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Abstract. We explore generic mechanisms to introduce structural hints
into the method of Unsupervised Kernel Regression (UKR) in order to
learn representations of data sequences in a semi-supervised way. These
new extensions are targeted at representing a dextrous manipulation
task. We thus evaluate the effectiveness of the proposed mechanisms on
appropriate toy data that mimic the characteristics of the aimed manip-
ulation task and thereby provide means for a systematic evaluation.

1 Introduction

Learning of control manifolds is emerging as one of the key challenges in un-
supervised learning. Here, the Self-organising Map (SOM) has been influential
in various pertinent approaches (cp. e.g.[1]). One more recent method, Unsu-
pervised Kernel Regression (UKR, [6, 4]), can be seen as a successor bridging
between earlier ”Parametrised SOM” (PSOM, [11]) and kernel methods (e.g.[8]).

In previous work [9], we have shown that UKR is well suited for representing
human manipulation data. However, due to UKR being unable to incorporate
prior knowledge about the data structure, generating Manipulation Manifolds
(cp. [9]) from training sequences of hand posture data had been realised as
supervised construction instead of automatic learning. In this paper, we present
extensions to UKR for learning (periodic) sequences of chronologically ordered
data and regularising intra-sequence characteristics which are aimed at learning
Manipulation Manifolds in a semi-supervised manner. As basis for several error
measures and thus a systematic evaluation of the new extensions, we perform an
analysis on appropriate toy data which mimic the intrinsic characteristics of the
targeted manipulation data. Whereas toy data always bare the risk of lacking
transferability to the real data case, we here present promising first real data
results in our targeted domain of dextrous manipulation.

We briefly recall UKR in Section 2 and present the new extensions in Section
3. Section 4 briefly summarises the original manipulation data and Section 5
addresses the corresponding toy data generation. Section 6 then uses this data
for the evaluation of the new UKR extensions. Section 7 concludes the work.

2 Unsupervised Kernel Regression (UKR)

UKR is a recent approach to learning non-linear continuous manifolds, that is,
finding a lower dimensional (latent) representation X=(x1, . . . ,xN ) ∈ Rq×N of
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a set of observed data Y=(y1, . . . ,yN ) ∈ Rd×N and a corresponding functional
relationship y = f(x). UKR has been introduced as the unsupervised counter-
part of the Nadaraya-Watson kernel regression estimator by Meinecke et al. in
[6]. Further development has lead to the inclusion of general loss functions, a
landmark variant, and the generalisation to local polynomial regression [4]. In
its basic form, UKR uses the Nadaraya-Watson estimator [7, 12]:

f(x) =
N∑

i=1

yi
KH(x− xi)∑
j KH(x− xj)

(1)

as smooth mapping f : x ∈ Rq → y ∈ Rd from latent to observed data space
(KH: Kernel with bandwidth H). X = {xi}, i = 1..N now plays the role of input
data to the regression function (1) and is treated as set of latent parameters
corresponding to Y. As the scaling and positioning of the xi’s are free, the
formerly crucial bandwidths H become irrelevant and can be set to 1.

UKR training, that is finding optimal latent variables X, involves gradient-
based minimisation of the reconstruction error

R(X) =
1
N

∑
i

‖ yi − f(xi;X) ‖2=
1
N

‖ Y −YB(X) ‖2
F . (2)

Here, B(X) with (B(X))ij = K(xi−xj)P
k K(xk−xj)

is an N×N basis function matrix.
To avoid poor local minima, i.e. PCA [3] or Isomap [10] can be used for

initialisation. These eigenvector-based methods are quite powerful in uncovering
low-dimensional structures by themselves. Contrary to UKR, however, PCA is
restricted to linear structures and Isomap provides no continuous mapping.

To avoid a trivial solution by moving the xi infinitively apart from each other
(B(X) becoming the identity matrix), several regularisation methods are possible
[4]. Most notably, leave-one-out cross-validation (LOO-CV: reconstructing each
yi without using itself) is efficiently realised by zeroing the diagonal of B(X)
before normalising its column sums to 1. The inverse mapping x = f−1(y;X)
can be approximated by x? = g(y;X) = arg minx ‖y − f(x;X)‖2.

