
Auton Robot
DOI 10.1007/s10514-008-9095-6

Geodesic Gaussian kernels for value function approximation

Masashi Sugiyama · Hirotaka Hachiya ·
Christopher Towell · Sethu Vijayakumar

Received: 6 July 2007 / Accepted: 6 June 2008
© Springer Science+Business Media, LLC 2008

Abstract The least-squares policy iteration approach works
efficiently in value function approximation, given appropri-
ate basis functions. Because of its smoothness, the Gaussian
kernel is a popular and useful choice as a basis function.
However, it does not allow for discontinuity which typically
arises in real-world reinforcement learning tasks. In this pa-
per, we propose a new basis function based on geodesic
Gaussian kernels, which exploits the non-linear manifold
structure induced by the Markov decision processes. The
usefulness of the proposed method is successfully demon-
strated in simulated robot arm control and Khepera robot
navigation.

The current paper is a complete version of our earlier manuscript
(Sugiyama et al. 2007). The major differences are that we included
more technical details of the proposed method in Sect. 3, discussions
on the relation to related methods in Sect. 4, and the application to
map building in Sect. 6. A demo movie of the proposed method
applied in simulated robot arm control and Khepera robot navigation
is available from http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/
GGKvsOGK.wmv.

M. Sugiyama (�) · H. Hachiya
Department of Computer Science, Tokyo Institute of Technology,
2-12-1, O-okayama, Meguro-ku, Tokyo, 152-8552, Japan
e-mail: sugi@cs.titech.ac.jp

H. Hachiya
e-mail: hachiya@sg.cs.titech.ac.jp

M. Sugiyama · C. Towell · S. Vijayakumar
School of Informatics, University of Edinburgh, The King’s
Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK

C. Towell
e-mail: C.C.Towell@sms.ed.ac.uk

S. Vijayakumar
e-mail: sethu.vijayakumar@ed.ac.uk

Keywords Reinforcement learning · Value function
approximation · Markov decision process · Least-squares
policy iteration · Gaussian kernel

1 Introduction

Designing a flexible controller of a complex robot is a dif-
ficult and time-consuming task for robot engineers. Rein-
forcement learning (RL) is an approach that tries to ease
this difficulty (Sutton and Barto 1998). Value function ap-
proximation is an essential ingredient in RL, especially in
the context of solving Markov Decision Processes (MDPs)
using policy iteration methods. Since real robots often in-
volve large discrete state-spaces or continuous state-spaces,
it becomes necessary to use function approximation meth-
ods to represent the value functions. A least-squares ap-
proach using a linear combination of predetermined under-
complete basis functions has shown to be promising in this
task (Lagoudakis and Parr 2003; Osentoski and Mahadevan
2007). For general function approximation, Fourier func-
tions (trigonometric polynomials) Gaussian kernels (Girosi
et al. 1995), and wavelets (Daubechies 1992) are typical ba-
sis function choices and they have been employed in ro-
botics domains (Lagoudakis and Parr 2003; Kolter and Ng
2007). Normalized-Gaussian bases (Morimoto and Doya
2007) as well as local linear approximation are also used
in humanoid robot control (Vijayakumar et al. 2002).

Fourier bases (global functions) and Gaussian kernels
(localized functions) have certain smoothness properties
that make them particularly useful for modeling inherently
smooth, continuous functions. Wavelets provide basis func-
tions at various different scales and may also be employed
for approximating smooth functions with local discontinu-
ity.

http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/GGKvsOGK.wmv
http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/GGKvsOGK.wmv
mailto:sugi@cs.titech.ac.jp
mailto:hachiya@sg.cs.titech.ac.jp
mailto:C.C.Towell@sms.ed.ac.uk
mailto:sethu.vijayakumar@ed.ac.uk


Auton Robot

Typical value functions in RL tasks are predominantly
smooth with some discontinuous parts (Mahadevan 2005).
To illustrate this, let us consider a toy RL task of guiding an
agent to a goal in a grid world (see Fig. 1a). In this task, a
state corresponds to a two-dimensional Cartesian position of
the agent. The agent cannot move over the wall, so the value
function of this task is highly discontinuous across the wall.
On the other hand, the value function is smooth along the
maze since neighboring reachable states in the maze have
similar values (see Fig. 1b). Due to the discontinuity, sim-
ply employing Fourier functions or Gaussian kernels as ba-
sis functions tend to produce undesired, non-optimal results
around the discontinuity, affecting the overall performance
significantly (see Fig. 3b). Wavelets could be a viable al-
ternative, but are over-complete bases—one has to appro-
priately choose a subset of basis functions, which is not a
straightforward task in practice.

Recently, Mahadevan (2005) proposed considering value
functions defined not on the Euclidean space, but on graphs
induced by the MDPs (see Fig. 1c). Value functions which
usually contain discontinuity in the Euclidean domain (e.g.,
across the wall) could be smooth on graphs (e.g., along the
maze) if the graph is built appropriately. Hence, approximat-
ing value functions on graphs can be expected to work better
than approximating them in the Euclidean domain.

The spectral graph theory (Chung 1997) showed that
Fourier-like smooth bases on graphs are given as minor
eigenvectors of the graph-Laplacian matrix (see Fig. 2c).
However, their global nature implies that the overall accu-
racy of this method tends to be degraded by local noise.
Coifman and Maggioni (2006) defined diffusion wavelets,
which posses natural multi-resolution structure on graphs
(see Fig. 2d). Mahadevan and Maggioni (2006) showed that
diffusion wavelets could be employed in value function ap-
proximation, although the issue of choosing a suitable sub-
set of basis functions from the over-complete set is not
discussed—determining the resolution level as well as the
smoothness within the level may not be straightforward in
practice.

In the machine learning community, Gaussian kernels
seem to be more popular than Fourier functions or wavelets
because of their locality and smoothness (Girosi et al. 1995;
Vapnik 1998; Schölkopf and Smola 2002). Furthermore,
Gaussian kernels have ‘centers’, which alleviates the dif-
ficulty of basis subset choice, e.g., uniform allocation
(Lagoudakis and Parr 2003) or sample-dependent alloca-
tion (Engel et al. 2005). In this paper, we therefore de-
fine Gaussian kernels on graphs (which we call geodesic
Gaussian kernel), and propose using them for value func-
tion approximation (see Fig. 2a). Our definition of Gaussian
kernels on graphs employs the shortest paths between states
rather than the Euclidean distance, which can be computed
efficiently using the Dijkstra algorithm (Dijkstra 1959;

Fredman and Tarjan 1987). Moreover, an effective use of
Gaussian kernels opens up the possibility to exploit the re-
cent advances in using Gaussian processes for temporal-
difference learning (Engel et al. 2005).

