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Abstract: Locally weighted learning (LWL) is a class of
statistical learning techniques that provides useful repre-
sentations and training algorithms for learning about com-
plex phenomena during autonomous adaptive control of ro-
botic systems. This paper introduces several LWL algo-
rithms that have been tested successfully in real-time learn-

ing of complex robot tasks. We discuss two major classes of
LWL, memory-based LWL and purely incremental LWL that
does not need to remember any data explicitly. In contrast
to the traditional beliefs that LWL methods cannot work
well in high-dimensional spaces, we provide new algorithms
that have been tested in up to 50 dimensional learning
problems. The applicability of our LWL algorithms is dem-
onstrated in various robot learning examples, including the
learning of devil-sticking, pole-balancing of a humanoid ro-
bot arm, and inverse-dynamics learning for a seven degree-
of-freedom robot.

1 Introduction
The necessity for self-improvement in control systems is
becoming more apparent as fields such as robotics, factory
automation, and autonomous vehicles become impeded by
the complexity of inventing and programming satisfactory
control laws. Learned models of complex tasks can aid the
design of appropriate control laws for these tasks, which
often involve decisions based on streams of information
from sensors and actuators, where data is relatively plenti-
ful. Learning also seems to be the only viable research ap-
proach toward the generation of flexible autonomous robots
that can perform multiple tasks ([1]), with the hope of cre-
ating an autonomous humanoid robot at some point.

When approaching a learning problem, there are many
alternative learning methods that can be chosen, either from
the neural network, the statistical, or the machine learning
literature. The current focus in learning research lies on in-
creasingly more sophisticated algorithms for the off-line
analysis of finite data sets, without severe constraints on the
computational complexity of the algorithms. Examples of
such algorithms include the revival of Bayesian inference

([2], [3]) and the new algorithms developed in the frame-
work of structural risk minimization ([4], [5]). Mostly, these
methods target problems in classification and diagnostics,
although several extensions to regression problems exist
(e.g., [6]).

In motor learning, however, special constraints need to
be taken into account when approaching a learning task.
Most learning problems in motor learning require regression
networks, for instance, as in the learning of internal models,
coordinate transformations, control policies, or evaluation
functions in reinforcement learning. Data in motor learning
is usually not limited to a finite data set—whenever the ro-
bot moves, new data is generated and should be included in
the learning network. Thus, computationally inexpensive
training methods are important in this domain, and on-line
learning would be preferred. Among the most significant
additional problems of motor learning is that the distribu-
tions of the learning data may change continuously. Input
distributions change due to the fact that a flexible movement
system may work on different tasks on different days, thus
creating different kinds of training data. Moreover, the in-
put-output relationship of the data—the conditional distri-
bution—may change when the learning system changes its
physical properties or when learning involves nonstationary
training data as in reinforcement learning. Such changing
distributions easily lead to catastrophic interference in many
neural network paradigms, i.e., the unlearning of useful in-
formation when training on new data ([7]). As a last ele-
ment, motor learning tasks of complex motor systems can
be rather high dimensional in the number of input dimen-
sions, thus amplifying the need for efficient learning algo-
rithms. The current trend in learning research is largely or-
thogonal to the problems of motor learning.

In this paper, we advocate locally weighted learning
methods (LWL) for motor learning, a learning technique de-
rived from nonparametric statistics ([8], [9], [10]). LWL
provides an approach to learning models of complex phe-
nomena, dealing with large amounts of data, training
quickly, and avoiding interference between multiple tasks
during control of complex systems ([11], [12]). LWL meth-
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ods can even deal successfully with high dimensional input
data that have redundant and irrelevant inputs while keeping
the computational complexity of the algorithms linear in the
number of inputs. LWL methods come in two different
strategies. Memory-based LWL is a “lazy learning” method
([13]) that simply stores all training data in memory and
uses efficient lookup and interpolation techniques when a
prediction for a new input has to be generated. This kind of
LWL is useful when data needs to be interpreted in flexible
ways, for instance, as forward or inverse transformation.
Memory-based LWL is therefore a “least commitment” ap-
proach and very data efficient. Non-memory-based LWL
has essentially the same statistical properties as memory-
based LWL, but it avoids storing data in memory by using
recursive system identification techniques ([14]). In this
way, non-memory-based LWL caches the information about
training data in compact representations, at the cost that a
flexible re-evaluation of data becomes impossible, but
lookup times for new data become significantly faster.

In the following, we will describe three LWL algorithms
that are the most suitable to robot learning problems. The
goal of the next section is to provide clear pseudo-code ex-
planations of these algorithms. Afterwards, we will illustrate
the successful application of some of the methods to imple-
mentations of real-time robot learning, involving dexterous
manipulation tasks like devil sticking and pole balancing
with an anthropomorphic robot arm, and classical problems
like the learning of high-dimensional inverse dynamics
models.

