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Abstract— We propose a novel approach to transfer reach
and grasp movements while being agnostic and invariant to
finger kinematics, hand configurations and relative changes in
object dimensions. We exploit a novel representation based
on electrostatics to parametrise the salient aspects of the
demonstrated grasp. By working in this alternate space that
focuses on the relational aspects of the grasp rather than
absolute kinematics, we are able to use inference based planning
techniques to couple the motion in abstract spaces with trajec-
tories in the configuration space of the robot. We demonstrate
that our method computes stable grasps that generalise over
objects of different shapes and robots of dissimilar kinematics
while retaining the qualitative grasp type – all without expensive
collision detection or re-optimisation.

I. INTRODUCTION

Movements that involve reaching and grasping are difficult
to synthesize, due to collisions between the hand model
and its environment, the self-collisions, and the complex
shape of the open space, especially when concave objects are
involved. Synthesis of such movements is expensive because
collision detection and global path-planning are required.
Furthermore, the movement is no longer valid once the
geometry of the hand or the shape of the object to be grasped
change.

A similar problem happens in applications such as tele-
operation [10] or learning from demonstration [12], where
the aim is to compute the mapping between the human hand
and the robotic hand that have different geometrical or even
topological structures. This mapping is usually non-linear
and it is computed either using machine learning techniques
[3] or it is defined manually by exploiting the task definition
using a proxy object [5] or fingertip position correspondence
[18]. These ways of mapping the motion require either
large amount of sample data (in the former case) or they
restrict the mapping in terms of complexity of the motion
or dissimilarity of the kinematics of the two systems (in the
latter case).

In this paper, we propose to solve these problems by
using a novel representation that borrows the concepts from
electrostatics [26] that looks to define the spatial relationship
between the hand and the object, as well as the envelopment
of the hand around the object. Firstly, by virtually charging
the object, we compute an object-centric coordinate system
that we call electric coordinates. The electric coordinates
can canonically parametrise the open space around objects.
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Fig. 1. Structure of motion planning problem using multiple representa-
tions: joint space (defined by kinematics), work space (defined by kinematics
and grasping style) and abstract spaces (augmented by grasping style).
Changes of kinematics result in re-targeting, changes of the shape of the
object result in remapping and changing the abstract state are performed by
replanning.

The movements of the hand model defined in the electric
coordinates can be canonically parametrised even when they
involve extensive close interaction between the hand model
and the object. Also, due to the harmonic nature of the
electric coordinates, the hand model can be easily guided
towards the object without suffering from local minima.
Secondly, based on Gauss’s law, we quantify how much the
object is surrounded by the hand model using the electric
flux. This allows us to successfully guide the hand to grasp
the object using the electric flux as a control parameter.

Using this representation, we can significantly reduce the
complexity of motion planning and transfer by offloading
the computational effort onto the mapping between spaces,
which can be easily done by the electrostatic parameters.
The complexity of the space for planning gets lowered
by abstracting the movements from that in the joint angle
space to that in the electrostatic parameters. This mapping
enables us to apply optimisation methods with local motion
planning, where exploratory methods such as RRT or PMR
would be necessary otherwise. The optimal trajectory is com-
puted within the Approximate Inference Control framework
(AICO) that allows combining the electrostatic representa-
tion with other representations such as the control effort in
joint space. AICO has been used in recent publications for
planning in topological spaces that have similarities with our
electric coordinate system [11].

Contributions:
• Electric field based representations suitable for transfer-

ring reaching and grasping motion.
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(a) Motion capture (b) Correspondence (c) Electric field tracing (d) Grasps transferred to a new object and hands

Fig. 2. Synthesizing a grasping motion from motion capture. (a) An interaction is captured of an actor grasping the object. (b) A dense mapping to a new
object is produced using the electric field. (c) The interaction points on the hand projected to the object’s surface by following the electric field gradient.
The solid line is the path on the surface that the projection must match for the rest of the sequence. (d) The re-targeted motion.

• Validation that the proposed representations are simple
enough so that local optimisation methods such as
AICO can be used.

• Experiments showing grasp transfer/teleoperation with
different bias/style.

II. RELATED WORK

Our research is related to topics including (1) grasp
synthesis, (2) grasp transfer, and (3) potential-field guided
path planning.

