(·|x ∈ X) has support U. Then

lim
n→∞

〈C(x̄, ū)〉qπn = min
π
〈C(x̄, ū)〉qπ . (12)

Proof: See Supplementary Material.

B. Asynchronous Updates - Infinite Horizon Problems

In the infinite horizon setting, discussed in II-A, it is easy
to show that the time stationary analog of (8) can be obtained
as

Ψn+1(x, u) = log πn(u|x) + logP (r = 1|x, u)

+ γ

∫
y

P (y|x, u)Ψ̄n+1(y) . (13)

However, due to the form of Ψ̄n+1, this does not yield Ψn+1

in closed form. To obtain a practical solution we make use
of the relatively weak conditions given by Theorem 2 for
obtaining a lower expected cost, which allow us to consider
the minimisation in (6) over some iteration dependent subset
Pn of the set of all (stochastic) policies. Then, Theorem 2
guarantees the expected costs to be non increasing, if for all
n, πn ∈ Pn.

Such iterations admit asynchronous updates as an interesting
case, i.e., updating one or several time steps of the policy at
each iteration in any particular order. Formally, we choose a
schedule of time step sets T0,T1, . . . and let Pn = {π : ∀t /∈
Tn, πt = πnt }. Specifically, we will consider the schedule for
such updates given by Tn = {0, . . . , n − 1}, i.e., in each
iteration we consider finite horizon problems with increasing
horizon. Such a schedule leads to the update πn+1

t+1 = πnt for
all t > 0 while the new first step policy, πn+1

0 , is of the form
(7) and obtained via

Ψn+1
0 (x, u)← Ψn

0 (x, u)− Ψ̄n
0 (x) + logP (r = 1|x, u)

+ γ

∫
x′
P (x′|x, u)Ψ̄n

0 (x′) , (14)

hence yielding a practical iteration which has a strong analogy
to value iteration, see e.g., [21].

1) Convergence Analysis: Essentially equivalent conver-
gence results to the finite horizon case can be obtained for
the asynchronous algorithm (14) in the infinite horizon setting.
Informally, we proceed by assuming that the cost is bounded
and consider finite horizon problems with growing horizon,
bounding the expected cost of the infinite tail. Due to the

assumption that the cost is discounted, the expected cost of
the tail goes to zero as the horizon increases, leading to a
result analogous to Theorem 4 (see Supplementary Material
for formal proof).

C. Posterior Policy Iteration

Since our starting point was the relaxation of the relation
between SOC and inference control, it is interesting to con-
sider sequential inference of the posterior policy, which is
the natural iteration arising in the latter framework. Such an
iteration is of particular interest as posterior inference is a well
studied problem with a large range of approximate algorithms
[1] which could be exploited for practical implementations.

Although unconstrained minimisation of the KL divergence
is achieved by the posterior, in our case, the specific form of
qπ in (6) is, as can be seen in (2), restricted by the prescribed
system dynamics, leading to the results presented in the last
sections. Nonetheless, we may consider the iteration

πn+1 = pπn(ut|xt) , (15)

which, as we show (see Supplementary Material), will con-
verge to the policy

π̃ = argmin
π
−1

η
log 〈exp{−ηCt(x̄, ū)}〉qπ . (16)

The objective being minimized is exactly the risk sensitive
objective of [8], which has been recently also used in the path
integral approach to SOC [3]. In particular, note that for η →
0, we obtain the classical risk neutral controls, allowing near
optimal policies for arbitrary SOC problems to be computed
by iterated Bayesian inference.

D. Relation to Previous Work

1) Dynamic Policy Programming (DPP): The recently in-
troduced DPP algorithm [5] is closely related to the formalism
described here. Specifically, while the update equations (14)
coincide, we provide a more general view of DPP by deriving
it as a special case of the novel result in Theorem 2. In
addition, III-A provides the direct extension of DPP to finite
horizon problems, while the convergence proofs of III-B
extend those given by [5] to continuous state and action spaces.

2) Approximate Inference Control (AICO): The AICO [24]
approach to trajectory optimisation shares the same Bayesian
Model used as a starting point here (cf. II-B). However,
although using local LQG approximations AICO converges to
locally optimal trajectories, the relation to the classical SOC
problem remained unclear. We not only establish such a formal
relation, but also note that AICO can be interpreted as one
step of the posterior policy iteration introduced in III-C. More
specifically, if one were to use the maximum likelihood policy
obtained by AICO one would obtain (approximate) optimal
risk seeking controls.



3) Path Integral Control: Let us briefly recall the KL
control framework [10], the alternative formulations in [22]
being equivalent for our purposes. Choose some free dynamics
ν0(xt+1|xt) and let the cost be given as

C(x̄) = `(x̄) + log
ν(x̄)

ν0(x̄)

where ν(xt+1|xt) is the controlled process under some policy.
Then

〈C(x̄)〉ν = KL (ν(x̄)||ν0(x̄) exp{−`(x̄)}) (17)

is minimised w.r.t. ν by

ν(x1:T |x0) =
1

Z(x0)
exp{−`(x1:T )}ν0(x1:T |x0) (18)

and one concludes that the optimal control is given by
ν(xt+1|xt), where the implied meaning is that ν(xt+1|xt) is
the trajectory distribution under the optimal policy.

Although (18) gives a process which minimises (17), it is
not obvious how to compute the actual controls ut. Specifically
when given a model of the dynamics, i.e., P (xt+1|xt, ut), and
having chosen some ν0, a non trivial, yet implicitly made,
assumption is that there exists a policy implementing the
required transitions ν(xt+1|xt), i.e., ∃π s.t.

KL

(∫
ut

P (xt+1|xt, ut)π(ut|xt)||ν(xt+1|xt)
)

= 0. (19)

However, in general, such a π will not exist. This is made
very explicit for the discrete MDP case in [22], where it
is acknowledged that the method is only applicable if the
dynamics are fully controllable, i.e., P (xt+1|xt, ut) can be
brought into any required form by the controls. Although in the
same paper, it is suggested that solutions to classical problems
can be obtained by continuous embedding of the discrete MDP,
such an approach has several drawbacks. For one, it requires
solving a continuous problem even for cases which could
have been otherwise represented in tabular form, but more
importantly such an approach is obviously not applicable to
problems which already have continuous state or action spaces.

