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Definition

This entry addresses two topics: learning control
and locally weighted regression.

Learning control refers to the process of ac-
quiring a control strategy for a particular con-
trol system and a particular task by trial and
error. It is usually distinguished from adaptive
control (Aström and Wittenmark 1989) in that
the learning system is permitted to fail during
the process of learning, resembling how humans
and animals acquire new movement strategies.

In contrast, adaptive control emphasizes single-
trial convergence without failure, fulfilling strin-
gent performance constraints, e.g., as needed in
life-critical systems like airplanes and industrial
robots.

Locally weighted regression refers to super-
vised learning of continuous functions (otherwise
known as function approximation or regression)
by means of spatially localized algorithms, which
are often discussed in the context of kernel re-
gression, nearest neighbor methods, or lazy learn-
ing (Atkeson et al. 1997). Most regression algo-
rithms are global learning systems. For instance,
many algorithms can be understood in terms of
minimizing a global loss function such as the
expected sum squared error:
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where E Œ � � denotes the expectation operator,
ti the noise-corrupted target value for an input
xi—which is expanded by basis functions into a
basis function vector � .xi /-and ˇ is the vector
of (usually linear) regression coefficients. Clas-
sical feedforward neural networks, radial basis
function networks, mixture models, or Gaussian
process regression are all global function approx-
imators in the spirit of Eq. (1).
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2 Locally Weighted Regression for Control

In contrast, local learning systems conceptu-
ally split up the global learning problem into
multiple simpler learning problems. Traditional
locally weighted regression approaches achieve
this by dividing up the cost function into multiple
independent local cost functions,
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resulting inK (independent) local model learning
problems. A different strategy for local learning
starts out with the global objective (Eq. 1) and
reformulates it to capture the idea of local models
that cooperate to generate a (global) function fit.
This is achieved by assuming there are K feature
functions �k , such that the kth feature function
�k .xi / D wk;ixi , resulting in
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In this setting, local models are initially coupled
and approximations are found to decouple the
learning of the local models parameters.

Motivation and Background

Figure 1 illustrates why locally weighted re-
gression methods are often favored over global
methods when it comes to learning from incre-
mentally arriving data, especially when dealing
with nonstationary input distributions. The figure
shows the division of the training data into two
sets: the “original training data” and the “new
training data” (in dots and crosses, respectively).
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Locally Weighted Regression for Control, Fig. 1
Function approximation results for the function y D
sin.2x/ C 2 exp.�16x2/ C N.0; 0:16/ with (a) a sig-
moidal neural network, (b) a locally weighted regression
algorithm (note that the data traces “true y,” “predicted y,”

and “predicted y after new training data” largely coincide),
and (c) the organization of the (Gaussian) kernels of (b)
after training. See Schaal and Atkeson 1998 for more
details
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Initially, a sigmoidal neural network and a
locally weighted regression algorithm are trained
on the “original training data,” using 20 % of
the data as a cross validation set to assess con-
vergence of the learning. In a second phase,
both learning systems are trained solely on the
“new training data” (again with a similar cross-
validation procedure), but without using any data
from the “original training data.” While both
algorithms generalize well on the “new training
data,” the global learner incurred catastrophic
interference, unlearning what was learned ini-
tially, as seen in Fig. 1a. Figure 1b shows that
the locally weighted regression algorithm does
not have this problem since learning (along with
generalization) is restricted to a local area.

Appealing properties of locally weighted re-
gression include the following:

• Function approximation can be performed
incrementally with nonstationary input and
output distributions and without significant
danger of interference. Locally weighted
regression can provide posterior probability
distributions, offer confidence assessments,
and deal with heteroscedastic data.

• Locally weighted learning algorithms are
computationally inexpensive to compute. It
is well suited for online computations (e.g.,
for online and incremental learning) in the fast
control loop of a robot—typically on the order
of 100–1000 Hz.

• Locally weighted regression methods can im-
plement continual learning and learning from
large amounts of data without running into se-
vere computational problems on modern com-
puting hardware.

• Locally weighted regression is a nonparamet-
ric method (i.e., it does not require that the
user determine a priori the number of local
models in the learning system), and the learn-
ing systems grow with the complexity of the
data it tries to model.

• Locally weighted regression can include fea-
ture selection, dimensionality reduction, and
Bayesian inference—all which are required
for robust statistical inference.