A. Grasp Synthesis

Grasping is an active area of research within robotics
and many methods for achieving stable grasps under various
constraints have been proposed in the literature. The authors
of [16] propose replacing the object with a combination of
grasping primitives such as spheres and cylinders. Stable
grasps for these primitives are precomputed which allows for
a fast search for a feasible and stable grasp. In [6] a method
using decomposition trees is used to prune the intractably
large space of possible grasps into a subspace that is likely
to contain many good grasps. In [19], the authors propose
a method for learning a manifold with high grasp quality in
the space of the robot’s and object’s DOFs by using SVM.
These methods often consider only the grasping problem
and but they ignore the reaching problem. Additionally, the
planned grasps do not generalise over robots with dissimilar
kinematics. The authors of [3] propose to use dimensionality
reduction techniques to compute so called eigengrasps. In [4]
an example-based system is described for planning stable
grasps that are functionally suitable for certain tasks. These
techniques allow for a certain amount of generalisation, but
the reaching motion still has to be planned separately.

B. Grasp Transfer

The areas of teleoperation and learning from demonstra-
tion address the the issue of grasping from the point of
view of mapping the demonstrated grasp onto a robotic
system with dissimilar kinematics. There are three distinct
approaches in the literature: 1) Joint-to-joint mapping is
taking advantage of similarity of human grasp poses and
aims to produce grasps of similar quality directly from
demonstrated joint angles. Dimensionality reduction methods
have been used to effectively map human demonstrated poses
onto different robotic manipulators [3]. 2) Cartesian space

mapping has been used to map fingertip positions [18]. These
methods focus on preserving geometric relations between
the two spaces and allow to transfer precision grasps. The
mapping between hands with different number of fingers is,
however, not well defined, and these methods do not gen-
eralise over different shapes of objects. A recent extension
of this approach that maps contact positions of a grasp to
similar objects is presented in [9]. This technique warps the
surface geometry of a source object to a target object along
with the contact points of a grasp, but does not deal with the
non-contact relationships between the hand and the object,
nor does it consider the approach for the grasp. 3) The pose
mapping is a indirect joint space mapping technique. In [17]
the authors propose a method based on functional analysis of
the human hand and results in a algebraic transformation of
human hand configuration into target domain configurations.
These three approaches have been later combined [12]. The
work presented in [5] shows how the pose mapping problem
can be solved using a proxy object by representing the grasp
by a minimal ellipsoid containing the fingertips. The inverse
kinematics is then computed with respect to the shape of
ellipsoid defined by the demonstrated hand pose. Unlike our
method, this ellipsoid representation limits the motions that
can be generated via this approach.

C. Potential-Field Guided Path Planning

In [13] authors propose to compute a virtual potential
field using local areas of attraction and repulsion to guide
the robot towards the goal while avoiding obstacles. The
authors of [8] applied this idea to perform grid search
within the robot’s configuration space with potential field
to find stable grasps. In [2] dynamic potential fields have
been used to selectively explore regions of interest when
planning grasping of unknown objects. [23] use potential
fields in controlling decentralised point-based robots in the
transport of simple convex objects. Unlike our method, none
of these potential-based methods have non-intersecting field
lines when dealing with complex geometry.

Our work also falls into the category of potential-field
guided methods. We compute an electric field and potential
using charge simulation, which can be applied for guiding
the hand model around the object. We make use of the field
not only for path planning but also for generalization of
the grasping behaviour, which is useful for transferring the
grasping motion.



(a) Electric field lines of charged objects (b) Spherical mapping

Fig. 3. An example of charged objects. (a) The charge is mapped from blue to red, representing low charge and high charge respectively. (b) Projection
of 2D spherical coordinates computed using electric field showing correspondence between different objects.