In the case of problems with continuous states and actions
we may consider the specific form

xt+1 = F(xt) + B(ut + ξ), ξ ∼ N (0,Q) ,

Ct(xt, ut) = `(xt) + uTt Hut ,
(20)

with F ,B and ` having arbitrary form, but H,Q are such
that H ∝ BTQ−1B. This is of interest, as it is the discrete
time form of the fully controllable continuous time problem
which underlies the path integral approach [11]. It also has
been claimed, e.g., [10], that, analogously to the continuous
time case, the solution of this problem is given by (18).
However considering the simple instance of a one step LQG
problem, we see that (19) will not hold, as in this case the
variance of P (x1|x0, u0) is uncontrolled. Hence ν is not the
trajectory distribution under the optimal policy. Furthermore
it is straightforward to convince oneself that attempting to

find the policy implementing the best realisable transition, i.e.,
relaxation of (19) to

argmin
π∈D

KL

(∫
ut

P (xt+1|xt, ut)π(ut|xt)||ν(xt+1|xt)
)
,

does also not lead to the desired result.
However, for problems of the specific form (20), a closer

relation between Theorem 1 and (17) does indeed exist. To
illustrate this, we write the KL divergence of Theorem 1 in
terms of the state trajectory (x̄) marginals as

KL (qπ(x̄, ū)||pπ0(x̄, ū)) = KL (qπ(x̄)||ν(x̄))

−
〈∑

mT
t Q
−1But −

1

2
uTt Hut)

〉
qπ(x̄,ū)

,

where mt = xt+1 − xt − F(xt). Furthermore, since for a
deterministic policy, i.e. π(ut|xt) = δut=τ(xt),

〈mt〉qπ = 〈But〉qπ = Bτ(xt) ,

the second term is zero under the condition required, i.e., H =
2BTQ−1B, and analogous to (17), it is sufficient to consider
the distributions over state trajectories only.

In conclusion, for discrete time problems, the work of
[10, 22] constitutes special cases of Theorem 1, which either
assume fully controllable dynamics or where the control
trajectories can be marginalised from Theorem 1.

4) Expectation Maximisation: Several suggestions for map-
ping the SOC problem onto a maximum likelihood problem
and using Expectation Maximization (EM) have been recently
made in the literature, e.g., [25], and going further back, the
probability matching approach [4, 19] has also close links
with EM. Considering (6), the proposed approach has a close
relation to the free energy view of EM. Given a free energy

F (q̃, π) = logP (r̄ = 1;π)−KL (q̃||pπ) (21)
= 〈logP (r̄ = 1, x̄, ū;π)〉q̃ +H(q̃) , (22)

EM alternates between minimizing KL (q̃||pπ) w.r.t. q̃ in (21)
and maximising the free energy w.r.t. the potentially infinite
parameter vector π in (22). Our iteration of (6) deviates from
this standard EM in that the KL-minimization in (6) is w.r.t.
a constrained q̃, namely one which can be generated by a
control π. The M-step is then trivially assigning the new π
to the one corresponding to q̃. The constraint E-step departs
from standard EM but is a special case of the alternating
minimisation procedures of [9]. Importantly however, unlike
the previously mentioned EM based approaches which can
only guarantee convergence to a local extremum, we have
demonstrated algorithms with guaranteed convergence to the
global optimum.

IV. REINFORCEMENT LEARNING

We now turn to the RL setting [21], where one aims to learn
a good policy given only samples from the transition proba-
bility and associated incurred costs. As RL usually considers
the discounted cost infinite horizon setting we concentrate on
this case, with the understanding that equivalent steps can



be taken in the finite horizon case. We note that for any
given x, u the update of (14) can be written as an expectation
w.r.t. the transition probability P (y|x, u), and hence, may be
approximated from a set of sampled transitions. In particular
given a single sample (x, u,R, y) of a transition from x to y
under control u, obtaining reward R = logP (r = 1|x, u), we
may perform the approximate update

Ψ(x, u)← Ψ(x, u) + α
[
R+ γΨ̄(y)− Ψ̄(x)

]
, (23)

with α a learning rate and for trajectory data applying such
an update individually for each tuple (xt, ut,Rt, xt+1).

A. Relation to Classical Algorithms

Before proceeding let us highlight certain similarities and
differences between (23) and two classical algorithms, Q-
learning and TD(0) [21].

The Q-learning algorithm learns the state-action value func-
tion. We note that Ψ has certain similarities to a Q function,
in the sense that a higher value of Ψ for a certain control in a
given state indicates that the control is ’better’ – in fact, for the
optimal controls the Q function and Ψ converge to the same
absolute value (see Supplementary Material). However, unlike
the Q function, which also converges to the expected cost
for the sub-optimal controls, Ψ goes to −∞ for sub-optimal
actions. A potentially more insightful difference between the
two algorithm is the nature of updates employed. The Q-
learning algorithm uses updates of the form

Q(x, u)← Q(x, u) + α
[
R+ γmax

u′
Q(y, u′)−Q(x, u)

]
,

where α is a learning rate. Note that it employs information
from the current command and the single best future command
under current knowledge. The proposed algorithm on the other
hand uses a soft-max operation by employing Ψ̄, averaging
over information about the future according to the current
belief about the control distribution, hence taking uncertainty
arising from, e.g., sampling into account.

On the other hand, the TD(0) algorithm, which learns
through value function approximation, has updates of the form

V(x) = V(x) + α [R+ γV(y)− V(x)] ,

with α again a learning rate. Since it can be shown that
Ψ̄ converges to the value function of the optimal policy
(cf. Supplementary Material), the proposed update converges
towards the TD(0) update for samples generated under the
optimal policy. In particular, while TD(0) is an on-policy
method and learns the value function of the policy used
to generate samples, the proposed method learns the value
function of the optimal policy directly.