Basis functions defined on the state space can be used
for approximating the state-action value function by extend-
ing them over the action space. This is typically done by
simply copying the basis functions over the action space
(Lagoudakis and Parr 2003; Mahadevan 2005). In this pa-
per, we propose a new strategy for this extension, which
takes into account the transition after taking actions. This
new strategy is demonstrated to work very well when the
transition is predominantly deterministic.

The paper describes the notations employed for the RL
problem succinctly in Sect. 2. Section 3 formulates the
Gaussian kernel based basis functions on graphs, including a
method to generalize them to the continuous domains. Sec-
tion 4 qualitatively discusses the characteristics of the pro-
posed geodesic Gaussian kernel and the relation between the
proposed and existing basis functions. Section 5 is devoted
to extensive experimental comparison between the proposed
and existing basis functions. Section 6 shows applications of
the proposed method in simulated kinematic robot arm con-
trol and mobile robot navigation. Section 7 provides con-
cluding remarks and future directions.

2 Formulation of the reinforcement learning problem

In this section, we briefly introduce the notation and rein-
forcement learning (RL) formulation that we will use across
the manuscript.

2.1 Markov decision processes

Let us consider a Markov decision process (MDP) specified
by

(S,A,P,R,γ ), (1)

where

• S = {s(1), s(2), . . . , s(n)} is a finite1 set of states,
• A = {a(1), a(2), . . . , a(m)} is a finite set of actions,
• P(s′|s, a) : S ×A× S → [0,1] is the conditional proba-

bility of making a transition to state s′ if action a is taken
in state s,

• R(s, a, s′) : S × A × S → R is an immediate reward for
making a transition from s to s′ by action a,

• γ ∈ [0,1) is the discount factor for future rewards.

1For the moment, we focus on discrete state spaces. In Sect. 3.4, we
extend the proposed method to continuous state spaces.



Auton Robot

The expected reward R(s, a) for a state-action pair (s, a) is
given as

R(s, a) =
∑

s′∈S
P(s′|s, a)R(s, a, s′). (2)

Let

π(s) : S →A (3)

be a deterministic policy which the agent follows. In this
paper, we focus on deterministic policies since there always
exists an optimal deterministic policy (Lagoudakis and Parr
2003). Let

Qπ(s, a) : S ×A → R (4)

be a state-action value function for policy π , which indicates
the expected long-term discounted sum of rewards the agent
receives when the agent takes action a in state s and follows
policy π thereafter. Qπ(s, a) satisfies the following Bellman
equation:

Qπ(s, a) = R(s, a) + γ
∑

s′∈S
P(s′|s, a)Qπ(s′,π(s′)). (5)

The goal of RL is to obtain a policy which produces the
maximum amount of long-term rewards. The optimal policy
π∗(s) is defined as

π∗(s) = argmax
a∈A

Q∗(s, a), (6)

where Q∗(s, a) is the optimal state-action value function de-
fined by

Q∗(s, a) = max
π

Qπ(s, a). (7)

2.2 Least-squares policy iteration

In practice, the optimal policy π∗(s) cannot be directly ob-
tained since R(s, a) and P(s′|s, a) are usually unknown;
even when they are known, direct computation of π∗(s) is
often intractable.

To cope with this problem, Lagoudakis and Parr (2003)
proposed approximating the state-action value function
Qπ(s, a) using a linear model:

Q̂π (s, a;w) =
k∑

i=1

wiφi(s, a), (8)

where k is the number of basis functions which is usu-
ally chosen to be much smaller than |S| × |A|. w =
(w1,w2, . . . ,wk)

� are the parameters to be learned, � de-
notes the transpose, and {φi(s, a)}ki=1 are pre-determined
basis functions. Note that k and {φi(s, a)}ki=1 can depend on

policy π , but we do not show the explicit dependence for the
sake of simplicity. Assume we have roll-out samples from a
sequence of actions:

{(si , ai, ri , s
′
i )}ti=1, (9)

where each tuple denotes the agent experiencing a transition
from si to s′

i on taking action ai with immediate reward ri .
We suppose that we have an enough amount of samples to
estimate the transition probability P(s′|s, a).

Under the Least-Squares Policy Iteration (LSPI) formula-
tion (Lagoudakis and Parr 2003), the parameter w is learned
so that the Bellman equation (5) is optimally approximated
in the least-squares sense.2 Consequently, based on the ap-
proximated state-action value function with learned parame-
ter ŵπ , the policy is updated as

π(s) ←− argmax
a∈A

Q̂π (s, a; ŵπ ). (10)

Approximating the state-action value function and updating
the policy is iteratively carried out until some convergence
criterion is met.

3 Gaussian kernels on graphs

In the LSPI algorithm, the choice of basis functions
{φi(s, a)}ki=1 is an open design issue. Traditionally, Gaussian
kernels have been a popular choice (Lagoudakis and Parr
2003; Engel et al. 2005), but they cannot approximate dis-
continuous functions well. Recently, more sophisticated
methods of constructing suitable basis functions have been
proposed, which effectively make use of the graph struc-
ture induced by MDPs (Mahadevan 2005). In this section,
we introduce a novel way of constructing basis functions
by incorporating the graph structure while the relation to
the existing graph-based methods is discussed in the next
section.

3.1 MDP-induced graph

Let G be a graph induced by an MDP, where states S are
nodes of the graph and the transitions with non-zero transi-
tion probabilities from one node to another are edges. The
edges may have weights determined, e.g., based on the tran-
sition probabilities or the distance between nodes. The graph
structure corresponding to an example grid-world shown in
Fig. 1a is illustrated in Fig. 1c. In practice, such graph struc-
ture (including the connection weights) is estimated from

2There are two alternative approaches: Bellman residual minimization
and fixed point approximation. We take the latter approach following
the suggestion in Lagoudakis and Parr (2003).



Auton Robot

Fig. 1 An illustrative example of an RL task of guiding an agent to a goal in the grid world

samples of a finite length. We assume that the graph G is
connected. Typically, the graph is sparse in RL tasks, i.e.,

� � n(n − 1)/2, (11)

where � is the number of edges and n is the number of nodes.

3.2 Ordinary Gaussian kernels

Ordinary Gaussian kernels (OGKs) on the Euclidean space
are defined as

K(s, s′) = exp

(
−ED(s, s′)2

2σ 2

)
, (12)

where ED(s, s′) are the Euclidean distance between states s

and s′; for example,

ED(s, s′) = ‖x − x′‖, (13)

when the Cartesian positions of s and s′ in the state space are
given by x and x′, respectively. σ 2 is the variance parameter
of the Gaussian kernel.