• Locally weighted regression works favorably
with locally linear models (Hastie and Loader
1993), and local linearizations are of ubiqui-
tous use in control applications.

Background
Returning to Eqs. (1) to (3), the main differences
between global methods that directly solve
Eq. (1) and local methods that solve either
Eqs. (2) or (3) are listed below:

(i) A weight wi;k is introduced that focuses:
• either the function approximation fit in

Eq. (2)
• or a local models contribution toward the

global function fit in Eq. (3)
on only a small neighborhood around a
point of interest ck in input space (see Eq. 4
below).

(ii) The learning problem is split into K inde-
pendent optimization problems.

(iii) Due to the restricted scope of the function
approximation problem, we do not need a
nonlinear basis function expansion and can,
instead, work with simple local functions or
local polynomials (Hastie and Loader 1993).

The weights wk;i in Eq. (2) are typically com-
puted from some kernel function (Atkeson et al.
1997) such as a squared exponential kernel:

wk;i D exp

�
�

1

2
.xi � ck/

T Dk .xi � ck/
�

(4)

with Dk denoting a positive semidefinite distance
metric and ck the center of the kernel. The num-
ber of kernelsK is not finite. In many local learn-
ing algorithms, the kernels are never maintained
in memory. Instead, for every query point xq ,
a new kernel is centered at ck D xq , and the
localized function approximation is solved with
weighted regression techniques (Atkeson et al.
1997).

Locally weighted regression should not be
confused with mixture of experts models (Jordan
and Jacobs 1994). Mixture models are global
learning systems since the experts compete
globally to cover training data. Mixture models
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address the bias-variance dilemma (Intuitively,
the bias-variance dilemma addresses how many
parameters to use for a function approximation
problem to find an optimal balance between
overfitting and oversmoothing of the training
data.) by finding the right number of local
experts. Locally weighted regression addresses
the bias-variance dilemma in a local way
by finding the optimal distance metric for
computing the weights in the locally weighted
regression (Schaal and Atkeson 1998).

Structure of Learning System

All local learning approaches have three critical
components in common:

(i) Optimizing the regression parameters ˇk
(ii) Learning the distance metric Dk that defines

a local model neighborhood
(iii) Choosing the location ck of receptive

field(s)

Local learning methods can be separated into
“lazy” approaches that require all training data
to be stored and “memoryless” approaches that
compress data into a several local models and
thus do not require storage of data points.

In the “lazy” approach, the computational bur-
den of a prediction is deferred until the last
moment, i.e., when a prediction is needed. Such a
“compute-the-prediction-on-the-fly” approach is
often called lazy learning and is a memory-based
learning system where all training data is kept
in memory for making predictions. A prediction
is formed by optimizing the parameters ˇq and
distance metric Dq of one local model centered at
the query point cq D xq .

Alternatively, in the “memoryless” approach,
multiple kernels are created as needed to cover
the input space, and the sufficient statistics of the
weighted regression are updated incrementally
with recursive least squares (Schaal and Atkeson
1998). This approach does not require storage
of data points in memory. Predictions of neigh-
boring local models can be blended, improving

function fitting results in the spirit of committee
machines.

We describe some algorithms of both flavors
next.

Memory-Based Locally Weighted
Regression (LWR)
The original locally weighted regression algo-
rithm was introduced by Cleveland (1979) and
popularized in the machine learning and learning
control community by Atkeson (1989). The algo-
rithm – categorized as a “lazy” approach – can
be summarized as follows below (for algorithmic
pseudo-code, see Schaal et al. 2002):

• All training data is collected in the rows of the
matrix X and the vector (For simplicity, only
functions with a scalar output are addressed.
Vector-valued outputs can be learned either
by fitting a separate learning system for each
output or by modifying the algorithms to fit
multiple outputs (similar to multi-output lin-
ear regression).) t.

• For every query point xq , the weighting kernel
is centered at the query point.

• The weights are computed with Eq. (4), and
all data points’ weights are collected in the
diagonal weight matrix Wq

• The local regression coefficients are computed
as

ˇq D
�

XTWqX
��1

XTWqt (5)

• A prediction is formed with yq D
�
xTq 1

�
ˇq .