III. OVERVIEW

We consider the grasp transfer as the problem of trans-
ferring the relative configuration of the manipulator and the
object. We define the combined hand and arm model as a
kinematic system with N number of controllable joints q
where the positions of M number of points ~pi(q) attached
to a link connected to the system by joint j is defined by the
forward kinematics function fj(q):

~pi(q) = fj(q), q ∈ RM . (1)

We use the points ~pi(q) to either approximate the desired
contact surface of the hand (via W number of triangles,
see Fig. 7(a)), or to represent the fingertip positions (see
Fig. 2(c)). We then use triangulation to approximate the
shape of the object using K number of points ~pk and L
number of triangles (see Fig. 2(b)). Our goal is to abstract
the relationship between points ~pi(q) and ~pk so that the joint
configurations q produce consistent, stable and semantically
similar reaching and grasping motion when the geometry of
the hand model changes (changing the forward kinematics
function fj(q)) or when the shape of the object changes
(changing ~pk).

We now abstract the hand-object interaction using prop-
erties of a virtual electrostatic field defined using vertices
of the object mesh ~pk. Once the motion is defined in
the abstract representation, it can be easily transferred to
different hand models and objects. The semantic similarity is
encoded within the representation through fingertip position
in the electrostatic field (see Section IV-A) and through
hand coverage (see Section IV-C). The trajectory for new
hand model is computed using the stochastic optimization
framework AICO, such that the hand model follows the
desired trajectories of the electrostatic parameters as much
as possible, while avoiding collisions and satisfying physical
constraints.

IV. SPACE PARAMETRISATION BY ELECTROSTATICS

We briefly review the electrostatic parametrisation pro-
posed by Wang et al. [26], which computes an object-
centric curvilinear coordinate system that resembles polar
coordinates. Such a coordinate system is useful for defining
reaching and grasping motion with respect to the object as
it gives a relative spatial relationship between a point and a
charged object.

A. Computing the Electric Coordinates

In order to compute this coordinate system we virtually
charge the object as a conductor and then parametrise the
outer space of the object using the simulated electric field
and potential. Using the principle of superposition and the
fact that the potential around a charged object is proportional
to the charge, we can construct a dense linear system of
L equations, each representing the notion that the potential
must be 1 volt at some probe point on the surface of the
object, with L number of variables denoting the unknown
charges Ql for each of the elements:

V1(~x1)Q1 + V2(~x1)Q2 + · · ·+ Vn(~x1)QL = 1

· · ·
V1(~xL)Q1 + V2(~xL)Q2 + · · ·+ Vn(~xL)QL = 1,

(2)

where Vl(~xm)Ql denotes the potential Vl at point ~xm due
to the l-th triangle carrying charge Ql in the analytical form
[7]. For the probe points ~xm we select the barycentres of the
mesh triangles (even though any L different points inside or
on the surface of the object would do). Equation 2 defines
a dense linear system that can be written down in matrix
notation as PQ = 1. This system is typically ill-conditioned,
and therefore we solve it using pseudo-inverse of P in the
least squares sense.

Fig. 3(a) visualizes the distribution of charges over the
surface of different objects and the resulting electric fields
around them by plotting field lines ~E = −∇ϕp where the
potential ϕp is a function of surface charges, object and the
query point. In our system we calculate the potential of each
point ~pi(q) attached to the hand (related to the joint angles
q through Equation 1). We compute these from L uniformly
charged triangles defined by points ~pk with surface charges
P

φp(q) = fp(~pi(q), P, ~pk) (3)

as described in [7].
After the charge simulation, the resulting electric field can

be used to parametrise the space. Indeed, the field lines
emanating from each point on the surface never intersect
(or else the conservation of energy would be violated), and
since the potential harmonically decreases with distance from
the object, each point along a particular field line has a
unique potential (see Fig. 4 (a)). By following the field lines
from the surface outwards, we can map all the points on



the object to an infinitely large sphere outside, giving us a
2 dimensional parametrisation of the surface of the object.
Here we parametrise the 3D space by mapping the spherical
coordinates of the infinitely large sphere to every location
in the space by following the field lines (see Fig. 3(b)). We
compute this parametrisation numerically by evaluating the
path integral of the electrostatic field along the field line C
that passes through a point ~x via

fuv(~x) =

∫ ∞
C

~E(~x)d~x,where ~x ∈ C. (4)

φuv(q) =


fuv(~p0(q))
fuv(~p1(q))

...
fuv( ~pM (q))

 (5)