The above Gaussian function is defined on the state space
S , where s′ is treated as a center of the kernel. In order
to employ the Gaussian kernel in the LSPI algorithm, it
needs to be extended over the state-action space S × A.
This is usually carried out by simply ‘copying’ the Gaussian
function over the action space (Lagoudakis and Parr 2003;
Mahadevan 2005). More precisely: let the total number k

of basis functions be mp, where m is the number of possible
actions and p is the number of Gaussian centers. For the i-th
action a(i) (∈ A) (i = 1,2, . . . ,m) and for the j -th Gaussian

center c(j) (∈ S) (j = 1,2, . . . , p), the (i + (j −1)m)-th ba-
sis function is defined as

φi+(j−1)m(s, a) = I (a = a(i))K(s, c(j)), (14)

where I (·) is the indicator function:

I (a = a(i)) =
{

1 if a = a(i),

0 otherwise.
(15)

3.3 Geodesic Gaussian kernels

On graphs, a natural definition of the distance would be
the shortest path. So we define Gaussian kernels on graphs
based on the shortest path:

K(s, s′) = exp

(
−SP(s, s′)2

2σ 2

)
, (16)

where SP(s, s′) denotes the shortest path from state s to state
s′. The shortest path on a graph can be interpreted as a dis-
crete approximation to the geodesic distance on a non-linear
manifold (Chung 1997). For this reason, we call (16) a geo-
desic Gaussian kernel (GGK).

Shortest paths on graphs can be efficiently computed us-
ing the Dijkstra algorithm (Dijkstra 1959). With its naive
implementation, computational complexity for computing
the shortest paths from a single node to all other nodes is
O(n2), where n is the number of nodes. If the Fibonacci
heap is employed, computational complexity can be reduced
to O(n logn + �) (Fredman and Tarjan 1987), where � is
the number of edges. Since the graph in value function ap-
proximation problems is typically sparse (i.e., � � n2), us-
ing the Fibonacci heap provides significant computational



Auton Robot

gains. Furthermore, there exist various approximation algo-
rithms which are computationally very efficient (see Gold-
berg and Harrelson 2005 and references therein).

Analogous to OGKs, we need to extend GGKs to the
state-action space for using them in the LSPI method.
A naive way is to just employ (14), but this can cause a
‘shift’ in the Gaussian centers since the state usually changes
when some action is taken. To incorporate this transition,
we propose defining the basis functions as the expectation
of Gaussian functions after transition, i.e.,

φi+(j−1)m(s, a) = I (a = a(i))
∑

s′∈S
P(s′|s, a)K(s′, c(j)).

(17)

This shifting scheme is shown to work very well when
the transition is predominantly deterministic (see Sects. 5
and 6.1 for experimental evaluation).

3.4 Extension to continuous state spaces

So far, we focused on discrete state spaces. However, the
concept of GGKs can be naturally extended to continuous
state spaces, which is explained here. First, the continuous
state space is discretized, which gives a graph as a discrete
approximation to the non-linear manifold structure of the
continuous state space. Based on the graph, we construct
GGKs in the same way as the discrete case. Finally, the dis-
crete GGKs are interpolated, e.g., using a linear method to
give continuous GGKs.

Although this procedure discretizes the continuous state
space, it must be noted that the discretization is only for
the purpose of obtaining the graph as a discrete approxima-
tion of the continuous non-linear manifold; the resulting ba-
sis functions themselves are continuously interpolated and
hence, the state space is still treated as continuous, as op-
posed to other conventional discretization procedures.

4 Comparison to related basis function approaches

In this section, we discuss the characteristics of GGKs in
comparison to existing basis functions using a toy RL task of
guiding an agent to a goal in a deterministic grid-world (see
Fig. 1a). The agent can take 4 actions: up/down/left/right.
Note that actions which make the agent collide with the wall
are disallowed. A positive immediate reward of +1 is given
if the agent reaches a goal state; otherwise it receives no
immediate reward. The discount factor is set at γ = 0.9.

In this task, a state s corresponds to a two-dimensional
Cartesian grid position x of the agent. For illustration pur-
poses, let us display the state value function

V π(s) : S → R, (18)

which is the expected long-term discounted sum of rewards
the agent receives when the agent takes actions following
policy π from state s. From the definition, it can be con-
firmed that V π(s) is expressed in terms of Qπ(s, a) as

V π(s) = Qπ(s,π(s)). (19)

The optimal state value function V ∗(s) (in log-scale) is illus-
trated in Fig. 1b. An MDP-induced graph structure estimated
from 20 series of random walk samples3 of length 500 is il-
lustrated in Fig. 1c. Here, the edge weights in the graph are
set at 1 (which is equivalent to the Euclidean distance be-
tween two nodes).

4.1 Geodesic Gaussian kernels

An example of GGKs for this graph is depicted in Fig. 2a,
where the variance of the kernel is set at a large value (σ 2 =
30) for illustration purposes. The graph shows that GGKs
have nice smooth surface along the maze, but not across the
partition between two rooms. Since GGKs have ‘centers’,
they are extremely useful for adaptively choosing a subset
of bases, e.g., using a uniform allocation strategy, sample-
dependent allocation strategy, or maze-dependent allocation
strategy of the centers—a practical advantage over some
non-ordered basis functions. Moreover, since GGKs are lo-
cal by nature, the ill-effects of local noise is constrained
locally—another property that is useful in practice.

The approximated value function obtained by 40 GGKs4

are depicted in Fig. 3a, where we put one GGK center at
the goal state and remaining 9 centers are chosen randomly.
For GGKs, kernel functions are extended over the action
space using the shifting scheme (see (17)) since the tran-
sition is deterministic (see Sect. 3.3). The proposed GGK-
based method produces a nice smooth function along the
maze while the discontinuity around the partition between
two rooms is sharply maintained (cf. Fig. 1b). As a result,
for this particular case, GGKs give the optimal policy (see
Fig. 4a).

As discussed in Sect. 3.3, the sparsity of the state transi-
tion matrix allows efficient and fast computations of short-
est paths on the graph. Therefore, the LSPI algorithm with
GGK-based bases is still computationally attractive (see
Sect. 5). GGKs includes an open parameter, i.e., variance
σ 2 in (16). The effect of choice of the variance parameter
will be discussed in Sect. 5.

3More precisely, in each random walk, we choose an initial state ran-
domly. Then, an action is chosen randomly and transition is made; this
is repeated 500 times. This entire procedure is independently repeated
20 times to generate the training set.
4Note that the total number k of basis functions is 160 since each GGK
is copied over the action space as per (17).