2 Locally Weighted Learning
In all our algorithms we assume that the data generating
model for our regression problems has the standard form
y f= ( ) +x ε , where x ∈ℜ n  is a n-dimensional input vector,

the noise term has mean zero, E{ }ε = 0, and the output is
one-dimensional. The key concept of our LWL methods is
to approximate nonlinear functions by means of piecewise
linear models ([15]), similar to a first-order Taylor series
expansion. Locally linear models have been demonstrated to
be an excellent statistical compromise among the possible
local polynomials that can be fit to data ([16]). The key
problem in LWL is to determine the region of validity in
which a local model can be trusted, and how to fit the local
model in this region.

In all following algorithms, we compute the region of
validity, called a receptive field, of each linear model from a
Gaussian kernel:

wk k
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where ck is the center of the kth linear model, and Dk corre-
sponds to a positive semi-definite distance metric that de-
termines the size and shape of region of validity of the linear

model. Other kernel functions are possible ([11]) but add
only minor differences to the quality of function fitting.

2.1 Locally Weighted Regression

The most straightforward LWL algorithm with locally linear
models is memory-based Locally Weighted Regression
(LWR) ([17]). Training of LWR is very fast: it just requires
adding new training data to the memory. Only when a pre-
diction is needed for a query point xq , the following

weighted regression analysis is performed:
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βn+1 denotes the (n+1)th element of the regression vector β .

The computational complexity of LWR is proportional to
O pn( )2 . Since normally most of the p training data points

receive an approximately zero weight as they are too far
away from the query point, the computational complexity of
LWR can be reduced significantly, particularly when ex-
ploiting efficient data structure like kd-trees for keeping the
data in memory ([18]). Thus, LWR can be applied effi-
ciently in real-time for problems that are not too high di-
mensional in the number of inputs n and that do not accu-
mulate too much data in one particular area of the input
space.

The only open parameter in (2) is distance metric D, in-
troduced in Equation (1). After the data in memory in-
creased by a significant amount, D should be optimized by
leave-one-out cross validation. To avoid too many open pa-
rameters, D  is usually assumed to be a diagonal matrix
D = ⋅ …h diag n n nn([ , , , ])1 2 , where h is a scale parameter,

and the ni  normalize the range of the input dimensions, e.g.,

by the variance of each input dimension ni i=1 2/ σ . Leave-

one-out crossvalidation is thus performed only as a one-
dimensional search over the parameter h:
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2.2 Locally Weighted Partial Least Squares

Under two circumstances the LWR algorithm above needs
to be enhanced: if the number of input dimensions grows
large, or if there are redundant input dimensions such that
the matrix inversion in (2) becomes numerically unstable.
There is a computational efficient technique from the statis-
tics literature, Partial Least Squares Regression (PLS) ([19],
[20]), that is ideally suited to reduce the computational
complexity of LWR and to avoid numerical problems. The
essence of PLS is to fit linear models through a hierarchy of
univariate regressions along selected projections in input
space. The projections are chosen according to the correla-
tion of input and output data, and the algorithm assures that
subsequent projections are orthogonal in input space. It is
straightforward to derive a locally weighted PLS algorithm
(LWPLS), as shown Equation (5). The only steps in LWPLS
that may look unusual at the first glance are the ones indi-
cated by (*) and (**) in Equation (5). At these steps, the in-
put data is regressed against the current projection s (*), and
subsequently, the input space is reduced (**), This proce-
dure ensures that the next projection direction ui+1  is guar-

anteed to be orthogonal with respect to all previous projec-
tion directions.

There is a remarkable property of LWPLS: if the input
data is locally statistically independent (i.e., has a diagonal
covariance matrix) and is approximately locally linear,
LWPLS will find an optimal linear approximation for the
data with a single projection. This is true since LWPLS will
chose the optimal projection direction, the gradient of the
data. This opens the question of how many projections r
should be chosen if the input data are not statistically inde-
pendent. Typically, the squared error res resi

T
i  at iteration i

should be significantly lower than that of the previous step.
Thus, a simple heuristic to stop adding projections is to re-
quire that at every new projection, the squared error reduces
by a certain ratio:
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We usually use φ = 0 5.  for all our learning tasks. Thus, as

in LWR, the only open parameter in LWPLS becomes the

distance metric D, which can be optimized according to the
strategy in (3).
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The computational complexity of LWPLS is O rnp( ) . If

one assumes that most of the data has a zero weight and that
only a fixed number of projections are needed to achieve a
good fit, the computational complexity tends towards linear
in the number of input dimensions. This constitutes a sig-
nificant saving over the more than quadratic cost of LWR,
particularly in high dimensional input spaces. Additionally,
the correlation step to select the projection direction elimi-
nates irrelevant and redundant input dimensions and results
in excellent numerical robustness of LWPLS.