B. RL with continuous states and actions

One needs to use parametric representations [21] to store
Ψ when tabular means are no longer viable or efficient,
as is the case with high dimensional, large discrete [5] or
continuous state and control spaces. Similar to numerous

previous approaches, e.g., [5], we used a linear basis function
model to approximate Ψ, i.e.,

Ψ(x, u) ≈ Ψ̃(x, u,w) =

M∑
m=0

wmφ(x, u) (24)

where φi : X × U → R are a set of given basis functions
and w = (w1, . . . , wM ) is the vector of parameters that
are optimised. For such an approximation, and given a set
of samples (x1...K , u1...K ,R1...K , y1...K), the updates (8) and
(23) can be written in matrix notation as

Φwn+1 = Φwn + z , (25)

where Φ is the K ×M matrix with entries Φi,j = φi(xj , uj)
and z is the vector with elements

zk = γΨ̄(yk) +Rk − Ψ̄(xk) . (26)

This suggests the update rule of the form

w← w + (ΦTΦ)−1ΦT z . (27)

The choice of basis functions is somewhat complicated by
the need to evaluate the log partition function of the policy
Ψ̄, i.e. log

∫
u

exp{Ψ̃(x, u)}, when forming the vector z. In
cases where U is a finite set, arbitrary basis functions can be
chosen as the integral reduces to a finite sum. However, for
problems with infinite (or continuous) control spaces, bases
need to be chosen such that the resulting integral is analytically
tractable, i.e. the partition function of the stochastic policy can
be evaluated. One class of such basis sets is given by those
Ψ̃(x, u,w) that can be brought into the form

Ψ̃(x, u,w) = −1

2
uTA(x,w)u+uTa(x,w)+a(x,w) , (28)

where A(x,w) is a positive definite matrix-valued function,
a(x,w) is a vector-valued function and a(x,w) a scalar
function. For such a set, the integral is of the Gaussian form
and the closed form solution

log

∫
u

exp{Ψ̃} = − log |A|− 1

2
a′A−1a+a+constant (29)

is obtained. This gives us a recipe to employ basis functions
that lead to tractable computations and the policy can be
computed as π(u|x,w) = N (u|A−1a,A−1).

V. EXPERIMENTS

A. Gridworld - Analytical Infinite Horizon RL

We start by evaluating the proposed algorithm (23) on a
problem used in [22], with finite state and action spaces, which
allows a tabular representation of Ψ. The state space is given
by a N × N grid (see Fig. 2(b)) with some obstacles. The
control can move the state to any adjacent ones not occupied
by an obstacle and the move succeeds with a probability of
0.8. Additionally, a set A ⊆ X of absorbing target states was
defined and the agent incurs a cost of 1 at all states other than
the target, i.e., C(x, u) = δx/∈A with δ the Kronecker delta.
The cost was not discounted. We benchmark performance
against tabular Q-learning [21]. Both algorithms were given
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Fig. 2: Results from the Gridworld problem. (a) Evolution
of the mean error in (30) averaged over 10 trials with error
bars indicating the s.d. (b) Optimal value function (white low
expected cost - black high expected cost) of the problem.
Obstacles are black and the target state is indicated by *.

data from episodes generated with controls sampled from
an uninformed policy. Once a target state was reached, or
if the target wasn’t reached within 100 steps, the state was
reset randomly. The learning rate for Q-learning decayed as
α = c/(c+ k) with k the number of transitions sampled and
c a constant which was optimised manually. Representative
results are illustrated in Fig. 2. We plot the approximation
error

eJ =
maxx |J (x)− Ĵ (x)|

maxx J (x)
(30)

between the true value function J , obtained by value iteration,
and it’s estimate Ĵ , given by Ψ̄ and maxuQ(x, u) respec-
tively. Both algorithms achieved the same error at conver-
gence, but the proposed algorithm (Ψ-learning) consistently
required fewer samples than Q-learning for convergence –
this is consistent with the discussion in IV-A. We additionally
considered a online variant of Ψ-learning where the controls
are sampled from the policy given by the current Ψ, i.e.
π(u|x) = exp{Ψ(x, u) − Ψ̄(x)}. As expected, the online
version outperformed sampling using an uninformed policy.
The aim of this evaluation, besides providing a sanity check
to the working of the algorithm, was to illustrate that the
proposed method provides similar performance advantages as
obtained for the restricted class of problems considered in [22],
despite working in the product space of states and actions, as
necessitated by considering the unrestricted SOC problem.

B. Cart-Pole System

We now move on to problems with continuous state and
action spaces which will make approximations necessary,
demonstrating that the theoretical results presented in III can
lead to practical algorithms. Specifically we will consider,
both, an approximate inference approach for implementing the
posterior policy iteration of III-C on a finite horizon problem
and the basis function based approach, discussed in IV-B, to
the RL version of the asynchronous updates for infinite horizon
problems derived in III-B.

We have chosen the classical Cart-Pole problem [21], which
has been repeatedly used as a benchmark in reinforcement
learning, e.g., [18]. This plant, illustrated in Fig. 3a, consists
of a inverted pendulum which is mounted on a cart and is
controlled by exerting forces on the latter. Formally, the state
space is given by x = (x, ẋ, θ, θ̇), with x the position of the
cart, θ the pendulum’s angular deviation from the upright posi-
tion and ẋ, θ̇ their respective temporal derivatives. Neglecting
the influence of friction, the continuous time dynamics of the
state are given by

θ̈ =
g sin(θ) + cos(θ)

[
−c1u− c2θ̇2 sin(θ)

]
4
3 l − c2 cos2(θ)

ẍ =c1u+ c2

[
θ̇2 sin(θ)− θ̈ cos(θ)

] (31)

with g = 9.8m/s2 the gravitational constant, l = 0.5m
the pendulum length and constants c1 = (Mp + Mc)

−1 and
c2 = lMp(Mp+Mc)

−1 where Mp = 0.1kg,Mc = 1kg are the
pendulum and cart masses, respectively. The control interval
was 0.02s and the dynamics were simulated using the fourth
order Runga-Kutta method. Stochasticity was introduced by
adding zero mean Gaussian noise, with small diagonal covari-
ance, to the new state. These settings correspond to those used
by comparative evaluations in [18].