In practice the sphere is not infinite, as we follow the lines
only to a low potential, ensuring the endpoints are far from
the object. We use the azimuth u and elevation v (from the
endpoints of projection fuv(~x)) as the first two parameters
in our parametrisation as φuv , and the electric potential φp
as the final coordinate. Following Wang et al., we call this
parametrisation electric coordinates. Additionally, we also
compute the inverse map from electric coordinates φp(q)
and φuv(q) to the position on the surface ~si of the object by
following the field lines inwards by numerically evaluating
the integral ~si(q) =

∫
C
− ~E(~x)d~x (see Fig. 5). This gives us

a projection onto the surface of the object for any point in
the outer space of the object. The correspondence between
different objects is then defined through the mapping onto the
sphere. This is a bijective mapping defined for all points on
the surface of the object when there are no saddle points. See
Fig. 3(b) for examples. This mapping exists even for object
of dissimilar shapes and arbitrary topology due to the non-
intersection property of the field lines. The projection onto
the surface of the object also allows us to compute force
closure directly from surface points projected using electric
coordinates

φfc(q) = ffc(~s1..M (q)) (6)

Function ffc is the force closure measure defined in [15].
This assumes that the projected points will become contact
points when distance to surface of the object decreases,
which is valid when close to the object. Although these
projections can be computed at run-time, we pre-compute
the electric coordinates at the vertices of a 3D grid structure
surrounding the object in order to decrease computational
cost. We look up the electric coordinates for points ~pi(q) in
the 3D grid at runtime.

The electric field computational complexity is O(L)
(where L is the number of triangles comprising the object), as
defined by the superposition principle and discussed in [26].
This lookup grid reduces the computational complexity of
the potential calculation for a single point from O(L) to
an O(1) lookup and trilinear interpolation. It also reduces
the complexity of computing the corresponding point on
the surface of the object given a point in space, as this is

(a) (b)
Fig. 4. (a) The grid (field lines and equipotentials) of our curvilinear electric
coordinate system. (b) Illustration of Gauss’s law for a charged point (red)
entirely surrounded an arbitrary surface (grey).

Fig. 5. An illustration of the projection of points ~xi onto the surface of an
object using the electric coordinates. Vx is the isosurface (surface at equal
potential, dashed line) of the electric field that ~xi lies on, ~si is the point on
the surface of the object corresponding to ~xi obtained my increasing the
potential along the electric field line that intersects ~xi (shown as a solid red
line).

performed by using the Euler method of integration along
the field line until the surface is reached. This means that
φuv and φp are calculated during runtime in O(M) time,
where M is the number of points attached to the hand as
defined in Section III.

B. Combining The Electric Field with the Interior Distance
Field

The calculations presented so far as an approximation of
the electric field are only valid for the outer space of the
object. Although theoretically the field is a consistent 1 volt
both on and inside the surface of the object, sampling our
approximation of this field inside the object leads to values
less than the surface value of 1 volt. This not only causes a
local maxima at the surface of the object but means that the
local potential value does not define whether we are ‘inside’
the object or not.

To alleviate this problem we post-process our computed
voxel grid to store the values of a distance field as the
potential for interior points, which computes (1+ ||~x−~b||)3
where ~x is the point in question and ~b is the closest surface
point. In this way the field increases in the direction of the
medial axis of the object and decreases in the direction of
the nearest surface. A point that finds itself inside the object
would be able to escape the object by moving along this
field towards a potential value of 1, bringing it to the closest
point on the surface of the object.

In practise we compute this by using a physics engine to
emit a ray in an arbitrary direction from the point and return



flux = 0.05 flux = 0.5 flux = 0.85

Fig. 6. A 2 dimensional illustration of different configurations of
a deformable object and a charged reference object labelled with the
corresponding flux value of the deformable object.

(a) The flux surface

Fig. 7. Here we show the flux surface as specified on the original hand
model and the Schunk robotic hand model. The coverage of the object by
these hands is reported using the flux surface.

the first point on the object we hit. If no object is hit, we
can safely ignore the point as it is outside of the object (with
the assumption that the object is closed). If the object is hit,
we compute the dot product between the ray and the normal
vector for the triangle at the point we hit. If it is positive (the
ray has hit on the inside of the triangle), we then recalculate
the potential of this point using the interior distance field
calculation as previously specified.