Auton Robot

Fig. 2 Examples of basis
functions

4.2 Ordinary Gaussian kernels

OGKs share some of the preferable properties of GGKs de-
scribed above. However, as illustrated in Fig. 2b, the ‘tail’
of OGKs extends beyond the partition between two rooms.
Therefore, OGKs tend to undesirably ‘smooth’ out the dis-
continuity of the value function around the barrier wall (see

Fig. 3b). This causes an error in the policy around the parti-
tion (see x = 10, y = 2,3, . . . ,9 of Fig. 4b).

4.3 Graph-Laplacian eigenbases

Mahadevan (2005) proposed employing the smoothest vec-
tors on graphs as bases in value function approximation.



Auton Robot

Fig. 3 Approximated value functions in log-scale. The errors are com-
puted with respect to the optimal value function illustrated in Fig. 1b Fig. 4 Obtained policies



Auton Robot

According to the spectral graph theory (Chung 1997), such
smooth bases are given by the minor eigenvectors of the
graph-Laplacian matrix, which are called graph-Laplacian
eigenbases (GLEs). GLEs may be regarded as a natural ex-
tension of Fourier bases to graphs.

Examples of GLEs are illustrated in Fig. 2c, showing
that they have a nice Fourier-like structure on the graph. It
should be noted that GLEs are rather global in nature, im-
plying that noise in a local region can potentially degrade
the global quality of approximation. An advantage of GLEs
is that they have a natural ordering of the basis functions ac-
cording to the smoothness. This is practically very helpful
in choosing a subset of basis functions. Figure 3c depicts
the approximated value function in log-scale, where top 40
smoothest GLEs out of 326 GLEs are used (note that the ac-
tual number of bases is 160 because of the duplication over
the action space). It shows that GLEs globally give a very
good approximation (although the small local fluctuation is
significantly emphasized since the graph is in log-scale); in-
deed, the mean squared error (MSE) between the approx-
imated and optimal value functions described in the cap-
tions of Fig. 3 shows that GLEs give a much smaller MSE
than GGKs and OGKs. However, the obtained value func-
tion contains systematic local fluctuation and this results in
an inappropriate policy (see Fig. 4c).

MDP-induced graphs are typically sparse. In such cases,
the resultant graph-Laplacian matrix is also sparse and
GLEs can be obtained just by solving a sparse eigenvalue
problem—which is computationally efficient (see Sect. 5).
However, finding minor eigenvectors could be numerically
unstable.

4.4 Diffusion wavelets

Coifman and Maggioni (2006) proposed diffusion wavelets
(DWs), which are a natural extension of wavelets to the
graph. The construction is based on a symmetrized random
walk on a graph. It is diffused on the graph up to a desired
level, resulting in a multi-resolution structure. A detailed al-
gorithm for constructing DWs and mathematical properties
are described in Coifman and Maggioni (2006), so we omit
the detail here. We use the software provided by one of the
authors of the paper as it is.5

When constructing DWs, the maximum nest level of
wavelets and tolerance used in the construction algorithm
needs to be specified by users. We set the maximum nest
level to 10 and the tolerance to 10−10, which are the default
values used in the sample code. Examples of DWs are illus-
trated in Fig. 2d, showing a nice multi-resolution structure
on the graph. DWs are over-complete bases, so one has to

5http://www.math.yale.edu/~mmm82/DWCode_.html.

appropriately choose a subset of bases for better approxi-
mation. Figure 3d depicts the approximated value function
obtained by DWs, where we chose the most global 40 DWs
from 1626 over-complete DWs (note that the actual num-
ber of bases is 160 because of the duplication over the ac-
tion space). The choice of the subset bases could possibly
be enhanced using multiple heuristics; however, the current
choice is reasonable since the Fig. 3d shows that DWs give a
much smaller MSE than Gaussian kernels. However, similar
to GLEs, the obtained value function contains a lot of small
fluctuations (see Fig. 3d) and this results in an erroneous
policy (see Fig. 4d).

Thanks to the multi-resolution structure, computation of
diffusion wavelets can be carried out recursively. However,
due to the over-completeness, it is still rather demanding in
computation time (see Sect. 5). Furthermore, appropriately
determining the tuning parameters as well as choosing an
appropriate basis subset is not a straightforward task in prac-
tice.

5 Experimental comparison

In this section, we report the results of extensive and sys-
tematic experiments for illustrating the difference between
GGKs and other basis function approaches.

We employ two deterministic grid-world problems illus-
trated in Fig. 5, and evaluate the accuracy of approximated
value functions by computing the mean squared error (MSE)
with respect to the optimal value function and the perfor-
mance of obtained policies by calculating the fraction of
states from which the agent can get to the goal optimally
(i.e., in the shortest number of steps). 20 series of random
walk of length 300 are gathered as training samples, which
are used for estimating the graph as well as the transition
probability and expected reward. We set the edge weights in
the graph at 1 (which is equivalent to the Euclidean distance
between two nodes).

This simulation is repeated 100 times for each maze and
each method, randomly changing training samples in each
run. The mean of the above scores as a function of the num-
ber of kernels is plotted in Figs. 6–9. Note that the actual
number of bases is four times more because of the extension
of basis functions over the action space (see (14) and (17)).

First, we compare the performance of two kernel alloca-
tion strategies in GGKs:

(i) Kernels are put at all the goal states and the remain-
ing kernels are distributed uniformly over the maze; the
‘shift’ strategy introduced in Sect. 3.3 is used.

(ii) All kernels are just uniformly distributed over the maze
and the ‘shift’ strategy is not used.

http://www.math.yale.edu/~mmm82/DWCode_.html


Auton Robot

Fig. 5 Two benchmark mazes
used for simulation. In this
experiment, we put GGKs at all
the goal states and the remaining
kernels are distributed
uniformly over the maze; the
‘shift’ scheme described by (17)
is used in GGKs

Fig. 6 Mean squared error of
approximated value functions
averaged over 100 trials for the
Sutton and three room mazes. In
the legend, GGK denotes the
GGK method with the kernel
allocation strategy (i), i.e.,
kernels are put at all the goal
states and the remaining kernels
are distributed uniformly over
the maze; the ‘shift’ strategy
introduced in Sect. 3.3 is used.
GGK’ denotes the GGK method
with the kernel allocation
strategy (ii), i.e., all kernels are
just uniformly distributed over
the maze and the ‘shift’ strategy
is not used. The standard
deviation σ of GGK and GGK’
is denoted in the bracket

We test small (σ = 1), medium (σ = 5), and large (σ = 9)
Gaussian widths. Figure 6 depicts MSEs of the approxi-
mated value functions, where the strategy (i) is denoted as
GGK and the strategy (ii) is denoted as GGK’. The graphs
show that the difference between the strategies (i) and (ii) is
not so significant in terms of MSEs (dependence of the ac-
curacy on the Gaussian width will be discussed below). Fig-
ure 7 depicts the fraction of optimal states in the obtained
policy. The results show that when the number of kernels is
small, the strategy (i) tends to perform significantly better
than the strategy (ii) in terms of the quality of the obtained
policy.

