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Abstract― Sensory uncertainty affects our perception and 

motor actions, but the mechanisms by which we estimate 

uncertainty are largely unexplored. We introduce a novel 

experimental paradigm that requires subjects to continuously 

report their (evolving) sufficient statistics of visual cues over 

time. We show that subjects rapidly accumulate evidence 

over the course of a trial to form an accurate estimate of the 

mean that equally weights all seen cues. Moreover, subjects 

have knowledge of their continuous objective uncertainty, 

although it is estimated with a conservative safety margin. 
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1. Introduction 
The uncertainty of sensory information influences 

perception when we reach for noisy targets [1] and we 

combine multiple sensory modalities by weighting sensory 

information according to their reliabilities [2]. A growing 

body of psychophysical experiments supports the proposition 

that perception is statistically-optimal. However, despite its 

fundamental importance to the theory, the question of how 

humans gather the relevant statistical information to make 

optimal decisions remains largely unexplored. Recently it 

was shown that subjective estimation of sensory uncertainty 

is related to objective uncertainty [3] which may be achieved 

by accumulating sensory evidence over time [4]. 

We have developed a novel task that requires subjects to 

explicitly track the statistical properties of noise-perturbed 

visual cues. We ask subjects to continuously (i) track the 

mean of the cues; and (ii) indicate the range in which they 

believe the mean of the cues to lie. We modulate the 

underlying distribution of the cues by adjusting the cue 

variance from trial-to-trial and by inducing cue perturbations 

within trials. This allows us to measure the contribution of 

each visual cue to the formation of mean and confidence 

estimates and to probe the mechanisms of temporal cue 

integration. 

 

2. Methods 
The experimental setup involves using a projection 

arrangement (Fig.1A, see [2]) and subjects control a variable 

sized “net” with the forefinger and thumb of their right hand. 

The visual cues consisted of a sequence of points drawn 

from a prescribed mean and variance during a single trial 

(Fig.1B) and distributed in time rather than space -- this 

allows us to probe how the perception of mean and 

uncertainty evolve as evidence arrives. On each trial the 

standard deviation of the cues is varied,   {50, 120, 200} 

pixels. Each 4-second trial comprises 15 cues, separated into 

three blocks, b  {1, 2, 3}, one of which is perturbed by a 

fixed amount a  {-0.3, 0, 0.3} pixels. On each trial , a 

and b are chosen at random in a fully counterbalanced 

design. These manipulations were crucial to enable us to 

calculate the influence of each cue on the behavioural 

decision. Subjects are required to indicate the range of values 

in which they believe the mean of the cues to lie, using a 

variable-aperture cursor (Fig. 1C), controlled by their thumb 

and forefinger - defining a confidence window. This 

approach has previously been used to measure subjective 

uncertainty of a random walking stimulus [4]. Finger 

positions are tracked and recorded using a Polhemus Liberty 

240Hz motion tracking system. Fourteen naive, right-handed 

healthy volunteers completed a calibration experiment to 

measure baseline performance in each condition -- same as 

the main experiment described above, except subjects 

controlled a fixed-size cursor. The resultant localisation 

accuracy defined the objective uncertainty for each 

experimental condition. In the main experiment, the task was 

deemed successful on a given trial if the mean of the cues 

lies within the aperture of their net: points were awarded in 

such cases. The subjects were encouraged to match this 

objective uncertainty, by awarding maximal points if 

subjects were successful and chose an aperture less than or 

equal to their expected objective uncertainty and fewer 

points for larger apertures. 

Trajectories were recorded and separated into a mean 

estimate trajectory and a confidence estimate trajectory. To 

compute the contribution of each visual cue to the mean 

estimate, a multiple linear regression was performed at each 

Figure 1. Experimental Setup. 

(A) Subjects observe visual cues 

through a projection setup (see [2]). 

(B) During a trial a sequence of 

noisy visual cues are generated 

around a randomised target location 

, sampled from a distribution with 

standard deviation . On each trial, 

 is varied and subsets of cues are 

perturbed. (C) Subjects indicate the 

range of values in which the mean 

of the cues is believed to lie, using 

a visual cursor controlled by their 

right hand. 