3 UKR for data sequences

To enable the originally purely unsupervised UKR training to benefit from prior
knowledge about the data structure, we introduce extensions which a) especially
consider ordered data sequences, b) explicitly allow for periodic sequences, c)
propagate the original intra-sequence order to their latent representations and d)
propagate stability of non-temporal sequence parameters within the sequences.

a) We consider given affiliations to sequences which enables us to influence
the latent parameter adaptation such that sequence-specific mechanisms can be
involved in the training. To this end, we distinguish between one latent temporal
intra-sequence dimension and the other inter -sequence parameter dimensions.

b) Periodic sequences consist of one periodic temporal and one/several (usu-
ally) non-periodic dimensions. To allow for such structure, we provide differ-
ent univariate kernels Kl for different latent dimensions l. The basis functions
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(B(X))ij (cp. Sec.2) then consist of their normalised products (parametrised by
Θl):

(B(X))ij =
∏q

l=1 Kl(xi,l − xj,l;Θl)∑N
k

∏q
l=1 Kl(xk,l − xj,l;Θl)

. (3)

In the non-periodic case, the univariate versions of the kernels used in original
UKR can be applied (e.g. Gaussian: Kg(xi−xj ;Θ) = exp

[
− 1

2Θ2(xi − xj)2
]
). In

analogy to original UKR, we assume no need for bandwidth control. However,
to analyse potential cross-effects with the following new extensions, we also in-
vestigate different bandwidths for this case. For the periodic case, we propose
the following cyclic kernel with bandwidth parameter Θ, periodic in [0; π]:

K	(xi − xj ;Θ) = exp
[
−1

2
Θ2 sin2(xi − xj)

]
. (4)

Up to normalisation and scaling, the kernel is equivalent to the von Mises distri-
bution [5] which has been already used by Bishop et al. [2] to represent periodic
data characteristics. We chose the presented form for convenience reasons.

In the periodic case, kernel bandwidth regulation is needed since the effective
space in corresponding dimensions is constrained due to its periodic nature and
fixed bandwidths cannot be compensated by scaling the latent parameters.

c) ”cyclic data order”: To propagate the original chronological order of NS

data sequences Sσ =(yσ
1 , ..,yσ

Nσ
), σ=1..NS to the corresponding latent parame-

ters (xσ
1 , ..,xσ

Nσ
), the values xσ

i,dt
, i = 1..Nσ in the temporal latent dimension dt

need to reflect the order of the original data sequence. In the periodic case, such
condition is difficult to induce without any assumptions about the underlying
sequences. However, by providing sequences of complete cycles, we can consider
the first data point in the sequence as successor of the last one: xσ

0 = xσ
Nσ

. If so,
a penalty term in the loss function can preserve the cyclic data order:

Ecseq(X) =
NS∑
σ=1

Nσ∑
i=1

sin2(xσ
i,dt

− xσ
(i−1),dt

). (5)

d) One strong assumption which we want to be reflected in the latent space
is, that the values of the non-temporal dimensions are approximately constant
within single sequences. This consideration stems from the generation of our
manipulation data (see next Section for a short description). The basic idea is
that the underlying movement parameters usually do not change during single
sequences – e.g., for cap turning, the radius of the cap does not change during
the turning. We realise this regularisation of intra-sequence parameter variations
as penalty term to the loss function which penalises high variances in the non-
temporal dimensions k = 1..q, k 6= dt:

Epvar(X) =
NS∑
σ=1

∑
k 6=dt

1
Nσ

Nσ∑
i=1

(
xσ

i,k − 〈xσ
·,k〉

)2 (6)

The overall loss function then can be denoted as E(X) = R(X)+λcseqEcseq(X)+
λpvarEpvar(X). The new parameters are (Θ1, . . . , Θq, λcseq, λpvar).
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Fig. 1. Example of a hand posture sequence corresponding to a training manipulation
of a bottle cap (r = 2.0cm). Note the periodic nature of the movement.

4 Manipulation Data

As described in Sec.1, the presented extensions are aimed at learning the repre-
sentation of a manipulation task (i.e. turning a bottle cap). The set of training
data, which has been used already for the initial manifold construction in [9], con-
sists of sequences of hand postures (each a 24D joint angle vectors) recorded dur-
ing the turning movement for different cap radii (r=1.5cm, 2.0cm, 2.5cm, 3.0cm
and 3.5cm). The movement itself is periodic in the sense that the beginning and
end postures are (in principle) the same. For each radius, we produced five to
nine sequences of about 30 to 45 hand postures each – in total 1204 for all
sequences and all radii. Figure 1 exemplary visualises one of such sequences.

5 Toy Data for Evaluation

To evaluate the new UKR extensions, we generate toy data with similar intrin-
sic characteristics as the manipulation data in [9] briefly described in the last
section. The utilisation of toy data provides us with knowledge about underly-
ing true structures and enables us to compute a variety of error measures not
accessible otherwise (cp. Sec. 6 for details). As basis for an adequate toy data
generation, we thoroughly investigate the real data. Here, we especially try to
uncover the intrinsic data structures reflecting our prior knowledge of the gener-
ated manipulation data. From the generation process, we assume the existence of
a periodic structure reflecting the periodic nature of the cap turning movement
and an additional non-periodic expansion reflecting the different cap radii used
for the sequence generation. By using Isomap [10] – a powerful method for un-
covering hidden intrinsic structures in large data sets – we are able to reinforce
these assumptions: a three-dimensional Isomap embedding of our manipulation
data (see Fig.2a) reveals a cylinder-like structure describing a periodicity living
in the x/y dimensions and a non-periodic extension in z direction.