As in all kernel methods, it is important to
optimize the kernel parameters in order to get
optimal function fitting quality. For LWR, the
critical parameter determining the bias-variance
trade-off is the distance metric Dq . If the kernel is
too narrow, it starts fitting noise. If it is too broad,
oversmoothing will occur. Dq can be optimized
with leave-one-out cross validation to obtain a
globally optimal value, i.e., the same Dq D D
is used throughout the entire input space of the
data. Alternatively, Dq can be locally optimized
as a function of the query point, i.e., obtain a Dq

http://link.springer.com/bias-variance
http://link.springer.com/bias-variance
http://link.springer.com/overfitting
http://link.springer.com/bias-variance
http://link.springer.com/least squares
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(as indicated by the subscript “q”). In the recent
machine learning literature (in particular, work
related to kernel methods), such input-dependent
kernels are referred to as nonstationary kernels.

Locally Weighted Projection Regression
(LWPR)
Schaal and Atkeson (1998) suggested a
memoryless version of LWR, called RFWR,
in order to avoid the expensive nearest neighbor
computations—particularly for large training
data sets—of LWR and to have fast real-time (In
most robotic systems, “real time” means on the
order of maximally 1–10 ms computation time,
corresponding to a 1000 to 100 Hz control loop.)
prediction performance. The main ideas of the
RFWR algorithm (Schaal and Atkeson 1998) are
listed below:

• Create new kernels only if no existing kernel
in memory covers a training point with some
minimal activation weight.

• Keep all created kernels in memory and up-
date the weighted regression with weighted
recursive least squares for new training points
fx; tg:

ˇnC1
k
D ˇnk C wPnC1 Qx

�
t � QxTˇnk

�

where PnC1
k
D

1

�

 
Pnk �

Pn
k
QxQxTPn

k

�
w C Qx

TPn
k
Qx

!
and Qx

D
h
xT 1

iT
: (6)

• Adjust the distance metric Dq for each kernel
with a gradient descent technique using leave-
one-out cross validation.

• Make a prediction for a query point taking a
weighted average of predictions from all local
models:

yq D

PK
kD1 wq;k Oyq;kPK
kD1 wq;k

(7)

Adjusting the distance metric Dq with leave-one-
out cross validation without keeping all training
data in memory is possible due to the PRESS

residual. The PRESS residual allows the leave-
one-out cross validation error to be computed in
closed form without needing to actually exclude
a data point from the training data.

Another deficiency of LWR is its inability
to scale well to high-dimensional input spaces
since the covariance matrix inversion in Eq. (5)
becomes severely ill-conditioned. Additionally,
LWR becomes expensive to evaluate as the num-
ber of local models to be maintained increases.
Vijayakumar et al. (2005) suggested local di-
mensionality reduction techniques to handle this
problem. Partial least squares (PLS) regression
is a useful dimensionality reduction method that
is used in the LWPR algorithm (Vijayakumar
et al. 2005). In contrast to PCA methods, PLS
performs dimensionality reduction for regression,
i.e., it eliminates subspaces of the input space that
minimally correlates with the outputs, not just
parts of the input space that have low variance.

While LWPR is typically used in conjunction
with linear local models, the use of local non-
parametric models, such as Gaussian processes,
has also been explored (Nguyen-Tuong et al.
2008). Finally, LWPR is currently one of the best
developed locally weighted regression algorithms
for control (Klanke et al. 2008) and has been
applied to learning control problems with over
100 input dimensions.

A Full Bayesian Treatment of Locally
Weighted Regression
Ting et al. (2008) proposed a fully probabilistic
treatment of LWR in an attempt to avoid cross-
validation procedures and minimize any manual
parameter tuning (e.g., gradient descent rates,
kernel initialization, forgetting rates, etc.). The
resulting Bayesian algorithm learns the distance
metric of local linear model (For simplicity, a lo-
cal linear model is assumed, although local poly-
nomials can be used as well.) probabilistically,
can cope with high input dimensions, and rejects
data outliers automatically. The main ideas of
Bayesian LWR are listed below (please see Ting
2009 for details):

http://link.springer.com/nearest neighbor
http://link.springer.com/least squares
http://link.springer.com/covariance matrix
http://link.springer.com/dimensionality reduction
http://link.springer.com/dimensionality reduction
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• Introduce hidden variables z to the local linear
model to decompose the statistical estimation
problem into d individual estimation prob-
lems (where d is the number of input dimen-
sions). The result is an iterative expectation-
maximization (EM) algorithm that is of linear
computational complexity in d and the num-
ber of training data samples N , i.e., O.Nd/.