C. Using Electrostatics to Compute Coverage

This electrostatic simulation on the object can also be used
to evaluate the amount the object is surrounded by the hand
model using a physical property called flux, which is the
surface integral of an electric field through a surface. In
terms of a representation for planning this is interesting as
it encodes the relative ‘envelopment’ of a surface around an
electrically charged object.

According to Gauss’ law, a closed surface surrounding
a charged object will always have a constant flux value, no
matter the relative transformation or deformation of the outer
surface: ∮

S

~E · d ~A =

∮
S

~E · ~̂ndA =
Q

ε0
= const, (7)

where ~E is the electric field being integrated over the surface
S surrounding the charged object (with charge Q). d ~A is a
small region of S (a vector with magnitude dA pointing
in the normal direction ~̂n), and ε0 is the electric constant
(see Fig. 4(b)). This feature makes the flux suitable for
representing the coverage of the hand around the object.

Examples of different configurations in which a de-
formable object is surrounding the reference object are
shown together with the flux value in Fig. 6. It can be

observed that the more the object is surrounded, the larger
the flux is. For polygonal meshes, the flux can be computed
by summing those of all the triangles in the mesh, for which
an analytical expression exists [25]. We compute flux for our
system by defining a proxy mesh of W triangles that covers
the contact surface of the hand (as mentioned in Section III,
defined by ~pi(q) and shown in Fig. 7(a)), then summing the
flux across them caused by the individual triangles making
up the object (defined by ~pk):

φf (q) =

W∑
i=1

L∑
j=1

fflux(t
surf
i , tobj

j ) (8)

where tsurf
i is the ith triangle in the proxy surface on the hand,

tobj
j is the jth triangle defined by the object. W ,L are the

number of hand surface triangles and the number of object
triangles respectively. The flux function between a charged
(object) and an uncharged (hand) triangle, fflux, is described
in [25] and further explained in [26] (Appendix A.3).

In summary, the advantages of this Electrostatics repre-
sentation when there are no saddle points are: a continuous
mapping from the object’s surface to the outer space, non-
intersecting field lines, a definition of a coverage mea-
sure, and a continuous mapping between objects. The non-
intersecting property of the field lines is a well known
homology invariant that has been studied in the fields of
physics and topology [1].

V. MOTION PLANNING

Given the abstract representations introduced in Section IV
one would wish to compute the trajectory in the joint space
q0:T and the controls u0:T to execute this trajectory to
perform a reaching and grasping motion using a robotic ma-
nipulator. We will now introduce the Approximate Inference
Control (AICO)[20] to perform planning in the above defined
abstract space. AICO frames the problem of optimal control
as a problem of inference in a dynamic Bayesian network.
Let xt be the state of the system—we will always consider
the dynamic case where xt = (qt, q̇t). Consider the problem
of minimizing (the expectation of) the cost

C(x0:T , u0:T ) =

T∑
t=0

cx(xt) + cu(ut) (9)

where cu describes costs for the control and cx describes
task costs depending on the state (usually a quadratic error
in some task space). We describe the robot dynamics by

configuration space

control

electric coordinates

tasks

y0 y1 y2 yT

u2u1 uTu0

z0 z1 z2 zT

x0 x1 x2 xT

b̂(xT )

Fig. 9. AICO in configuration and electrostatic space. The grey arcs
represent the approximation used in the end-state posterior estimation.



(a) Two finger grasp (b) Three finger grasp

Fig. 8. Grasping objects using electric flux. A two finger grasp (a) and three finger grasp (b) achieved through weighting. An illustration of the weightings
are shown on the flux surfaces here. Blue striped surfaces have lower weights. The motion is semantically similar and adapts gracefully to new relative
positioning of the hand and the object.

the transition probabilities P (xt+1 |ut, xt). The AICO frame-
work translates this to the graphical model

p(x0:T , u0:T ) ∝ P (x0)
T∏

t=0

P (ut)

T∏
t=1

P (xt |ut-1, xt-1)

(10)

·
T∏

t=0

exp{−cx(xt)} .

The control prior P (ut) reflects the control costs, whereas
the last term exp{−cx(xt)} reflects the task costs and
can be interpreted as “conditioning on the tasks” in the
following sense: We introduce an auxiliary random variable
zt with P (zt = 1 |xt) ∝ exp{−cx(xt)}, that is, z = 1 if
the task costs cx(xt) are low in time slice t. The above
defined distribution is then the posterior p(x0:T , u0:T ) =
P (x0:T , u0:T | z0:T =1).