To unfold the 2D representation of the periodicity, we can apply atan2 on
the x/y-part of the embedding data yielding the basis for the corresponding 1D
”angle” ∈ [0;π]. In combination with the original z component, we receive a 2D
representation of the formerly 3D Isomap embedding and of the 24D original
hand posture data, respectively. This data can be used as latent initialisation of
the UKR model1 as visualised in Fig.2b. Here, it turns out that the different se-
quences (connected) are not clearly separated and even sequences corresponding
to different cap radii (encoded by different colours) partly overlap.

1 The 2D latent space with one periodic kernel has the topology of a cylinder surface.
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Fig. 2. (a) 3D Isomap embedding of 24D hand posture data recorded during the turn-
ing movement of a bottle cap. Different colours encode different cap radii. (b) atan2-
mapping of (a). (c) noise-free training data (red, connected); test data (black, single
points). (d) noisy training/test data. (e) Toy data Isomap embedding (cp. (a)). (f)
atan2-mapping of (e). (g-h) Results for toy (g) and real (h) data.

To reflect similar characteristics in our toy data and to provide an informa-
tive basis for the later evaluation, we aim at a simple low-dimensional toy data
structure that produces Isomap embeddings of a similar form as the real data.
To this end, we generate ordered (connected) data samples from the surface of a
cylinder geometry (height=1, radius=1, Fig.2c) living in 3D together with noisy
versions (Gaussian noise, σ = 0.1, e.g. Fig.2d). Such data then yield Isomap em-
beddings which a) provide a periodicity b) a non-periodic parameter expansion
and c) are organised in chronologically ordered sequences (”trials”) and thus
are quantitatively similar to the Isomap embedding of the real data (Fig.2a/e)
and its 2D mapping (Fig.2b/f). Within this cylinder structure, cross sectional
rings of different height levels model sequences for different cap radii in the real
data. As basis for the evaluation, we generated six training data rings and six
overlapping together with five intermediate test data rings (cf. Fig.2c).

In anticipation of the following, Fig.2(g-h) depict the resulting latent param-
eters from training with toy and real data, respectively, having considered the
results from the next section. The similarity of both latent structures supports
the appropriateness of the toy data for the use with our real manipulation data.

6 Evaluation and Results

We evaluate the new extensions to UKR with the training/test data described in
the last section. We incorporate our prior knowledge about the data – periodic
sequences and non-periodic height levels corresponding to the periodic movement
and the non-periodic radii variation in the manipulation data – in form of the
specification of two associated latent dimensions: one periodic (K1(·;Θ1) = K	)
temporal and one non-periodic (K2(·;Θ2) = Kg) parameter dimension. The
loss function then consists of the reconstruction error and the penalty terms
introduced in Section 3: E(X) = R(X) + λcseq · Ecseq(X) + λpvar · Epvar(X).
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Fig. 3. Evaluation results (a-d) for λcseq = λpvar = 1 and (e-h)(Θ1, Θ2) = (12, 4),
red lines:λcseq/λpvar =0. Please refer to text for further explanation.

As proposed in the last section, we compute 3D Isomap embeddings (for this
data very robust in the choice of the neighbourhood parameter; here K = 10)
of the noisy training data Y (cf. Fig.2e), and again use atan2 to retrieve a 2D
latent initialisation for the UKR model (Fig.2f).

The evaluation focusses on the effect of different combinations of the in-
verse bandwidths Θ1, Θ2, and the penalty weightings λcseq, λpvar. From our
toy data structure, we derive initial guesses for good bandwidth parameters
(Θ1 = 14, Θ2 = 5 based on average inter-point distances) and evaluate cor-
respondingly Θ1 for values {7, 8, .., 14, .., 21} and Θ2 for {3, 3.5, .., 5, .., 7}. As
for λcseq and λpvar, no assumptions could be made, we choose λcseq, λpvar ∈
{0, 10−4, 10−3, 10−2, 10−1, 100, 101}. For each tuple (Θ1,Θ2,λcseq,λpvar), 10 train-
ing runs with 10 noisy versions of the training data are conducted. Each run con-
sists of 500 optimisation steps including LOO-CV (exemplary result: Fig.2(g)).
Initial tests yielded the most promising results for λcseq = λpvar = 1 which thus
provides a good starting point for the evaluation of Θ1 and Θ2.