Next, we compare the performance of GGKs, OGKs,
GLEs, and DWs. In OGKs, kernels are put at all the
goal states and the remaining kernels are distributed uni-
formly over the maze; the ‘shift’ strategy is not used. Fig-
ure 8 depicts MSEs of the approximated value functions
for each method. The graphs show that MSEs of GGKs
with small width, OGKs with small width, GLEs, and DWs
are very small and decrease as the number of kernels in-
creases. On the other hand, MSEs of GGKs and OGKs
with medium/large width are relatively large and counter-
intuitively, increase as the number of kernels increases.
Therefore, from the viewpoint of approximation quality of



Auton Robot

Fig. 7 Fraction of optimal
states averaged over 100 trials
for the Sutton and three room
mazes. The legends are the same
as Fig. 6

Fig. 8 Mean squared error of
approximated value functions
averaged over 100 trials for the
Sutton and three room mazes. In
the legend, the standard
deviation σ of GGKs and OGKs
is denoted in the bracket

the value functions, GGKs and OGKs with smaller width
seem to perform better.

Figure 9 depicts the fraction of optimal states in the
obtained policy. The graphs show that overall GGKs with
medium/large width give much better policies than OGKs,
GLEs, and DWs. An interesting finding from the graphs
is that GGKs tend to work better if the Gaussian width is
large, while OGKs show the opposite trend; this may be ex-
plained as follows. Tails of OGKs extend across the wall
as illustrated in Fig. 2b. Therefore, OGKs with large width
tend to produce undesired value functions and erroneous
policies around the partitions. This tail effect can be alle-

viated if the Gaussian width is made small. However, this
in turn makes the approximated value function non-smooth
and fluctuating;6 so the resulting policies are still erroneous.
The fluctuation problem with a small Gaussian width seems
to be improved if the number of bases is increased, while
the tail effect with a large Gaussian width still remains even
when the number of bases is increased. On the other hand,
GGKs do not suffer from the tail problem thanks to the
geodesic construction. Therefore, GGKs allow us to make

6This is a well-known drawback of Gaussian kernel based methods,
see a standard textbook such as Bishop (1995).



Auton Robot

Fig. 9 Fraction of optimal
states averaged over 100 trials
for the Sutton and three room
mazes. The legends are the same
as Fig. 8

Fig. 10 Computation time

the width large without being affected by the discontinu-
ity across the wall. Consequently, smooth value functions
along the maze are produced and hence better policies can
be obtained by GGKs with large widths. This result high-
lights a helpful property since it alleviates the practical is-
sue of determining the values of the Gaussian width para-
meter.

The computation time of each method using our MAT-
LAB implementation is summarized in Fig. 10, showing that
the proposed GGKs are slightly slower than other methods
with the same number of bases. However, given that GGKs
give much better policies with a small number of bases than
others (see Fig. 9), GGKs are computationally very efficient.
Note that the running time of the Dijkstra algorithm was less
than 0.1 second in the current simulations, which is negligi-
bly small; the computation time was dominated by the LSPI
iteration.

6 Applications

As discussed in the previous section, the proposed GGKs
bring a number of preferable properties for making value
function approximation effective. In this section, we inves-
tigate the application of the GGK-based method to the chal-
lenging problems of (simulated) robot arm control and mo-
bile robot navigation and demonstrate its usefulness. Since
GLEs and DWs appeared not to perform robustly in the pi-
lot experiments carried out in the previous sections, we only
test GGKs and OGKs here.

6.1 Robot arm control

We use a simulator of a two-joint robot arm (moving in a
plane) illustrated in Fig. 11a. The task is to lead the end-
effector (‘hand’) of the arm to an object while avoiding the
obstacles. Possible actions are to increase or decrease the



Auton Robot

Fig. 11 A two-joint robot arm. In this experiment, we put GGKs at all the goal states and the remaining kernels are distributed uniformly over the
maze; the ‘shift’ scheme is used in GGKs

Fig. 12 Approximated value functions with 10 kernels (the actual number of bases is 40 because of the duplication over the action space)

angle of each joint (‘shoulder’ and ‘elbow’) by 5 degrees in
the plane, simulating coarse stepper-motor joints. Thus the
state space S is the 2-dimensional discrete space consisting
of two joint-angles as illustrated in Fig. 11b. The black area
in the middle corresponds to the obstacle in the joint-angle
state space. The action space A involves 4 actions: increase
or decrease one of the joint angles. We give a positive imme-
diate reward +1 when the robot’s end-effector touches the
object; otherwise the robot receives no immediate reward.
Note that actions which make the arm collide with obsta-
cles are disallowed. The discount factor is set at γ = 0.9. In
this environment, we can change the joint angle exactly by
5 degrees, so the environment is deterministic. However, be-
cause of the obstacles, it is difficult to explicitly compute an
inverse kinematic model; furthermore, the obstacles intro-
duce discontinuity in value functions. Therefore, this robot-

arm control task is an interesting test bed for investigating
the behavior of GGKs.

We collected training samples from 50 series of 1000 ran-
dom arm movements, where the start state is chosen ran-
domly in each trial. The graph induced by the above MDP
consists of 1605 nodes and we assigned uniform weights to
the edges. There are totally 16 goal states in this environ-
ment (see Fig. 11b), so we put the first 16 Gaussian centers
at the goals and the remaining centers are chosen randomly
in the state space. For GGKs, kernel functions are extended
over the action space using the shifting scheme (see (17))
since the transition is deterministic in this experiment.