1) Model Based Posterior Policy Iteration: First, we con-
sider a finite horizon optimal control problem, assuming we
have access to both the plant dynamics and cost function.
The exact algorithm of III-A does not lend itself easily to
this setting, due to the intractable integrals arising in (8) as a
consequence of the nonlinear dynamics – although we note
that by taking local LQG approximations of the problem,
closed form updates can be derived. However, we demonstrate
that by using standard approximate inference techniques, the
alternative posterior policy iteration in III-C can yield good
approximate optimal policies.

Specifically we consider the swing up task in which the
pendulum has to be moved from a hanging down to an upright
position and balanced. The per-step cost for this task is given
by

Ct(xt, ut) = ω1θ
2 + ω2θ̇

2 + ω3u
2
t ∀t ∈ [0, T ] , (32)

where ω is a vector of weights. The time horizon was T = 3s,
but note that, since a cost is incurred in each time step for
pendulum positions away from rest in the upright position, a
rapid swing up followed by holding is encouraged.

As the posterior pπ(x̄, ū) is not tractable in this setting,
we use an extended Kalman smoother [20] to estimate a
Gaussian approximation to the full posterior, leading to a
Gaussian posterior policy. As a consequence of the Gaussian
approximation and inference method chosen, inference is
required to be performed only once, for pπ0(x̄, ū), and the
eventual result of the iteration (15) can be obtained as the
linear policy given by the mean of the posterior policy.

In Fig. 3, we plot the expected costs and the cost variances,
both estimated by sampling under the obtained policies, for
different values of the parameter η. For reference, we also
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Fig. 3: Results for model based approximate posterior policy
iteration on the Cart-Pole swing-up task. (a) Schematic of
the pole on cart plant used in the experiments. (b) Expected
cost achieved by policies obtained for different values of
the parameter η. Red dashed line indicates expected cost of
policy obtained using iLQG. All values estimated from 1000
trajectories sampled using the respective policy. (c) Variance
of the costs achieved by the same policies as in (b).

show the expected cost from the policy obtained using the
iLQG algorithm [13] which also computes an approximately
optimal linear policy. We first observe that as predicted by
III-C, η acts to control the risk seeking behavior of the policy,
and for increasing values of η the cost variance increases
substantially. Furthermore, we note that the choice of η = 1,
which, as discussed, corresponds to the AICO setting, leads to
results substantially different from the case of classical (risk
neutral) optimal control. However reducing η leads rapidly
to policies obtained by approximate inference which exhibit
similar performance to those obtained by classical approximate
methods.

2) RL with approximations: To evaluate the RL approach
proposed in IV-B we consider the balancing task, following
closely the procedures in [18], where this task was used for
evaluation of policy gradient methods.

The task, which consists of stabilising the pendulum in the
upright position while simultaneously keeping the cart at the
center of the track, had the cost function

C•(x, u) =

{
0 if (x, θ) in target set
ωθθ

2 + ωxx
2 else

, (33)

where the target was given by x ∈ [−0.05m, 0.05m] and
θ ∈ [−0.05rad, 0.05rad] and the discount rate was γ = 0.
We chose this cost as we found it to give better results for
uniformed initial policies, for which the piece wise constant
cost of [18] provided little information.

The linear policy learned in [18] corresponds to a second
order polynomial basis for Ψ in the proposed method (Ψ-
Learning). Specifically we used the basis set

{u2, ux, uẋ, uθ, uθ̇, x2, xẋ, xθ, xθ̇, ẋ2, ẋθ, ẋθ̇, θ2, θθ̇, θ̇2}

which is of the form (28) and indeed only constitutes an
approximation to the true Ψ as the problem is non-LQG.
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Fig. 4: Results for RL with continuous state and action
spaces. (a) Length of training episodes, averaged over blocks
of 25 episodes, for Ψ-Learning, when initialized with an
uninformed policy. The dashed red line indicates the point
at which initial policies for the results in the subsequent
comparison experiment were picked. Error bars indicate s.d.
(b) Comparison of evolution of the expected cost between
eNAC and Ψ-Learning. Both methods are initialised with the
same stabilising policies (cf. (a)) and results averaged over 10
trials with error bars indicating s.d.

Episodes were sampled with starting states drawn such that
θ ∈ [−0.2rad, 0.2rad] and x ∈ [−0.5m, 0.5m] and controls
were sampled from the stochastic policy given by the current
parameters. During training, episodes were terminated if the
plant left the acceptable region θ ∈ [−0.2rad, 0.2rad] and
x ∈ [−0.5m, 0.5m] or after 200 steps. Policy parameters were
updated every 10 episodes and every 5 updates policies were
evaluated by sampling 50 episodes of 500 step length using the
mean of the policy. All results were averaged over 10 trials.
The learning rate parameter for policy gradient methods was
adjusted manually for best results.

Despite the change in cost function, like [18], we were
not able to reliably obtain good policies from uninformed
initialisation when using policy gradient methods. Our method
on the other hand, when initialised with an uninformed policy,
i.e., zero mean and a variance of 10, was able to learn
a stabilising policy within 400 training episodes. This is
illustrated in Fig. 4a where the average length of training
episodes is shown. In order to be able to compare to the
episodic Natural Actor Critic (eNAC) method, which produced
the best result in [18], we used the policies obtained by Ψ-
Learning after 400 training episodes as initial policies. By this
stage, the average expected cost of the policies was 239.35
compared to the initial cost which had been of the order
3× 105. Fig. 4b shows the evolution of the expected cost for
both methods with such an initialisation and as can be seen
Ψ-Learning outperformed eNAC both in terms of convergence
speed and attained expected cost.

As the quality of the obtained policy will depend on how
well the basis set can approximate the true Ψ, we also
considered a more complex set of bases. Specifically, while
keeping A in (28) a set of non-zero constant basis functions,



we represented a(x,w) and a(x,w) using the general and
commonly used squared exponential bases which are of the
form

φ(x) = exp{−(x−mφ)TΣφ(x−mφ)} (34)

with center mφ and metric Σφ. The centers were sampled ran-
domly from a region given by the acceptable region specified
earlier and ẋ ∈ [−1m/s, 1m/s], θ̇ ∈ [−1rad/s, 1rad/s] and
Σφ was chosen to be diagonal. For this setting we were not
able to obtain good policies using eNAC, while in the case
of Ψ-Learning this choice did not outperform the polynomial
basis, yielding a best policy with expected cost 26.4.