A. Computing novel trajectories in electrostatic spaces

Fig. 9 displays a corresponding graphical model. The
bottom layer corresponds to the standard AICO setup, with
the motion prior P (xt+1 |xt) =

∫
u
P (xt |ut-1, xt-1) P (ut) du

implied by the system dynamics and control costs. Addi-
tionally it includes the task costs represented by P (zt =
1 |xt) = exp{−cx(xt)}. The top layer represents a process
in arbitrary task space with a linear Gaussian motion prior
P (yt+1|yt). Both layers are coupled by introducing additional
factors

f(xt, yt) = exp{−1

2
ρ||φ(qt)− yt||2}, (11)

which essentially aim to minimize the squared distance
between the state yt (e.g. in the electric coordinate space)
and the one computed from the joint configuration φ(qt)
(as defined in Equation 2 and for electric potential and
flux respectively), weighted by a precision constant ρ. Note
that using a local linearisation of φ (having the Jacobian
of the electric coordinates) is sufficient. Here we make the
assumption that trajectories in these task spaces can be effec-
tively represented using multivariate Gaussian distributions.
We justify this assumption by the fact the electric field is
homogeneous and it contains no or only few local minima
(for obstacles with genus larger than 1).

These factors treat the electric coordinates yt as an addi-
tional task variable for the lower level inference. Additional

nodes can be added to the graphical model the same way as
yt to extend the model with another task variable, such as
electric flux or collision avoidance. We then define the task
cost as

cx(xt)=ρp||φp(qt)−yp||2+ρuv||φuv(qt)−yuv||2

+ ρf ||φf (qt)−yf ||2 + ρfc||φfc(qt)||2

+ ρc||φc(qt)||2 (12)

where φp(qt), φuv(qt), φfc(qt) and φf (qt) are defined
in equations 3, 5, 6 and 8 respectively, and φc(qt) is the
collision cost computed as reciprocal distance to the closest
obstacle. We use the chain rule to compute the Jacobian of
electric flux and the collision measure and the finite dif-
ferences method to approximate the Jacobian of the electric
coordinates and force closure. Refer to [24] for further details
about how to extend the graphical model and how to perform
the inference using message passing algorithm. The control
cost is implicitly added through the inference process.

VI. EXPERIMENTS

To validate our representation we performed experiments
in motion transferral and planning using the electric coordi-
nates. We used the KUKA LWR4 robotic arm in combination
with the Schunk hand, Shadow hand and KCL Metamorphic
hand [27] in our experiments to show transferral of human
motion to robotic hands with different capabilities.

An important part of the transferral of motion is captur-
ing the original scene accurately, as the transferral process
relies heavily on the initial motion. In order to do this
we use a magnetic motion-capture system called the Pol-
hemus Liberty [14], a Microsoft Kinect, and the technique
in [22] for capturing both the hand configuration and the
object’s location for the duration of an interaction. This
involves capturing the approximate object geometry using
aligned pointcloud data from the Kinect, applying magnetic
markers and computing transformations for each rigid body
in the scene (see Fig. 2(a) and Fig. 2(b)), then using IK
to reconstruct the hand motion with the magnetic marker
transformations as targets for each finger. This results in an
digitized scene with both geometry and motion data. See
[21], [22] for further details.

A. Motion Transfer using Electric Coordinates
We now demonstrate grasp transfer between a human hand

and a robotic hand. The object we use here is a spray bottle,



(a) Force closure grasp (b) Precision grasp (c) Precision grasp and pick up

Fig. 12. Planning successful grasps while reaching around an obstacle. (a) Force-closure grasp maximising stability. (b) Precision grasp with style defined
using electric coordinates. (c) Precision grasp implemented on hardware and picking up the spray bottle.