Fig.3(a-d) depict the corresponding reconstruction errors for varying band-
width parameters Θ1, Θ2. Fig.3a shows the normalised mean square error (nMSE)
between noise-free test data YT (the underlying true cylinder geometry) and its
UKR reconstructions f(g(YT )), visualising UKR’s ability to generalise to unseen
data from the underlying structure. Fig.3b shows the nMSE between YT and
the reconstruction of its noisy versions f(g(YTn)), visualising UKR’s robustness
in representing the underlying structure and its ability to correct noisy input
data. The bias of f(g(·)) towards the inner of the underlying structure (a known
problem in original UKR) is depicted in Fig.3c for noisy training data Yn.

Fig.3(a-b) show a clear error dependency on Θ1 and minimal errors for Θ1 =
12 (Fig.3a) or Θ1 = 10 (Fig.3b). However, as the bias significantly increases
with decreasing Θ1 (Fig.3c), we use Θ1 =12 for further evaluation. As assumed
before, there is no significant dependency on Θ2 due to the free positioning of
the latent parameters in the non-periodic dimensions. This is shown in Fig.3:
whereas the errors stay approximately constant (Fig.3(a-c)), the variance in the
latent parameter dimension varies strongly for changing Θ2 (Fig.3(d)).
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Fig. 4. Application err’s (Θ1,Θ2)=(12, 4), Red line: λcseq/λpvar =0 (details: see text).

Fig.3(e-h) depict errors for fixed bandwidth parameters (Θ1, Θ2)=(12, 4) and
different combinations of λcseq, λpvar. Fig.3(e-f) reveal that high values of λcseq

– which stronger force correctly ordered latent parameters – negatively influence
the reconstruction error. However, high values of λpvar damp the reconstruction
error in general and are able to overrule the negative effect of the sequence order
penalty. Indeed, as depicted in Fig.3g, both high weightings of Ecseq and Epvar

yield high radius errors. Logically consistent, high values of λpvar strongly damp
the variance in the latent data dimension (cp. Fig.3h).

For applications exploiting the aimed sequence-reflecting latent structure,
not only the pointwise nMSE, but also structure-related errors are of interest.
Fig.4a shows a normalised variance in the latent parameter dimension (”nVAR”)
of observed fix-parameter sequences (lines in observed space) mapped into latent
space (g(rYT)) providing a measure for the distortion of the line projection and
thus for the distortion in the parameter dimension. The plot uncovers that high
weightings of Epvar (reducing general reconstruction errors; cp.Fig.3(e-h)) only
result in stable sequence projections for strongly weighted Ecseq. Fig.4b shows
the inverse projection direction, corresponding to reproducing/synthesising se-
quences in original data space with fixed sequence parameters. Again, only com-
bined high Epvar- and Ecseq-weightings produce stable sequences. Fig.4(c-d) in-
vestigate the corresponding inverse situations. Fig.4c visualises temporal syn-
chronisation distortions of the latent space projections of sequence parameter
modulations in observed space for fixed points in time. To take account for the
periodic nature of the latent temporal dimension, we calculate nMSEs on the
angular deviations from the mean (”nCMSE”) of the analysed line and take the
underlying kernel period into account. Like this, the nCMSE has similar charac-
teristics as the nVAR for non-periodic dimensions. Here, high λcseq-weightings
result in higher distortions of the projections. However, for the targeted high
weightings of Epvar, the negative effect of higher values for λcseq still is in a rea-
sonable region. Fig.4d visualises the inverse mapping, measuring the distortions
of projections of lines in latent space with zero-variance in the temporal dimen-
sion back into observed space. Again, for high λpvar, the effect of the sequence
penalty Ecseq is strongly dominated by the effect of Epvar.

To sum up: whereas the choice of Θ2 is less important, the inverse bandwidth
Θ1 should be set to a value (slightly) smaller than the inverse of the average point
distance in the corresponding dimension (here: Θ1 =12). The results for varying
λcseq/λpvar are relatively robust. Here, they optimally effect the generation of
the desired latent structures for λcseq/λpvar =1.
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Fig. 5. Promising results for the targeted manipulation task. Horizontal dim.: time;
vertical dim.: cap radius. Depicted are reprojections f(x;X) of regularly sampled la-
tent positions x of the trained UKR. Please consider also the video available under
http://www.techfak.uni-bielefeld.de/∼jsteffen/mov/wsom2009/.

7 Conclusion
We presented extensions to the unsupervised manifold learning method UKR,
which now allow for semi-supervised learning of structured manifolds. We evalu-
ated the new extensions on toy data in a general and manipulation relevant con-
text as basis for future work on real manipulation data. First promising results
using our new insights are visualised in Fig. 5: the targeted task of representing
the periodic movement of turning a bottle cap has been successfully achieved.
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