VI. CONCLUSION

We have presented a general relation between stochastic
optimal control problems and minimisation of KL diver-
gences of the form (4). This allowed us to derive iterative
algorithms for obtaining both risk neutral and risk sensitive
optimal controls for finite and infinite horizon MDPs. We
show that these algorithms, although instances of generalised
EM procedures, enjoy guaranteed convergence to the global
optimum. Further, we discuss the connections of our work to
previous approaches in this area, highlighting that many of
these arise in our formulation as special cases which either
require restrictions on the class of problems (e.g., [22, 10]),
or for which the relation to SOC was previously unclear (e.g.,
[24]). The formalism is then extended to the model free RL
setting in both the finite and infinite horizon case. In the case of
finite state and action spaces, using a tabular representation, we
obtain an exact algorithm with interesting relations to Q- and
TD(0) learning. We also present an approximation, based on
basis function representations, which extends [5] to problems
with continuous state and action spaces.

Our approach is verified in the discrete setting and we
highlight the novel aspects of our work in experiments on a
problem with continuous states and actions in the form of the
standard Cart-Pole benchmark. On the one hand we show that,
by employing standard out of the box approximate inference
methods, optimal policies can be computed for model based
finite horizon problems, improving the shortcomings of [24].
On the other hand, we consider an infinite horizon problem
in the model free RL setting, demonstrating that the proposed
approximate algorithm shows performance competitive with
the well established eNAC algorithm. We also provide a recipe
for selecting appropriate basis functions that lead to efficient,
tractable solutions.
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1 Proofs and Derivation from the main text

1.1 Proofs of Duality and General Iterative Procedure (cf. II-C & III)

Theorem 1 (see also II-C in the main text). Let π0 be an arbitrary stochastic policy and D the set of
deterministic policies, then the problem

π* = argmin
π∈D

KL (qπ||pπ0)

is equivalent to the stochastic optimal control problem (1) with cost per stage

Ĉt(xt, ut) = Ct(xt, ut)−
1

η
log π0(ut|xt)

Proof. Let πt(ut‖xt) = δut=τt(xt), for some function τ , then

KL (qπ||pπ0) = logP (r̄ = 1) +

∫
x̄

dx̄

∫
ū

dū qπ(x̄, ū) log
qπ(x̄, ū)

qπ0(x̄, ū)

+

∫
x̄

dx̄

∫
ū

dū qπ(x̄) π(ū|x̄)

T∑
t=0

log
1

exp{−ηCt(xt, ut)}
(33)

= logP (r̄ = 1|x0;π0) + KL (qπ(x̄, ū)||qπ0(x̄, ū))

+

∫
x̄

dx̄

∫
ū

dū qπ(x̄) δū=τ(x̄)

T∑
t=0

ηCt(xt, ut) (34)

= logP (r̄ = 1|x0;π0) + KL (qπ(x̄, ū)||qπ0(x̄, ū))

+

∫
x̄

dx̄ qπ(x̄)

T∑
t=0

ηCt(xt, τt(xt)) . (35)

1



Furthermore the divergence between the controlled process, qπ, and prior process, qπ0 is

KL (qπ(x̄, ū)||qπ0(x̄, ū)) =

∫
x̄

dx̄

∫
ū

dū qπ(x̄, ū)

T∑
t=0

log
δut=τt(xt)

π0(ut|xt)
(36)

= −
∫
x̄

dx̄ qπ(x̄)

T∑
t=0

log π0(τt(xt)‖xt) . (37)

Hence,

KL (qπ||pπ0) = logP (r̄ = 1|x0;π0) + η

〈
T∑
t=0

[
Ct(xt, τt(xt))−

1

η
log π0(τt(xt)‖xt)

]〉
qπ

, (38)

and as logP (r̄ = 1|x0;π0) is constant w.r.t. π, the result follows. �

Theorem 2 (see also III in the main text). For any π 6= π0,

KL (qπ||pπ0) ≤ KL (qπ0 ||pπ0) =⇒ 〈C(x̄, ū)〉qπ < 〈C(x̄, ū)〉qπ0
.

Proof. Expanding the KL divergences we have

KL (qπ(x̄, ū)||qπ0(x̄, ū))− 〈logP (rt = 1|x̄, ū)〉qπ(x̄,ū) + logP (r̄ = 1‖x0;π0)

≤ KL (qπ0(x̄, ū)||qπ0(x̄, ū))− 〈logP (r̄ = 1|x̄, ū)〉qπ0 (x̄,ū) + logP (r̄ = 1‖x0;π0) . (39)

Subtracting logP (r̄ = 1‖x0;π0) on both sides and noting that KL (qπ0(x̄, ū)||qπ0(x̄, ū)) = 0, we obtain

KL (qπ(x̄, ū)||qπ0(x̄, ū))− 〈logP (r̄ = 1|x̄, ū)〉qπ(x̄,ū) ≤ −〈logP (r̄ = 1|x̄, ū)〉qπ0 (x̄,ū) . (40)

and as logP (r̄ = 1|x̄, ū) = −ηC(x̄, ū)

KL (qπ(x̄, ū)||qπ0(x̄, ū)) + 〈ηC(x̄, ū)〉qπ(x̄,ū) ≤ 〈ηC(x̄, ū)〉qπ0 (x̄,ū) . (41)

Hence, as η ≥ 0 and KL (qπ(x̄, ū)||qπ0(x̄, ū)) ≥ 0 with equality iff π = π0, the result follows. �

1.2 Derivation of updates in III-A

The form of the updates can be derived by induction. In particular consider the policy of time T − 1,
πT−1. Applying Lemma 12 with a = uT−1|xT−1, b = xT and P (c = ĉ|b) = exp{−ηCT (xT )} leads to the
base case. For the inductive step we observe that we may write the KL divergence in a recursive form as

KL (qπn+1(x̄, ū)||pπn(x̄, ū)) =

∫
u0

πn+1(u0|x0)

[
log

πn+1(u0|x0)

πn(u0|x0)P (r0|x0, u0)

+

∫
x1

P (x1|x0, u0) KL (qπn+1(x1:T , u1:T )||pπn(x1:T , u1:T ))

]
(42)

We can now apply Lemma 12 recursively with a = ut|xt, b = xt+1 and

P (c = ĉ|b) = P (rt|xt, ut) exp{−Ψ̄n+1
t+1 (xt+1)} (43)

and the updates of the form (8) in III-A follow.