2.3 Locally Weighted Projection Regression

Two points of concern remain with LWR and LWPLS. If
the learning system receives a large, possibly never ending
stream of input data, as typical in online robot learning, both
memory requirements to store all data as well as the com-
putational cost to evaluate algorithms (2) or (5) become to



large. Under these circumstances, a non-memory-based ver-
sion of LWL is desirable such that each incoming data point
is incrementally incorporated in the learning system and
lookup speed becomes accelerated.

A first approach to an incremental LWL algorithm was
suggested in previous work ([7]), using LWR as the starting
point. The idea of the algorithm is straightforward: instead
of postponing the computation of a local linear model until a
prediction needs to be made, local models are built continu-
ously in the entire support area of the input data at selected
points in input space (see below). The prediction for a query
point is then formed as the weighted average of the predic-
tions of all local models:
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The weights in (6) are computed according to the weighting
kernel of each local model in Equation (1). Incremental up-
dates of the parameters of the linear models can be accom-
plished with recursive least squares techniques ([14]). In the
following, we give the incremental update rule for a new
learning system based on LWPLS, called Locally Weighted
Projection Regression (LWPR). Note that we omit the index
k unless it is necessary to distinguish explicitly between dif-
ferent linear models.
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In the above equations, λ ∈ [ , ]0 1  is a forgetting factor that
determines how much old data in the regression parameters
will be forgotten, similar as in recursive system identifica-
tion techniques ([14]). The variables SS, SR, and SZ are
memory terms that enable us to achieve the univariate re-

gression in step f) in a recursive least squares fashion, i.e., a
fast Newton-like method. The other steps are incremental
counterparts of the LWPLS algorithm above. Step j) com-
putes the sum of squared errors that is used to determine
when to stop adding projections according to (4). Predic-
tions for a query point are formed exactly as in Eqn (5)-d.

Thus, as in all the other LWL algorithms before, the
only remaining open parameter is the distance metric D. In
contrast to the algorithm in (3) that only determined D as a
global parameter to be used everywhere in input space, it is
now possible to optimize the Dk  for every local model indi-

vidually. In ([7]) we developed an incremental optimization
of D by means of gradient descent based on a stochastic
leave-one-out crossvalidation criterion. This derivation can
be adapted for LWPR, and due to space constraints, we only
give the new cost function that is needs to be minimized as
in :analogy to ([7]).
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The above learning rules can be embedded in an incre-
mental learning system that automatically allocates new lo-
cally linear models as needed ([7]):

Initialize the LWPR with no receptive field (RF);
For every new training sample (x,y):
     For k=1 to #RF:
          calculate the activation from (1)
          update according to (7) and (8)
     end;
     If no linear model was activated by more than wgen;

          create a new RF with r=2, c=x, D=Ddef

     end;
end;

In this pseudo-code algorithm, wgen is a threshold that de-
termines when to create a new receptive field, and Ddef is the
initial (usually diagonal) distance metric in (1). The initial
number of projections is set to r=2 and grows if the criterion
(4) is fulfilled. For a diagonal distance metric Dk and under
the assumption that r remains small, the computational
complexity of the update of all parameters of LWPR is lin-
ear in the number of input dimensions.

3 Empirical Evaluations

3.1 Learning of Devil Sticking

Devil sticking is a juggling task where a center stick is bat-
ted back and forth between two handsticks (Figure 1a).



Figure 1b shows a sketch of our devil sticking robot. The
robot uses its top two joints to perform planar devil sticking;
more details can be found in [21]). The task of the robot is
to learn a continuous left-right-left-etc. juggling pattern. For
the purpose of learning, the task is modeled as a discrete
function that maps impact states on one hand to impact
states on the other hand. A state is given as a 5 dimensional
vector x = ( , , ˙, ˙, ˙)p x y Tθ θ , comprising impact position, angle,

and velocities of the center of the devil stick and angular
velocity (Figure 1b), respectively. The task command
u = ( , , ˙ , , )x y v vh h t x y

Tθ  is given by a catch position ( , )x yh h ,

an angular trigger velocity ( ˙ )θt when to start the throw, and

two 2 dimensional throw direction ( , )v vx y . In order to

compute appropriate LQR controllers for this task, the robot
learns the nonlinear mapping between current state, com-
mand, and next state, i.e., a 10 dimensional input to five di-
mensional output function. This task is ideally suited for
LWR as it is not too high dimensional and new training data
are only generated at about 1-2Hz. Moreover, the memory-
based learning also allows to efficiently search the state-
actions space for statistically good new commands ([21]).
As a result, successful devil sticking can be achieved in
about 40-80 trials, corresponding to about 300-800 training
points in memory (Figure 2). This is a remarkable learning

speed given that humans need about one week of 1 hour
practicing a day before they learn to juggle the devilstick.