Figure 12 illustrates the value functions approximated us-
ing GGKs and OGKs (similar to Sect. 4, we display state
value functions although state-action value functions are
approximated). The graphs show that GGKs give a nice



Auton Robot

Fig. 13 Number of successful trials

smooth surface with obstacle-induced discontinuity sharply
preserved, while OGKs tend to smooth out the discontinuity.
This makes a significant difference in avoiding the obstacle:
from ‘A’ to ‘B’ in Fig. 11b, the GGK-based value function
results in a trajectory that avoids the obstacle (see Fig. 12a).
On the other hand, the OGK-based value function yields a
trajectory that tries to move the arm through the obstacle by
following the gradient upward (see Fig. 12b), causing the
arm to get stuck behind the obstacle.7

Figure 13 summarizes the performance of GGKs and
OGKs measured by the percentage of successful trials (i.e.,
the end-effector reaches the object) averaged over 30 in-
dependent runs. More precisely, in each run, totally 50000
training samples are collected using a different random seed,
a policy is then computed by the GGK- or OGK-based LSPI
method, and the obtained policy is tested. This graph shows
that GGKs remarkably outperform OGKs since the arm can
successfully avoid the obstacle. The performance of OGKs
does not go beyond 0.6 even when the number of kernels is
increased. This is caused by the ‘tail effect’ of OGKs; the
OGK-based policy cannot lead the end-effector to the object
if it starts from the bottom-left half of the state space

When the number of kernels is increased, the perfor-
mance of both GGKs and OGKs once gets worse at around
k = 20. This would be caused by our kernel allocation strat-
egy: the first 16 kernels are put at the goal states and the re-
maining kernel centers are chosen randomly. When k is less
than or equal to 16, the approximated value function tends to
have a unimodal profile since all kernels are put at the goal
states. However, when k is larger than 16, this unimodality
is broken and the surface of the approximated value func-
tion has slight fluctuations, causing an error in policies and

7A demo movie is available from http://sugiyama-www.cs.titech.ac.jp/
~sugi/2008/GGKvsOGK.wmv.

degrading performance at around k = 20. This performance
degradation tends to recover as the number of kernels is fur-
ther increased.

Overall, the above result shows that when GGKs are
combined with our kernel-center allocation strategy, almost
perfect policies can be obtained with a very small number of
kernels. Therefore, the proposed method is computationally
very advantageous.

6.2 Robot agent navigation

The above simple robot-arm control simulation shows that
the GGK method is promising. Here we apply GGKs to a
more challenging task of mobile robot navigation, which in-
volves a high-dimensional, very large state space.

We employ a Khepera robot illustrated in Fig. 14a on the
navigation task. A Khepera is equipped with 8 infra-red sen-
sors (‘s1’ to ‘s8’ in the figure), each of which gives a mea-
sure of the distance from the surrounding obstacles. Each
sensor produces a scalar value between 0 and 1023: the sen-
sor obtains the maximum value 1023 if an obstacle is just
in front of the sensor and the value decreases as the obsta-
cle gets farther till it reaches the minimum value 0. There-
fore, the state space S is 8-dimensional. The Khepera has
two wheels and takes the following 4 defined actions: for-
ward, left-rotation, right-rotation, and backward (i.e., the ac-
tion space A contains 4 actions). The speed of the left and
right wheels for each action is described in Fig. 14a in the
bracket (the unit is pulse per 10 milliseconds). Note that the
sensor values and the wheel speed are highly stochastic due
to the cross talk, sensor noise, slip etc. Furthermore, percep-
tual aliasing occurs due to the limited range and resolution
of sensors. Therefore, the state transition is also highly sto-
chastic. We set the discount factor at γ = 0.9.

The goal of the navigation task is to make the Khepera
explore the environment as much as possible. To this end, we
give a positive reward +1 when the Khepera moves forward
and a negative reward −2 when the Khepera collides with
an obstacle. We do not give any reward to the left/right ro-
tation and backward actions. This reward design encourages
the Khepera to go forward without hitting obstacles, through
which extensive exploration in the environment could be
achieved.

We collected training samples from 200 series of 100 ran-
dom movements in a fixed environment with several obsta-
cles (see Fig. 15a). Then we constructed a graph from the
gathered samples by discretizing the continuous state space
using the Self-Organizing Map (SOM) (Kohonen 1995).
A SOM consists of neurons located on a regular grid. Each
neuron corresponds to a cluster and neurons are connected to
adjacent ones by neighborhood relation. The SOM is similar
to the k-means clustering algorithm, but it is different in that
topological structure of the entire map is taken into account;

http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/GGKvsOGK.wmv
http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/GGKvsOGK.wmv


Auton Robot

Fig. 14 Khepera robot. In this experiment, GGKs are distributed uniformly over the maze without the ‘shift’ scheme

Fig. 15 Simulation
environment

by that, the entire space tends to be covered. The number of
nodes (states) in the graph is set at 696 (equivalent with the
SOM map size of 24 × 29); this value is computed by the
standard rule-of-thumb formula 5

√
n (Vesanto et al. 2000),

where n is the number of samples. The connectivity of the
graph is determined by state transitions occurred in the sam-
ples, i.e., if there is a state transition from one node to an-
other in the samples, an edge is established between these
two nodes and the edge weight is set according to the Euclid-
ean distance between them.

Figure 14b illustrates an example of the obtained graph
structure. For visualization purposes, we projected the 8-
dimensional state space onto a 2-dimensional subspace8

spanned by

(−1 −1 0 0 1 1 0 0),

(0 0 1 1 0 0 −1 −1).
(20)

8We note that the projection is done only for the purpose of visualiza-
tion; all the computations are carried out using the entire 8-dimensional
data.

The i-th element in the above bases corresponds to the out-
put of the i-th sensor (see Fig. 14a). The projection onto
this subspace roughly means that the horizontal axis corre-
sponds to the distance to the left/right obstacle, while the
vertical axis corresponds to the distance to the front/back
obstacle. For clear visibility, we only displayed the edges
whose weight is less than 250. Representative local poses of
the Khepera with respect to the obstacles are illustrated for
salient nodes of the state-space MDP graph in Fig. 14b. This
graph has a notable feature: the nodes around the region ‘B’
in the figure are directly connected to the nodes at ‘A’, but
are very sparsely connected to the nodes at ‘C’, ‘D’, and ‘E’.
This implies that the geodesic distance from ‘B’ to ‘C’, ‘B’
to ‘D’, or ‘B’ to ‘E’ is typically larger than the Euclidean
distance.

Since the transition from one state to another is highly
stochastic in the current experiment, we decided to simply
duplicate the GGK function over the action space (see (14)).
For obtaining continuous GGKs, GGK functions need to be
interpolated (see Sect. 3.4). We may employ a simple lin-
ear interpolation method in general. However, the current
experiment has unique characteristics—at least one of the



Auton Robot

Fig. 16 Examples of obtained policies. The symbols ‘↑’, ’↓’, ‘⊂’, and ‘⊃’ indicate forward, backward, left-rotation, and right-rotation actions

sensor values is always zero since the Khepera is never com-
pletely surrounded by obstacles. Therefore, samples are al-
ways on the surface of the 8-dimensional hypercube-shaped
state space. On the other hand, the node centers determined
by the SOM are not generally on the surface. This means that
any sample is not included in the convex hull of its nearest
nodes and we need to extrapolate the function value. Here,
we simply add the Euclidean distance between the sample
and its nearest node when computing kernel values; more
precisely, for a state s that is not generally located on a node
center, the GGK-based basis function is defined as