1.3 Proof of Convergence of Exact Updates (cf. III-A1)

The convergence proof is completed by the following proofs of the two propositions given in the main
text.

2



Lemma 3 (see also III-A1 in the main text). Let the sequence {πn} be generated by (6) and let π̂ be an
arbitrary (stochastic) policy. Then

KL (qπ̂||qπn+1)−KL (qπ̂||qπn) ≤ 〈ηC(x̄, ū)〉qπ̂(x̄,ū) − 〈ηC(x̄, ū)〉qπn+1 (x̄,ū)

Proof. Let π̂ be an arbitrary policy and consider

KL (qπ̂||qπn+1)−KL (qπ̂||qπn) (44)

=

∫
x̄,ū

qπ̂(x̄, ū) log
qπn

qπn+1

(45)

=

∫
x̄,ū

qπ̂(x̄, ū) log

T∏
t=0

πn(ut|xt)
πn+1(ut|xt)

(46)

=

∫
x̄,ū

qπ̂(x̄, ū)

T∑
t=0

log
πn(ut|xt)

πn(ut|xt) exp{−ηCt(xt, ut) +
∫
x′
P (x′|xt, ut)Ψ̄n+1

t+1 (x′)− Ψ̄n+1
t }

(47)

=

∫
x̄,ū

qπ̂(x̄, ū)

T∑
t=0

[
ηCt(xt, ut)−

∫
x′
P (x′|xt, ut)Ψ̄n+1

t+1 (x′) + Ψ̄n+1
t

]
(48)

=

∫
x̄,ū

qπ̂(x̄, ū)

T∑
t=0

ηCt(xt, ut) +

∫
x̄,ū

qπ̂(x̄, ū)

T∑
t=0

[
Ψ̄n+1
t −

∫
x′
P (x′|xt, ut)Ψ̄n+1

t+1 (x′)

]
.

(49)

(50)

Now∫
x̄,ū

qπ̂(x̄, ū)

T∑
t=0

[
Ψ̄n+1
t −

∫
x′
P (x′|xt, ut)Ψ̄n+1

t+1 (x′)

]

=

T∑
t=0

∫
x̄,ū

qπ̂(x̄, ū)Ψ̄n+1
t (xt)−

T∑
t=0

∫
x̄,ū

qπ̂(x̄, ū)

∫
x′
P (x′|xt, ut)Ψ̄n+1

t+1 (x′) (51)

=

∫
x0

P (x0)Ψ̄n+1
0 (x0) +

T∑
t=1

∫
x0:t,u0:t

qπ̂(x0:t−1, u0:t−1)

∫
xt

P (xt|xt−1, ut−1)Ψ̄n+1
t (xt)

−
T∑
t=0

∫
x0:t,u0:t

qπ̂(x0:t, u0:t)

∫
x′
P (x′|xt, ut)Ψ̄n+1

t+1 (x′) (52)

=

∫
x0

P (x0)Ψ̄n+1
0 (x0)−

∫
x̄,ū

qπ̂(x̄, ū)

∫
x′
P (x′|xt, ut)Ψ̄n+1

T+1(x′) (53)

=

∫
x0

P (x0)Ψ̄n+1
0 (x0) (54)

and hence

KL (qπ̂||qπn+1)−KL (qπ̂||qπn) = 〈ηC(x̄, ū)〉qπ̂(x̄,ū) +

∫
x0

P (x0)Ψ̄n+1
0 (55)

≤ 〈ηC(x̄, ū)〉qπ̂(x̄,ū) − 〈ηC(x̄, ū)〉qπn+1 (x̄,ū) , (56)

where in the final line we used the bound from Lemma 11. �

Theorem 4. (see also III-A1 in the main text) Let {πn} be a sequence of policies generated by (6), with
π0 s.t. π0(·|x ∈ X) has support U. Then

lim
n→∞

〈C(x̄, ū)〉qπn = minπ 〈C(x̄, ū)〉qπ (57)

3



Proof. Summing the bound of Lemma 3 over n = 0..N we have

KL (qπ̂||qπN )−KL (qπ̂||qπ0) ≤ N 〈ηC(x̄, ū)〉qπ̂(x̄,ū) −
N+1∑
n=1

〈ηC(x̄, ū)〉qπn (x̄,ū) (58)

and hence

N+1∑
n=1

〈C(x̄, ū)〉qπn (x̄,ū) ≤ N 〈C(x̄, ū)〉qπ̂(x̄,ū) +
1

η
[KL (qπ̂||qπ0)−KL (qπ̂||qπN )] (59)

≤ N 〈C(x̄, ū)〉qπ̂(x̄,ū) +
1

ηN
KL (qπ̂||qπ0) (60)

where the last line follows from KL (qπ̂||qπN ) ≥ 0. Noting that π̂ was chosen arbitrarily we may now
choose π̂ = π∗ = argminπ 〈C(x̄, ū)〉qπ so that we have

1

N

N+1∑
n=1

〈C(x̄, ū)〉qπn (x̄,ū) ≤ 〈C(x̄, ū)〉qπ∗ (x̄,ū) +
1

Nη
KL (qπ∗ ||qπ0) . (61)

Note that as the lhs side is the average expected cost over π1 . . . πN+1 there exists some n ∈ 1 . . . N s.t.

〈C(x̄, ū)〉qπN+1 (x̄,ū) ≤ 〈C(x̄, ū)〉qπn (x̄,ū) ≤ 〈C(x̄, ū)〉qπ∗ (x̄,ū) +
1

ηN
KL (qπ∗ ||qπ0) , (62)

with the first inequality following from Theorem 2.
Now, as by assumption on π0, KL (qπ∗ ||qπ0) <∞, for any ε > 0 there exists aNε s.t. 1

Nεη
KL (qπ∗ ||qπ0) <

ε and
〈C(x̄, ū)〉q

πNε
(x̄,ū) ≤ 〈C(x̄, ū)〉qπ∗ (x̄,ū) + ε (63)

which gives the required result. �

1.4 Proof of Convergence for Asynchronous Updates (cf. III-B1)

Essentially equivalent results to those for the finite horizon case can be obtained for the asynchronous
algorithm (14) in the infinite horizon setting. In general we assume that the cost is bounded and consider
finite horizon problems with growing horizon, bounding the expected cost of the infinite tail. As we
assume that the cost is discounted the expected cost of the tail goes to zero as the horizon increases.

