Scalable techniques from nonparameteric statistics for real-time robot learning 
Stefan Schaal, Chris Atkeson and Stefan Schaal 
Abstract of paper published in Applied Intelligence.
                 Locally weighted learning (LWL) is a class of techniques from nonparametric statistics
                 that provides useful representations and training algorithms for learning about complex
                 phenomena during autonomous adaptive control of robotic systems. This paper introduces
                 several LWL algorithms that have been tested successfully in real-time learning of
                 complex robot tasks. We discuss two major classes of LWL, memory-based LWL and
                 purely incremental LWL that does not need to remember any data explicitly. In contrast to
                 the traditional belief that LWL methods cannot work well in high-dimensional spaces, we
                 provide new algorithms that have been tested on up to 90 dimensional learning problems.
                 The applicability of our LWL algorithms is demonstrated in various robot learning
                 examples, including the learning of devil-sticking, pole-balancing by a humanoid robot
                 arm, and inverse-dynamics learning for a seven and a 30 degree-of-freedom robot. In all
                 these examples, the application of our statistical neural networks techniques allowed either
                 faster or more accurate acquisition of motor control than classical control engineering.
Click  here  to download an gzip-ed version of the paper. Click  here for a pdf version.
 
/DR 458 0 R 
>> 
endobj
457 0 obj
<< 
/Type /Font 
/Name /Helv 
/BaseFont /Helvetica 
/Subtype /Type1 
/Encoding 460 0 R 
>> 
endobj
458 0 obj
<< 
/Encoding 459 0 R 
/Font 461 0 R 
>> 
endobj
459 0 obj
<< 
/PDFDocEncoding 460 0 R 
>> 
endobj
460 0 obj
<< 
/Type /Encoding 
/Differences [ 24 /breve /caron /circumflex /dotaccent /hungarumlaut /ogonek /ring 
/tilde 39 /quotesingle 96 /grave 128 /bullet /dagger /daggerdbl 
/ellipsis /emdash /endash /florin /fraction /guilsinglleft /guilsinglright 
/minus /perthousand /quotedblbase /quotedblleft /quotedblright /quoteleft 
/quoteright /quotesinglbase /trademark /fi /fl /Lslash /OE /Scaron 
/Ydieresis /Zcaron /dotlessi /lslash /oe /scaron /zcaron 160 /Euro 
164 /currency 166 /brokenbar 168 /dieresis /copyright /ordfeminine 
172 /logicalnot /.notdef /registered /macron /degree /plusminus 
/twosuperior /threesuperior /acute /mu 183 /periodcentered /cedilla 
/onesuperior /ordmasculine 188 /onequarter /onehalf /threequarters 
192 /Agrave /Aacute /Acircumflex /Atilde /Adieresis /Aring /AE /Ccedilla 
/Egrave /Eacute /Ecircumflex /Edieresis /Igrave /Iacute /Icircumflex 
/Idieresis /Eth /Ntilde /Ograve /Oacute /Ocircumflex /Otilde /Odieresis 
/multiply /Oslash /Ugrave /Uacute /Ucircumflex /Udieresis /Yacute 
/Thorn /germandbls /agrave /aacute /acircumflex /atilde /adieresis 
/aring /ae /ccedilla /egrave /eacute /ecircumflex /edieresis /igrave 
/iacute /icircumflex /idieresis /eth /ntilde /ograve /oacute /ocircumflex 
/otilde /odieresis /divide /oslash /ugrave /uacute /ucircumflex 
/udieresis /yacute /thorn /ydieresis ] 
>> 
endobj
461 0 obj
<< 
/Helv 457 0 R 
>> 
endobj
462 0 obj
<< 
/N 455 0 R 
>> 
endobj
463 0 obj
<< 
/Type /Annot 
/Subtype /FreeText 
/Rect [ 243.8125 737.71362 443.81494 753.9043 ] 
/C [ ] 
/DA ([0 0 1] r /Helv 10 Tf)
/BS << /W 0 >> 
/T (Sethu Vijayakumar)
/F 4 
/Contents ( )
/M (D:20010925143054-08'00')
/AP 465 0 R 
/Open false 
>> 
endobj
464 0 obj
<< /Length 31 /Subtype /Form /BBox [ 0 0 200.00244 16.19067 ] /Resources << /ProcSet [ /PDF ] >> >> 
stream