φi+(j−1)m(s, a)

= I (a = a(i)) exp

(
− (ED(s, s̃) + SP(s̃, c(j)))2

2σ 2

)
, (21)

where s̃ is the node closest to s in the Euclidean distance.
Figure 16 illustrates an example of actions selected at

each node by the GGK-based and OGK-based policies. We
used 100 kernels and set the width at 1000. The symbols
‘↑’, ’↓’, ‘⊂’, and ‘⊃’ in the figure indicate forward, back-
ward, left-rotation, and right-rotation actions. This shows
that there is a clear difference in the obtained policies at the
state ‘C’; the backward action is most likely to be taken by
the OGK-based policy while the left/right rotation are most
likely to be taken by the GGK-based policy. This causes a
significant difference in the performance. To explain this,
let us assume that the Khepera is at the state ‘C’, i.e., it faces
a wall. The GGK-based policy guides the Khepera from ‘C’
to ‘A’ via ‘D’ or ‘E’ by taking left/right rotation actions and
it can avoid the obstacle successfully. On the other hand, the
OGK-based policy tries to plan a path from ‘C’ to ‘A’ via ‘B’
by activating the backward action; then, the forward action

Fig. 17 Average amount of exploration

is taken at ‘B’. Thus, the Khepera returns to ‘C’ again and
ends up moving back and forth between ‘C’ and ‘B’.9

For the performance evaluation, we use a more compli-
cated environment than the one used for gathering training
samples (see Fig. 15). Thus we are evaluating how well the
obtained policies can be generalized to an unknown envi-
ronment. In this test environment, we let the Khepera run
from a fixed starting position (see Fig. 15b) and take 150
steps following the obtained policy. We compute the sum
of rewards, i.e., +1 for the forward action. If the Khep-
era collides with an obstacle before 150 steps, we stop the
evaluation. The mean test performance over 30 independent

9A demo movie is available from http://sugiyama-www.cs.titech.ac.jp/
~sugi/2008/GGKvsOGK.wmv.

http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/GGKvsOGK.wmv
http://sugiyama-www.cs.titech.ac.jp/~sugi/2008/GGKvsOGK.wmv


Auton Robot

runs is depicted in Fig. 17 as a function of the number of
kernels. More precisely, in each run, we construct a graph
based on the training samples taken from the training envi-
ronment and put the specified number of kernels randomly
on the graph. Then, a policy is learned by the GGK or OGK-
based LSPI method using the training samples. Note that the
actual number of bases is four times more because of the
extension of basis functions over the action space. The test
performance is measured 5 times for each policy and the av-
erage is outputted. Figure 17 shows that GGKs significantly
outperform OGKs, demonstrating that GGKs are promising
even in the challenging setting with a high-dimensional huge
state space.

Figure 18 depicts the computation time of each method
as a function of the number of kernels. This shows that the
computation time monotonically increases as the number
of kernels increases and the GGK-based and OGK-based
methods have comparable computation time. Given that the

Fig. 18 Computation time

GGK-based method works much better than the OGK-based
method with a smaller number of kernels (see Fig. 17), the
proposed method could be regarded as a computationally ef-
ficient alternative to the standard OGK-based method.

Finally, we apply the learned Khepera robot to map build-
ing. Starting from an initial position (indicated by a square
in Fig. 19), the Khepera robot takes an action 2000 times fol-
lowing the learned policy. We used 80 kernels with Gaussian
width σ = 1000 in value function approximation. The re-
sults of GGKs and OGKs are depicted in Fig. 19a and b.
The graphs show that the GGK result gives a broader pro-
file of the environment, while the OGK result only reveals a
local area around the initial position.

7 Conclusions and outlook

We proposed a new basis-construction method for value
function approximation. The proposed geodesic Gaussian
kernels (GGKs) have several preferable properties such as
the smoothness along the graph and easy computability.
We demonstrated the practical usefulness of the proposed
method for challenging applications: both the robot-arm
reaching experiments with obstacles and the Khepera ex-
ploration experiments showed quantitative improvements as
well as intuitive, interpretable behavioral advantages evident
from the experiments.

Experiments in Sect. 5 showed that GGKs with large
width has larger MSEs than that with smaller width, but
GGKs with large width gave better policies than that with
smaller width. We conjecture that GGKs with large width
give smoother value functions and hence, result in stable
policies. Although this explanation would be intuitively rea-
sonable, it needs to be elucidated in a more rigorous way.

Fig. 19 Results of map building (cf. Fig. 15b)



Auton Robot

It is shown that the policies obtained by GGKs are not
so sensitive to the choice of the width of the Gaussian ker-
nels, i.e., a reasonably large width works very well. This
is a very useful property in practice. Also, the heuristics
of putting Gaussian centers on goal states is shown to
work quite well. Even so, it is an important future direc-
tion to develop a method for optimally tuning the width as
well as the location parameters, e.g., based on the statisti-
cal machine learning theory (Vapnik 1998; Hachiya et al.
2008).

When the transition is highly stochastic (i.e., the transi-
tion probability has a wide support), the graph constructed
based on the transition samples could be noisy. When an er-
roneous transition results in a short-cut over obstacles, the
graph-based approach may not work well since the topol-
ogy of the state space changes significantly. Therefore, it is
an important future work to evaluate the robustness of the
proposed approach under very noisy environment and to de-
velop a more robust method of building a graph from noisy
transition samples.

In Sect. 3.4, we extended the proposed GGKs to contin-
uous state space. A significant research direction will be to
further explore the properties of the continuous GGKs and
their application to real world, high-dimensional problems
such as planning in anthropomorphic robots.

We defined the Gaussian kernels on the state space, and
then extended them over the action space. If we define ba-
sis functions directly on the state-action space, the quality
of value function approximation and the computational effi-
ciency could be further improved. Our future research will
focus on this topic.

In this paper, we have focused on a batch RL scenario
where samples are gathered in the beginning. Another prac-
tical situation would be an online scenario where sam-
ples are gathered incrementally through the policy iteration
process. Such an online scenario induces an off-policy situ-
ation, i.e., the policy used for data sampling and the policy
used for evaluation are mismatched (Sutton and Barto 1998).
It is therefore essential to develop a method that can handle
the off-policy situation efficiently, e.g., following the lines
of Precup et al. (2000) and Hachiya et al. (2008).

Acknowledgements The authors acknowledge financial support
from MEXT (Grant-in-Aid for Young Scientists 17700142 and Grant-
in-Aid for Scientific Research (B) 18300057), the Okawa Foundation,
and EU Erasmus Mundus Scholarship.

References

Bishop, C. M. (1995). Neural networks for pattern recognition. Ox-
ford: Clarendon.