• Associate a scalar weight wi with each train-
ing data sample fxi ; tig, placing a Bernoulli
prior probability distribution over a weight
wim for each input dimension m so that the
weights are positive and between 0 and 1:

wi D
dY
mD1

wim where

wim� Bernoulli .qim/ for i D 1; ::; N I

m D 1; ::; d (8)

The weight wi indicates a training sample’s
contribution to the local model. The formula-
tion of the parameter qim determines the shape
of the weighting function applied to the local
model. The weighting function qim used in
Bayesian LWR is listed below:

qim D
1

1C
�
xim � xqm

	2
hm

for i D 1; ::; N I

m D 1; ::; d (9)

where xq 2 <d�1 is the query input point
and hm is the bandwidth parameter/distance
metric of the local model in the m-th input
dimension.

• Place a gamma prior probability distribution
over the distance metric hm:

hm � Gamma .ahm0; bhm0/ (10)

where fahm0; bhm0g are the prior parameter
values of the gamma distribution.

• Treat the model as an EM-like regression
problem, using variational approximations to

achieve analytically tractable inference of the
posterior probability distributions.

This Bayesian method can also be applied
as general kernel shaping algorithm for global
kernel learning methods that are linear in the
parameters (e.g., to realize nonstationary Gaus-
sian processes (Ting et al. 2008), resulting in an
augmented nonstationary Gaussian process).

Figure 2 illustrates Bayesian kernel shaping’s
bandwidth adaptation abilities on several syn-
thetic data sets, comparing it to a stationary Gaus-
sian process and the augmented nonstationary
Gaussian process. For the ease of visualization,
the following one-dimensional functions are con-
sidered: (i) a function with a discontinuity, (ii)
a spatially inhomogeneous function, and (iii) a
straight line function. Figure 2 shows the pre-
dicted outputs of all three models trained on noisy
data drawn from data sets (i)–(iii). The local
kernel shaping algorithm smoothens over regions
where a stationary Gaussian process overfits, and
yet, it still manages to capture regions of highly
varying curvature, as seen in Fig. 2a, b. It cor-
rectly adjusts the bandwidths hwith the curvature
of the function. When the data looks linear, the
algorithm opens up the weighting kernel so that
all data samples are considered, as Fig. 2c shows.

From the viewpoint of learning control,
overfitting—as seen in the Gaussian process in
Fig. 2—can be detrimental since learning control
often relies on extracting local linearizations to
derive controllers. Obtaining the wrong sign on
a slope in a local linearization may destabilize a
controller.

In contrast to LWPR, the Bayesian LWR
method is a “lazy” learner, although memoryless
versions could be derived. Future work will
also have to address how to incorporate
dimensionality reduction methods for robustness
in high dimensions. Nevertheless, it is a first step
toward a probabilistic locally weighted regression
method with minimal parameter tuning required
by the user.

http://link.springer.com/computational complexity
http://link.springer.com/prior probability
http://link.springer.com/prior probability
http://link.springer.com/regression
http://link.springer.com/variational approximations
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Locally Weighted Regression for Control, Fig. 2
Predicted outputs using a stationary Gaussian process
(GP), the augmented nonstationary GP, and local kernel
shaping on three different data sets. Figures on the bottom

row show the bandwidths learned by local kernel shaping
and the corresponding weighting kernels (in dotted black
lines) for various input query points (shown in red circles)

From Global to Local: Local Regression
with Coupling Between Local Models
Meier et al. (2014) offer an alternative approach
to local learning. They start out with the global
objective (Eq. 3) and reformulate it to capture the
idea of local models that cooperate to generate a
function fit, resulting in
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With this change, a local models’ contribution
Oyk D xTi ˇk toward the fit of target ti is local-
ized through weight wk;i . However, this form of
localization couples all local models. For efficient
learning, local Gaussian regression (LGR) thus
employs approximations to decouple learning of
parameters. The main ideas of LGR are:

• Introduce Gaussian hidden variables fk that
form virtual targets for the weighted contribu-
tion of the kth local model:

fk;i D N
�

wk;i .x
T
i ˇk/; ˇ

�1
m

�
(12)

Assume that the target t is observed with
Gaussian noise and that the hidden variables
fk need to sum up to noisy target ti

ti D N
 X

k

fk;i ; ˇ
�1
y

!
(13)

In its exact form, this model learning proce-
dure will couple all local models parameters.