 

 

time-step using a non-negative weight least-squares method 

[5]. This method assigned a weight to each cue as a measure 

of its contribution to the decision at each time step. 
 

3. Results 
Performance in the calibration experiment was compared 

to the main experiment. An ANOVA (within-subjects) of 

mean endpoint error found no significant difference between 

the two (F2,12=0.022, p=.86), justifying use of the calibration 

data to shape the rewards. 

Typical trajectories in the main experiment are shown in 

Fig.2A. The effect of cue perturbations and cue variance 

were analysed. Early perturbations resulted in larger 

trajectory deviations than later perturbations and larger cue 

variance resulted in greater trajectory variability and 

increased endpoint errors. These findings were robust across 

subjects (data not shown). 

We computed the contribution of each cue to the mean 

estimate (see methods). This revealed that cues were 

weighted according to an integration window that assigns 

approximately equal weight to all cues (prior to a fixed 

delay, see Fig. 2B and caption). The integration window is 

flat at each time point, indicating that subjects integrate new 

evidence and reweight old evidence continuously. The 

weight assigned to each cue rises as it is observed but then 

decays to remain equally weighted with the other cues (Fig. 

2C). These findings (and the one related to cue uncertainty) 

are consistent with an ideal-observer model with simple 

sensory and motor constraints that we have fitted (omitted 

due to space constraints). 

Fig. 2D illustrates an increase in confidence over time as 

more cues arrive, represented by a gradual reduction in the 

confidence window. Across subjects the confidence window 

increases as a function of cue variance and the onset of 

perturbations (see Fig. 2D and captions). 

An ANOVA (within-subjects) on the objective uncertainty 

revealed significant main effects of  (F2,12=261, p<.001), 

and p (F2,12=110 , p<.001), and likewise an ANOVA on 

confidence window revealed significant main effects of   

(F2,12=29.5 , p<.001) and p (F2,12=37.6, p<.001). However, 

the confidence window does not match the objective (Fig. 

2E) consistent with [3] - subjects tend to be conservative on 

the confidence window necessary to achieve the maximum 

score.  
 

References 
[1] Tassinari, Hudson and Landy (2006) Combining priors 

and noisy visual cues in a rapid pointing task. J Neurosci 

26: 10154–10163.  

[2] Ernst and Banks (2002) Humans integrate visual and 

haptic information in a statistically optimal fashion. 

Nature 415: 429–433.  

[3] Barthelmé and Mamassian (2009) Evaluation of objective 

uncertainty in the visual system. PLoS Comput Biol 5: 

e1000504.  

[4] Graf, Warren and Maloney (2005) Explicit estimation of 

visual uncertainty in human motion processing. Vision Res 

45: 3050–3059. 

[5] Lawson and Hanson (1974) Solving least squares 

problems. Prentice-Hall, Chapter 23, p. 161 

Figure 2. Results. (A) Typical trajectories showing the mean estimate (solid red and blue lines) and confidence estimate (dashed red 

and blue lines) as a result of cue sequence (black dots). An early-onset rightward perturbation (red) and middle-onset leftward 

perturbation (blue) are shown. (B) Weights assigned to the cues seen so far (solid lines)  SEM across subjects (shaded regions), 

computed by least-squares regression at each time step (see methods). Coloured arrows indicate the time step at which the 

correspondingly coloured integration window is observed. (C) Weights assigned to each cue over time  SEM across subjects. 

Coloured arrows indicate the cues presented at each time step and the correspondingly coloured curve indicates the evolving weight 

assigned to the cue. (D) Confidence window  SEM across subjects for early, middle and late onset perturbations (grey shaded 

region). Within each plot, each curve corresponds to the average trajectory for different . The confidence window increases in 

response to larger  and to perturbations (arrows). (E) Average confidence window for each , plotted against the expected objective 

error  SEM across subjects in each direction. The confidence window consistently overestimates the expected objective error. 