(a) Schunk Grasp

(b) Shadow Hand Grasp

(c) KCL Metamorphic Hand Grasp

Fig. 10. Transferred motion is applicable to different robot hand mor-
phologies. The same electric coordinate sequence is applied to the Schunk
hand (a), the Shadow hand (b), and the KCL Metamorphic hand (c). The
final grasp is shown here.

which has a standard way of holding (the fingers being
wrapped around the bottle neck and one placed finger on
the trigger) which we intend to transfer. First, significant
points are manually selected on the surface of the hand, and
their electric coordinates are recorded during playback of the
motion. During our experiments, we found that selecting the
finger tips, interphalangeal joints, and the wrist gave a good
representation of the whole hand motion. This gives us a per-
frame sequence of points in the space of electric coordinates.
In addition to this, we also compute the total flux passing
through a mesh defined over the surface of the hand, giving
us a measure of coverage and overall orientation towards
the object. A mapping between the fingers and the Schunk
hand is given. This allows us to use the electric coordinate

(a) Initial bottle grasp (front and top view)

(b) Transferred grasp to soda can (front and
top view)

Fig. 11. A grasp sequence transferred from a bottle to a soda can. These
two objects are different but the grasp can be transferred without any tuning
of parameters. The final grasp is shown here.

representation of the motion that has been captured to apply
to the robotic arm using AICO framework. Task variables
are set to: electrostatic flux difference ||φf (qt)−yf ||2 (the
flux passing through the triangles in Fig. 7(a)), electrostatic
potential difference ||φp(qt)−yp||2 and electrostatic UV pro-
jection difference ||φuv(qt)−yuv||2. We minimise these costs,
and so minimize the difference in the electric coordinates
between the original motion given by the human hand and the
newly generated motion for the Schunk hand and the KUKA
LWR4 robotic arm. To show that our method generalizes
over robots of dissimilar kinematics we transfer the motion
to Shadow Dexterous Hand, KCL Metamorphic Hand and
Schunk Robot Arm (see Fig. 10). The resulting motion is
semantically similar in terms of relative final grasp locations
and approach to the object, which allows us to demonstrate
kinematic tasks using the natural interface of our own body.
We also performed simplified experiments on a sphere to
show transfer of different grasp styles. Results are shown in
Fig. 8(a) and Fig. 8(b). These grasps are valid when applied
to the hardware.

We are also able to transfer the same grasp between ob-
jects. We do this in a similar manner to the transfer between
manipulators, by mapping the input motion to the electric



coordinates and then applying the motion to a new object
using the task variables as specified above. An example is
shown in Fig. 11.

B. Motion Planning using Electric Coordinates

We now add an obstacle into the environment and perform
motion planning in the electric coordinate space (see Fig. 12).
We have chosen to use AICO to perform the necessary
planning. We have set up the system with the following task
variables: collision avoidance ||φc(qt)||2 and force closure of
electrostatic projection of the fingertip positions ||φfc(qt)||2
(for a stable grasp). We have used the original transferred
trajectory as initialisation. Since all of the task variables are
well defined everywhere in the workspace, we were able to
iterate AICO till convergence. Fig. 12 shows the result of
planning a reaching and grasping for a scenario where naive
motion transfer fails. The planner computed a stable generic
grasp for the spray bottle (see Fig. 12(a)). We have than
added a task variable using spherical coordinates similar to
the previous experiment. In this case, however, we specify a
target in spherical coordinates only at the last time step of
the trajectory. This allows us to encode a bias (or a style)
while the remainder of the trajectory is relies predominantly
on potential and force closure priors. Fig. 12(b) shows the
resulting precision grasp around the neck of the spray bottle
and Fig. 12(c) shows the robot executing this plan and
subsequently picking up the spray bottle.

VII. CONCLUSIONS

We have exploited a novel representation for grasp transfer
based on electrostatics to parametrise the salient aspects of
the demonstrated grasp in terms of spatial relationship by
using the flux as an envelopment measure and the electric
coordinates of multiple points per link as the relative po-
sition and orientation. By working in this alternate space
that focuses on the relational aspects of the grasp rather
than absolute kinematics, we were able to use Approximate
Inference Control, a local optimisation technique, to couple
the motion in abstract spaces with trajectories in the config-
uration space of the robot. We have demonstrated that our
method computes stable grasps that generalise over objects
of different shapes and robots of dissimilar kinematics while
visually retaining the qualitative grasp type. Although the
pre-processing stage takes a significant amount of time to
generate the field we have also presented optimisations that
made it possible to use these representations for near real-
time applications.
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