More specifically we assume the cost is bounded, then ∃C̄ s.t. ∀π C̄ ≥ 〈
∑
t γ

tC•(xt, ut)〉qπ . For
notational convenience we shall also assume η = 1. Then we first show that

Theorem 5. Let {πi} be a sequence of policies generated by (14) and let π̂ be an arbitrary (stochastic)
policy, then

lim
N→∞

− 1

N

N∑
i=0

Ψ̄i+1(x) ≤

〈 ∞∑
t=0

γtC•(xt, ut)

〉
qπ̂

(64)

The proof is by induction on the time horizon using the following two lemmas. The base case is given
by

Lemma 6. For any ε > 0 there exists Nε s.t. for all N > Nε

− 1

N

N∑
i=0

Ψi(x0) ≤ 〈C•(x0, u0)〉qπ̂ + γC̄ + ε (65)
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Proof. Consider

KL
(
π̂||πn+1

)
−KL (π̂||πn) =

∫
u

π̂(u|x) log
πn

πn+1
(66)

=

∫
u

π̂(u|x) log exp{C(x, u)− γ
∫
y

P (y|x, u)Ψ̄i(y) + Ψ̄i+1(x)} (67)

=

∫
u

π̂(u|x)

[
C•(x, u)− γ

∫
y

P (y|x, u)Ψ̄i(y)

]
+ Ψ̄i+1(x) (68)

≤
∫
u

π̂(u|x)
[
C•(x, u) + γC̄

]
+ Ψ̄i+1(x) (69)

Summing the bound over i = 1..N we have

KL
(
π̂||πN

)
−KL

(
π̂||π0

)
≤ N

∫
u

π̂(u|x)
[
C•(x, u) + γC̄

]
+

N∑
i=0

Ψ̄i+1(x) (70)

and hence

1

N

N∑
i=0

Ψ̄i+1(x) ≤
∫
u

π̂(u|x)
[
C•(x, u) + γC̄

]
+

1

N
KL
(
π̂||π0

)
. (71)

�

The following inductive step completes the proof of Theorem 5.

Lemma 7. Assume for a given T and any ε > 0 there exists Nε s.t. for all n > Nε

− 1

N

N∑
n=0

Ψ̄n(x) ≤

〈
T∑
t=0

γtC(xt, ut) + γT C̄

〉
qπ̂

+ ε (72)

then for any δ > 0 there exists Nδ s.t. for all n > Nδ

− 1

N

N∑
n=0

Ψ̄n(x) ≤

〈
T+1∑
t=0

γtC•(xt, ut) + γT+1C̄

〉
qπ̂

+ δ (73)

Proof. Consider

KL
(
π̂||πn+1

)
−KL (π̂||πn) =

∫
u

π̂(u|x)

[
C•(x, u)− γ

∫
y

P (y|x, u)Ψ̄n(y)

]
+ Ψ̄n+1(x) (74)

(75)

Summing the bound over i = 1..N we have

KL
(
π̂||πN

)
−KL

(
π̂||π0

)
≤

N∑
n=0

∫
u

π̂(u|x)

[
C•(x, u)− γ

∫
y

P (y|x, u)Ψ̄n(y)

]
+

N∑
n=0

Ψ̄n+1(x) (76)

and therefore

− 1

N

N∑
n=0

Ψ̄n+1(x) ≤
∫
u

π̂(u|x)

[
C•(x, u)− γ

∫
y

P (y|x, u)
1

N

N∑
n=0

Ψ̄n(y)

]
+

1

N
KL
(
π̂||π0

)
(77)

≤
∫
u

π̂(u|x)

C•(x, u)− γ
∫
y

P (y|x, u)
1

N

〈
T∑
t=0

γtC•(x, u) + γT C̄

〉
qπ̂

+ ε

 (78)

+
1

T
KL
(
π̂||π0

)
(79)

=

〈
T+1∑
t=0

γtC•(x, u) + γT+1C̄

〉
qπ̂

+
1

T
KL
(
π̂||π0

)
. (80)

�
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Using the above result we may now show:

Theorem 8. Let the cost be bounded and let πn be a sequence generated policies with π0 s.t. ∀x
KL
(
π∗(·|x)||π0(·|x)

)
<∞ then

lim
n→∞

〈 ∞∑
t=0

γtC•(xt, ut)

〉
qπn

= minπ

〈 ∞∑
t=0

γtC•(xt, ut)

〉
qπ

(81)

Proof. As π̂ in Theorem 5 is arbitrary we may choose the tightest bound given by

π̂ = π∗ = argmin
π
〈C(x̄, ū)〉qπ , (82)

where we use the notation C(x̄, ū) =
∑∞
t=0 γ

tC•(xt, ut). Now as for a given x0

〈C(x̄, ū)〉qπn ≤ −Ψ̄n(x0) (83)

we have

lim
n→∞

1

N
〈C(x̄, ū)〉qπn ≤ lim

n→∞
− 1

N

N∑
i=0

Ψ̄n+1(x0) ≤ 〈C(x̄, ū)〉qπ∗ (84)

As the lhs is the average expected cost over π1 . . . πN there exists n ∈ 1 . . . N s.t.

〈C(x̄, ū)〉qπN+1
≤ 〈C(x̄, ū)〉qπn ≤ 〈C(x̄, ū)〉qπ∗ (85)

with the first inequality following from Theorem 2. Noting that by the definition of π∗, i.e., (82), the
rhs is also a lower bound gives the required result. �

1.5 Proof of Convergence for Posterior Policy Iteration (cf. III-C)

The following results establish asymptotic behavior of the posterior policy iteration as given in III-C.