3.2 Learning Pole Balancing

We implemented learning of the task of balancing a pole on
a fingertip with a 7-degree-of-freedom anthropomorphic ro-
bot arm (Figure 4a). The low level robot controller ran in a
compute-torque mode at 480Hz out of 8 parallel processors
located in a VME bus, running the real-time operating sys-
tem vxWorks. The goal of learning was to generate appro-
priate task level commands, i.e., Cartesian accelerations of
the fingertip, to keep the pole upright. Task level commands
were converted to actuator space by means of the extended
Jacobian ([22]). As input, the robot received data from its
color-tracking-based stereo vision system with more than
60ms processing delays. Learning was implemented on-line
using Receptive Field Weighted Regression (RFWR) ([7])
which is essentially the non-memory based counterpart of
LWR. RFWR employs the same incremental learning
strategies as LWPR. The task of RFWR was to acquire a
discrete time forward dynamics model of the pole that was
both used to compute an LQR controller and to realize a
Kalman predictor to eliminate the delays in visual input.
The forward model has 12 input dimensions (3 positions of
the lower pole end, 2 angular positions, and the corre-
sponding 5 velocities, 2 horizontal accelerations of the fin-
gertip) that are mapped to 10 outputs, i.e., the next state of
the pole. The robot only received training data when it actu-
ally moved.

Figure 3 shows the results of learning. It took about 10-
20 trials before learning succeeded in reliable performance
longer than one minute. We also explored learning from
demonstration, where a human demonstrated how to balance
a pole for 30 seconds while the robot was learning the for-
ward model by just “watching”.  Now learning was reliably
accomplished in one single trial, using a large variety of
physically different poles and using demonstrations from
arbitrary people in the laboratory.

3.3 Inverse Dynamics Learning

The goal of this learning task is to approximate the inverse
dynamics model of a 7-degree-of-freedom anthropomorphic
robot arm (Figure 4a) from a data set consisting of 45,000
data points, collected at 100Hz from the actual robot per-
forming various rhythmic and discrete movement tasks (this
corresponds to 7.5 minutes of data collection). The data
consisted of 21 input dimensions: 7 joint positions, veloci-
ties, and accelerations. The goal of learning was to ap-
proximate the appropriate torque command of the shoulder
robot motor in response to the input vector. To increase the
difficulty of learning, we added 29 irrelevant dimensions to
the inputs with N(0,0.052) Gaussian noise. 5,000 data points
were excluded from the training data as a test set.
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Figure 1: (a) an illustration of devil sticking, (b) sketch of our devil
sticking robot: the flow of force from each motor into the robot is indi-
cated by different shadings of the robot links, and a position  change
due to an application of motor 1 or motor 2, respectively, is indicated
in the small sketches
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The high dimen-
sional input space of
this learning prob-
lem requires an ap-
plication of LWPR.
Figure 4b shows the
learning results in
comparison to a pa-
rametric estimation
of the inverse dy-
namics based on
rigid body dynamics
([23]). From the very
beginning, LWPR
outperformed the pa-
rametric  model .
W i t h i n  a b o u t
500,000 training
points, LWPR con-
verged to the excel-
lent  resul t  of
nMSE=0.042. It em-
ployed an average of
only 3.8 projections

per local model despite the fact that the input dimensionality
was 50. During learning, the number of local models in-
creased by a factor of 6 from about 50 initial models to
about 325 models. This increase is due to the adjustment of
the distance metric D in Equation (8) that was initialized to
form a rather large kernel. Since this large kernel overs-
moothes the data, LWPR reduced the kernel size, and in re-
sponse more kernels needed to be allocated.

4 Conclusions
This paper presented Locally Weighted Learning algorithms
for real-time robot learning. The algorithms are easy to im-
plement, use sound statistical techniques at their core, con-
verge fast to accurate learning results, and can be imple-
mented in a purely incremental fashion. We demonstrated
that the latest version of our algorithms is capable of dealing

with high dimensional
input spaces that have
redundant and irrele-
vant input dimensions
while the computa-
tional complexity of an
incremental update
remained linear in the
number of inputs. In
several examples, we
demonstrated how
LWL algorithms were
applied successfully to
complex learning
problems with actual

robots. To the best of our knowledge, there is currently no
comparable learning framework that combines all the re-
quired properties for real-time motor learning as well as Lo-
cally Weighted Learning.
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Figure 3: Smoothed average of 10
learning curves of the robot for pole
balancing. The trials were aborted after
successful balancing of 60 seconds.
We also tested long term performance
of the learning system by running pole
balancing for over an hour—the pole
was never dropped.
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Figure 4: a) Sarcos Dexterous Robot Arm;
b) Learning curve for learning the inverse
dynamics model of the robot from a 50 di-
mensional data set that included 29 irrele-
vant dimensions.