• Employ a variational approximation to de-
couple local models. This results in an itera-
tive (EM style) learning procedure, between
updating posteriors over hidden variables fk
followed by posterior updates for regression
parameters ˇk , for all local models k D

1; : : : ; K.
• The updates over the hidden variables fk turn

out to be a form of message passing between
local model predictions. This step allows the
redistribution of virtual target values for each
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Locally Weighted Regression for Control, Fig. 3
Local models trained on data from the 2D cross function
for LWPR and LGR. Local models trained via LWPR

(visualized in (b)) do not know of each other, while local
models trained by LGR (visualized in (c)) collaborate to
generate a function fit

local model. This communication between lo-
cal models is what distinguishes LGR from
typical LWR approaches. This update is linear
in the number of local models and in the
number of data points.

• The parameter updates (ˇk and Dk) per lo-
cal model become completely independent
through the variational approximation, result-
ing in a localized learning algorithm, similar
in spirit to LWR.

• Place Gaussian priors over regression param-
eters ˇk � N .ˇk I 0; diag .˛k// that allow for
automatic relevance determination of the input
dimensions.

• For incrementally incoming data, apply recur-
sive Bayesian updates that utilize the poste-
rior over parameters at time step t � 1 to
be the prior over parameters at time step t .
Furthermore, new local models are added if
no existing local model is activated with some
minimal activation weight, similar to LWPR.

• Prediction for a query input xq becomes a
weighted average of local models predictions

yq D

KX
kD1

wk;q.x
T
q ˇk/

More details and a pseudo-algorithm for incre-
mental LGR can be found in Meier et al. (2014).
Figure 3 illustrates the different shapes of local

models being learned by LWPR and LGR. Local
models learned by LGR collaborate to generate
a good fit, as visualized in Fig. 3c. Compared to
LWPR, this often allows LGR to achieve similar
predictive performance while using fewer local
models.

Finally, an interesting structural feature of lo-
cal Gaussian regression is that it easily extends to
a model with finitely many local nonparametric
Gaussian process models.

Applications

Learning Internal Models with LWPR
Learning an internal model is one of most typi-
cal applications of local regression methods for
control. The model could be a forward model
(e.g., the nonlinear differential equations of robot
dynamics), an inverse model (e.g., the equations
that predict the amount of torque to achieve a
change of state in a robot), or any other func-
tion that models associations between input and
output data about the environment. The mod-
els are used, subsequently, to compute a con-
troller, e.g., an inverse dynamics controller sim-
ilar to Eq. (16). Models for complex robots such
as like humanoids exceed easily a hundred in-
put dimensions. In such high-dimensional spaces,
it is hopeless to assume that a representative
data set can be collected for offline training that

http://link.springer.com/Gaussian regression
http://link.springer.com/Gaussian process
http://link.springer.com/controller
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Locally Weighted Regression for Control, Fig. 4
Learning an inverse dynamics model in real time with a
high-performance anthropomorphic robot arm. (a) Learn-

ing curve LWPR online learning. (b) Seven degree-of-
freedom Sarcos robot arm

can generalize sufficiently to related tasks. Thus,
the local regression philosophy involves hav-
ing a learning algorithm that can learn rapidly
when entering a new part of the state space
such that it can achieve acceptable generaliza-
tion performance almost instantaneously. Both
LWPR (Vijayakumar et al. 2005) and incremental
LGR (Meier et al. 2014) have been applied to
inverse dynamics learning tasks.

Figure 4 demonstrates online learning of an
inverse dynamics model for the elbow joint (cf.
Eq. 16) for a Sarcos Dexterous Robot Arm. The
robot starts with no knowledge about this model,
and it tracks some randomly varying desired
trajectories with a proportional-derivative (PD)
controller. During its movements, training data
consisting of tuples .q; Pq; Rq; �/—which model a
mapping from joint position, joint velocities, and
joint accelerations .q; Pq; Rq/ to motor torques �—
are collected (at about every 2 ms). Here, every
data point is used to train a LWPR function ap-
proximator, which generates a feedforward com-
mand for the controller. The learning curve is
shown in Fig. 4a.