Theorem 9. Let {πn} be a sequence of policies generated by (15), then

πn → argmin
π
−1

η
log 〈exp{−ηCt(x̄, ū)}〉qπ (86)

Proof. We may write the policy in terms of a suitable distribution over deterministic policies τ and
in particular πn ∝

∫
P (ut|xt, τ(·))Pn(τ(·)) where P (ut|xt, τ(·)) = δut=τ(xt). With this notation the

iteration becomes

Pn+1(τ(·)) =
1

Z
P (r̄ = 1|τ(·))Pn(τ(·)) (87)

with Z a normalisation constant. Expanding from P 0 for n iterations we therefore have

Pn(τ(·)) ∝ [P (r̄ = 1|τ(·))]n P 0(τ(·)) (88)

and hence for n→∞, P (r̄ = 1|τ(·)) dominates and Pn(τ) converges to the delta at the maximum of

P (r̄ = 1|τ(·)) = 〈exp{−ηCt(x̄, ū)}〉qτ . (89)

As log is strictly monotonic and η > 0 this establishes the result. �

1.6 Asymptotic behavior of Ψ & Ψ̄

In IV-A discussing the relation to Q-learning and TD(0) specific, claims are made about the asymptotic
values of Ψ and Ψ̄. Convergence in the absolute value of Ψ̄ to the value function follows directly from
Lemma 11 and the convergence results of III-A. As we also have shown that πn converges to the optimal
policy it follows that for any sub optimal action u in state x , πn(u|x)→ 0 which, as πn ∝ exp{Ψ(x, u)}
(cf. equation (7)), implies Ψ(x, u)→ −∞.
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2 Other Lemmas

The following lemmas although not mentioned in the main text are referenced by the preceding proofs.
In the following we use KL (qπ||pπ̂) to denote the KL divergence with unnormalised second argument,
i.e.,

KL (qπ||pπ̂) =

∫
x̄,ū

qπ(x̄, ū) log
qπ(x̄, ū)

P (x̄, ū, r̄ = 1)
. (90)

Lemma 10. Let {πn} be a sequence generated by (6), then

KL (qπn+1 ||pπn) = −
∫
x0

P (x0)Ψ̄n+1
0 (x0) (91)

Proof. This follows by application of Lemma 12. �

Lemma 11. Let {πn} be a sequence of policies generated by (6), then

〈C(x̄, ū)〉qπn+1
≤ −

∫
x0

P (x0)Ψ̄n+1
0 (x0) ≤ 〈C(x̄, ū)〉qπn (92)

Proof. We have

KL (qπn+1 ||pπn) = KL (qπn+1 ||qπn) + 〈C(x̄, ū)〉qπn+1
≥ 〈C(x̄, ū)〉qπn+1

, (93)

where the inequality follows from KL (qπn+1 ||qπn) ≥ 0. Also from (6) we have

KL (qπn+1 ||pπn) ≤ KL (qπn ||pπn) (94)

hence

KL (qπn+1 ||pπn) ≤ KL (qπn ||pπn) (95)

≤ KL (qπn(x̄, ū)||qπn(x̄, ū))− 〈logP (r̄ = 1|x̄, ū)〉qπn (x̄,ū) (96)

≤ 〈C(x̄, ū)〉qπn (x̄,ū) . (97)

It follows that
〈C(x̄, ū)〉qπn+1

≤ KL (qπn+1 ||pπn) ≤ 〈C(x̄, ū)〉qπn (x̄,ū) (98)

and by Lemma 10 the result follows. �

Lemma 12. Let a, b, c be random variables with joint P (a, b, c) = P (a)P (b|a)P (c|b, a) and P the set of
distributions over a, then

P (a) exp{
∫
b

P (b|a) logP (c = ĉ|b)} ∝ argmin
q∈P

KL (q(a)P (b|a)||P (a, b|c = ĉ)) (99)

and

− log

∫
a

P (a) exp{
∫
b

P (b|a) logP (c = ĉ|b)} = min
q∈P
KL (q(a)P (b|a)||P (a, b|c = ĉ)) . (100)

Proof. We form the Lagrangian

L = KL (q(a)P (b|a)||P (a, b|c = ĉ)) + λ

[∫
a

q(a)− 1

]
(101)

∼=
∫
a,b

q(a)P (b|a) log
q(a)P (b|a)

P (a)P (b|a)P (c = ĉ|b)
+ λ

[∫
a

q(a)− 1

]
(102)

=

∫
a

q(a) log
q(a)

P (a)
−
∫
a,b

q(a)P (b|a) logP (c = ĉ|b) , (103)
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where we use ∼= to indicate equality up to an additive constant. Setting the partial derivatives w.r.t.
q(a) to 0 gives

0 = log
q(a)

P (a)
+ 1−

∫
b

P (b|a) logP (c = ĉ|b) + λ (104)

= log
q(a)

Z(λ)P (a) exp{
∫
b
P (b|a) logP (c = ĉ|b)}

, (105)

where Z is a function of the Lagrange multiplier. The result in (99) now directly follows and more
specifically the minimizer is

q∗(a) =
P (a) exp{

∫
b
P (b|a) logP (c = ĉ|b)}∫

a
P (a) exp{

∫
b
P (b|a) logP (c = ĉ|b)}

. (106)

Substituting q∗ into the KL divergence, we have

KL (q∗(a)P (b|a)|| P (a, b‖c = ĉ)) (107)

=

∫
a

q∗(a) log
q∗(a)

P (a)
−
∫
a,b

q∗(a)P (b|a) logP (c = ĉ|b) (108)

=

∫
a

q∗(a) log
exp{

∫
b
P (b|a) logP (c = ĉ|b)}

Z

−
∫
a

q∗(a)

∫
b

P (b|a) logP (c = ĉ|b) (109)

=

∫
a

q∗(a)

∫
b

P (b|a) logP (c = ĉ|b) +

∫
a

q∗a log
1

Z

−
∫
a

q∗(a)

∫
b

P (b|a) logP (c = ĉ|b) (110)

=

∫
a

q∗(a) log
1

Z
(111)

= − logZ , (112)

with Z =
∫
a
P (a) exp{

∫
b
P (b|a) logP (c = ĉ|b)}. �
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