Chung, F. R. K. (1997). Spectral graph theory. Providence: Am. Math.
Soc.

Coifman, R., & Maggioni, M. (2006). Diffusion wavelets. Applied and
Computational Harmonic Analysis, 21, 53–94.

Daubechies, I. (1992). Ten lectures on wavelets. Philadelphia: SIAM.

Dijkstra, E. W. (1959). A note on two problems in connexion with
graphs. Numerische Mathematik, 1, 269–271.

Engel, Y., Mannor, S., & Meir, R. (2005). Reinforcement learning with
Gaussian processes. In Proceedings of international conference
on machine learning, Bonn, Germany.

Fredman, M. L., & Tarjan, R. E. (1987). Fibonacci heaps and their
uses in improved network optimization algorithms. Journal of the
ACM, 34, 569–615.

Girosi, F., Jones, M., & Poggio, T. (1995). Regularization theory and
neural networks architectures. Neural Computation, 7, 219–269.

Goldberg, A. V., & Harrelson, C. (2005). Computing the shortest path:
A* search meets graph theory. In 16th annual ACM-SIAM sympo-
sium on discrete algorithms, Vancouver, Canada (pp. 156–165).

Hachiya, H., Akiyama, T., Sugiyama, M., & Peters, J. (2008). Adap-
tive importance sampling with automatic model selection in value
function approximation. In Proceedings of the twenty-third AAAI
conference on artificial intelligence (AAAI-08), Chicago, USA
(pp. 1351–1356).

Kohonen, T. (1995). Self-organizing maps. Berlin: Springer.

Kolter, J. Z., & Ng, A. Y. (2007). Learning omnidirectional path fol-
lowing using dimensionality reduction. In Proceedings of robot-
ics: science and systems.

Lagoudakis, M. G., & Parr, R. (2003). Least-squares policy iteration.
Journal of Machine Learning Research, 4, 1107–1149.

Mahadevan, S. (2005). Proto-value functions: Developmental rein-
forcement learning. In Proceedings of international conference
on machine learning, Bonn, Germany.

Mahadevan, S., & Maggioni, M. (2006). Value function approxima-
tion with diffusion wavelets and Laplacian eigenfunctions. In
Advances in neural information processing systems (Vol. 18,
pp. 843–850). Cambridge: MIT Press.

Morimoto, J., & Doya, K. (2007). Acquisition of stand-up behavior by
a real robot using hierarchical reinforcement learning. Robotics
and Autonomous Systems, 36, 37–51.

Osentoski, S., & Mahadevan, S. (2007). Learning state-action basis
functions for hierarchical MDPs. In Proceedings of the 24th in-
ternational conference on machine learning.

Precup, D., Sutton, R. S., & Singh, S. (2000). Eligibility traces for
off-policy policy evaluation. In Proceedings of the seventeenth in-
ternational conference on machine learning (pp. 759–766). San
Mateo: Morgan Kaufmann.

Schölkopf, B., & Smola, A. J. (2002). Learning with kernels. Cam-
bridge: MIT Press.

Sugiyama, M., Hachiya, H., Towell, C., & Vijayakumar, S. (2007).
Value function approximation on non-linear manifolds for robot
motor control. In Proceedings of 2007 IEEE international confer-
ence on robotics and automation (ICRA2007) (pp. 1733–1740).

Sutton, R. S., & Barto, G. A. (1998). Reinforcement learning: An in-
troduction. Cambridge: MIT Press.

Vapnik, V. N. (1998). Statistical learning theory. New York: Wiley.

Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000).
SOM toolbox for Matlab 5 (Technical Report A57). Helsinki Uni-
versity of Technology.

Vijayakumar, S., D’Souza, A., Shibata, T., Conradt, J., & Schaal, S.
(2002). Statistical learning for humanoid robots. Autonomous Ro-
bot, 12, 55–69.



Auton Robot

Masashi Sugiyama is an Associate
Professor with the Department of
Computer Science at the Tokyo In-
stitute of Technology, Japan. He re-
ceived a Ph.D. in Computer Science
from the Tokyo Institute of Technol-
ogy in 2001. His research interests
include theories of machine learn-
ing and their applications in robotics
and signal/image processing.

Hirotaka Hachiya received the B.E.
degree from Soka University in
2000 and the M.Sc. degree in infor-
matics from the University of Edin-
burgh in 2006. During 2000–2004,
he worked in the web, software
and robotic fields. He is currently
a Ph.D. candidate at the Tokyo In-
stitute of Technology. His research
interests are machine learning, rein-
forcement learning and their appli-
cation on robots.

Christopher Towell has an M.A.
in Maths/Computer Science from
Cambridge University, an MSc in
Informatics from Edinburgh Univer-
sity, and is currently studying for
a Ph.D. in Neuroinformatics at Ed-
inburgh University. He has several
years experience as a commercial
software engineer. His research in-
terests include statistical machine
learning, intelligent robotics and
computational neuroscience.

Sethu Vijayakumar is a Reader
(Associate Professor) with the
School of Informatics at the Uni-
versity of Edinburgh and the Direc-
tor of the Institute for Perception,
Action and Behavior (IPAB). Since
2007, he holds a Senior Research
Fellowship of the Royal Academy
of Engineering. He also holds addi-
tional appointments as an Adjunct
Faculty of the University of South-
ern California, Los Angeles, a Re-
search Scientist of the ATR Compu-
tational Neuroscience Labs, Kyoto-
Japan and a Visiting Research Sci-

entist at the RIKEN Brain Science Institute, Tokyo. He has a Ph.D.
(’98) in Computer Science and Engineering from the Tokyo Institute
of Technology. Prof. Vijayakumar held the positions of Research As-
sistant Professor (’01–’03) at USC and a Staff Scientist (’98–’00) at
the RIKEN Brain Science Institute before this appointment. His re-
search interest spans a broad interdisciplinary curriculum involving ba-
sic research in the fields of statistical machine learning, motor control,
planning and optimization in autonomous systems and computational
neuroscience.


	Geodesic Gaussian kernels for value function approximation
	Abstract
	Introduction
	Formulation of the reinforcement learning problem
	Markov decision processes
	Least-squares policy iteration

	Gaussian kernels on graphs
	MDP-induced graph
	Ordinary Gaussian kernels
	Geodesic Gaussian kernels
	Extension to continuous state spaces

	Comparison to related basis function approaches
	Geodesic Gaussian kernels
	Ordinary Gaussian kernels
	Graph-Laplacian eigenbases
	Diffusion wavelets

	Experimental comparison
	Applications
	Robot arm control
	Robot agent navigation

	Conclusions and outlook
	Acknowledgements
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