Using a test set created beforehand, the model
predictions of LWPR are compared every 1000
training points with that of a parameter esti-
mation method. The parameter estimation ap-
proach fits the minimal number of parameters
to an analytical model of the robot dynamics

under an idealized rigid body dynamics (RBD)
assumptions, using all training data (i.e., not
incrementally). Given that the Sarcos robot is
a hydraulic robot, the RBD assumption is not
very suitable, and, as Fig. 4a shows, LWPR (in
thick red line) outperforms the analytical model
(in dotted blue line) after a rather short amount
of training. After about 5 min of training (about
125,000 data points), very good performance is
achieved, using about 350 local models. This
example demonstrates (i) the quality of function
approximation that can be achieved with LWPR
and (ii) the online allocation of more local models
as needed.

Learning Paired Inverse-Forward Models
Learning inverse models (such as inverse kine-
matics and inverse dynamics models) can be
challenging since the inverse model problem is
often a relation, not a function, with a one-to-
many mapping. Applying any arbitrary nonlin-
ear function approximation method to the in-
verse model problem can lead to unpredictably
bad performance, as the training data can form
non-convex solution spaces, in which averaging
is inappropriate. Architectures such as mixture
models (in particular, mixture density networks)
have been proposed to address problems with
non-convex solution spaces. A particularly inter-
esting approach in control involves learning lin-

http://link.springer.com/generalization
http://link.springer.com/online learning
http://link.springer.com/learning curve
http://link.springer.com/mixture models
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Locally Weighted Regression for Control, Fig. 5
SensAble Phantom haptic robotic arm

earizations of a forward model (which is proper
function) and learning an inverse mapping within
the local region of the forward model.

Ting et al. (2008) demonstrated such a
forward-inverse model learning approach with
Bayesian LWR to learn an inverse kinematics
model for a haptic robot arm (shown in Fig. 5)
in order to control the end effector along a
desired trajectory in task space. Training data
was collected while the arm performed random
sinusoidal movements within a constrained box
volume of Cartesian space. Each sample consists
of the arm’s joint angles q, joint velocities Pq, end-
effector position in Cartesian space x, and end-
effector velocities Px. From this data, a forward
kinematics model is learned:

Px D J.q/ Pq (14)

where J.q/ is the Jacobian matrix. The transfor-
mation from Pq to Px can be assumed to be locally
linear at a particular configuration q of the robot
arm. Bayesian LWR is used to learn the forward
model, and, as in LWPR, local models are only
added if a training point is not already sufficiently
covered by an existing local model. Importantly,
the kernel functions in LWR are localized only
with respect to q, while the regression of each
model is trained only on a mapping from Pq to Px—

these geometric insights are easily incorporated
as priors in Bayesian LWR, as they are natural to
locally linear models. Incorporating these priors
in other function approximators, e.g., Gaussian
process regression, is not straightforward.

The goal of the robot task is to track a desired
trajectory .x; Px/ specified only in terms of x and
´ positions and velocities, i.e., the movement is
supposed to be in a vertical plane in front of
the robot, but the exact position of the vertical
plane is not given. Thus, the task has one degree
of redundancy, and the learning system needs to
generate a mapping from fx; Pxg to Pq. Analytically,
the inverse kinematics equation is

Pq D J#.q/Px � ˛.I � J#J/
@g

@q
(15)

where J #.q/ is the pseudo-inverse of the Jaco-
bian. The second term is a gradient descent op-
timization term for redundancy resolution, spec-
ified here by a cost function g in terms of joint
angles q.

To learn an inverse kinematics model, the local
regions of q from the forward model can be
reused since any inverse of J is locally linear
within these regions. Moreover, for locally linear
models, all solution spaces for the inverse model
are locally convex, such that an inverse can be
learned without problems. The redundancy issue
can be solved by applying an additional weight
to each data point according to a reward func-
tion. Since the experimental task is specified in
terms of f Px; Ṕ g, a reward is defined, based on
a desired y coordinate, ydes , and enforced as
a soft constraint. The resulting reward function
is g D e�

1
2h.k.ydes�y/� Py/

2
, where k is a gain

and h specifies the steepness of the reward. This
ensures that the learned inverse model chooses a
solution that pushes Py toward ydes . Each forward
local model is inverted using a weighted linear
regression, where each data point is weighted
by the kernel weight from the forward model
and additionally weighted by the reward. Thus,
a piecewise locally linear solution to the inverse
problem can be learned efficiently.

Figure 6 shows the performance of the learned
inverse model (Learnt IK) in a figure-eight track-

http://link.springer.com/priors
http://link.springer.com/priors
http://link.springer.com/Gaussian process
http://link.springer.com/linear regression
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from bottom to top, with darker gray levels indicating
stronger muscle activation

ing task. The learned model performs as well as
the analytical inverse kinematics solution (Ana-
lytical IK), with root-mean-squared tracking er-
rors in positions and velocities very close to that
of the analytical solution.

Learning Trajectory Optimizations
Mitrovic et al. (2008) have explored a theory
for sensorimotor adaptation in humans, i.e., how
humans replan their movement trajectories in
the presence of perturbations. They rely on the
iterative Linear Quadratic Gaussian (iLQG) al-
gorithm (Todorov and Li 2004) to deal with the
nonlinear and changing plant dynamics that may
result from altered morphology, wear and tear,
or external perturbations. They take advantage of

the “on-the-fly” adaptation of locally weighted
regression methods like LWPR to learn the for-
ward dynamics of a simulated arm for the purpose
of optimizing a movement trajectory between a
start point and an end point.

Figure 7a shows the diagram of a two degrees-
of-freedom planar human arm model, which is
actuated by four single-joint and two double-
joint antagonistic muscles. Although kinemati-
cally simple, the system is over-actuated and,
therefore, an interesting test bed because large
redundancies in the dynamics have to be re-
solved. The dimensionality of the control sig-
nals makes adaptation processes (e.g., to external
force fields) quite demanding.
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Locally Weighted Regression for Control, Fig. 8 Illustration of learning and control scheme of the iterative Linear
Quadratic Gaussian (iLQG) algorithm with learned dynamics

The dynamics of the arm is, in part, based on
standard RBD equations of motion:

� DM .q/ RqC C .q; Pq/ Pq (16)

where � are the joint torques; q and Pq are the
joint angles and velocities, respectively; M.q/
is the two-dimensional symmetric joint space
inertia matrix; and C .q; Pq/ accounts for Coriolis
and centripetal forces. Given the antagonistic
muscle-based actuation, it is not possible to com-
mand joint torques directly. Instead, the effective
torques from the muscle activations u—which
happens to be quadratic in u—should be used. As
a result, in contrast to standard torque-controlled
robots, the dynamics equation in Eq. (16) is non-
linear in the control signals u.

The iLQG algorithm (Todorov and Li 2004) is
used to calculate solutions to “localized” linear
and quadratic approximations, which are iterated
to improve the global control solution. However,
it relies on an analytical forward dynamics model
Px D f .x;u/ and finite difference methods to
compute gradients. To alleviate this requirement
and to make iLQG adaptive, LWPR can be used
to learn an approximation of the plant’s forward
dynamics model. Figure 8 shows the control
diagram, where the “learned dynamics model”
(the forward model learned by LWPR) is then
updated in an online fashion with every iteration
to cope with changes in dynamics. The result-
ing framework is called iLQG-LD (iLQG with
learned dynamics).

Movements of the arm model in Fig. 7a are
studied for fixed time horizon reaching move-

ment. The manipulator starts at an initial position
q0 and reaches toward a target qtar . The cost
function to be optimized during the movement
is a combination of target accuracy and amount
of muscle activation (i.e., energy consumption).
Figure 7b shows trajectories of generated move-
ments for three reference targets (shown in red
circles) using the feedback controller from iLQG
with the analytical plant dynamics. The trajecto-
ries generated with iLQG-LD (where the forward
plant dynamics are learned with LWPR) are omit-
ted as they are hardly distinguishable from the
analytical solution.

A major advantage of iLQG-LD is that it does
not rely on an accurate analytic dynamics model;
this enables the framework to predict adaptation
behavior under an ideal observer planning model.
Reaching movements were studied where a con-
stant unidirectional force field acting perpendic-
ular to the reaching movement was generated
as a perturbation (see Fig. 9 (left)). Using the
iLQG-LD model, the manipulator gets strongly
deflected when reaching for the target because
the learned dynamics model cannot yet account
for the “spurious” forces. However, when the de-
flected trajectory is used as training data and the
dynamics model is updated online, the tracking
improves with each new successive trial (Fig. 9
(left)). Please refer to Mitrovic et al. (2008)
for more details. Aftereffects upon removing the
force field, very similar to those observed in
human experiments, are also observed.

http://link.springer.com/online
http://link.springer.com/online
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Adaptation to a unidirectional constant force field (indi-
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