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Definition
In learning systems with kernels, the shape and size of

a kernel plays a critical role for accuracy and general-

ization. Most kernels have a distance metric parameter,

which determines the size and shape of the kernel in

the sense of a Mahalanobis distance. Advanced kernel

learning tune every kernel’s distance metric individu-

ally, instead of turning one global distance metric for all

kernels.
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�e basic idea of the LSH (Gionis, Indyk, & Motwani,

) technique is usingmultiple hash functions to hash

the data points and guarantee that there is a high prob-

ability of collision for points which are close to each

other and low collision probability for dissimilar points.

LSH schemes exist for many distance measures, such

as Hamming norm, Lp norms, cosine distance, earth

movers distance (EMD), and Jaccard coe�cient.

In LSH, de�ne a familyH = {h : S→ U} as locality-
sensitive, if for any a, the function p(t) = PrH[h(a) =
h(b) : ∣∣a − b∣∣ = x] is decreasing in x. Based on this

de�nition, the probability of collision of points a and b

is decreasing with their distance.

Although LSH was originally proposed for approx-

imate nearest neighbor search in high dimensions, it

can be used for clustering as well (Das, Datar, Garg, &

Rajaram, ; Haveliwala, Gionis, & Indyk, ).�e

buckets could be used as the bases for clustering. Seed-

ing the hash functions several times can help getting

better quality clustering.
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Definition
�is article addresses two topics:7learning control and
locally weighted regression.
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7Learning control refers to the process of acquiring
a control strategy for a particular control system and

a particular task by trial and error. It is usually distin-

guished from adaptive control (Aström &Wittenmark,

) in that the learning system is permitted to fail

during the process of learning, resembling how humans

and animals acquire new movement strategies. In con-

trast, adaptive control emphasizes single trial conver-

gence without failure, ful�lling stringent performance

constraints, e.g., as needed in life-critical systems like

airplanes and industrial robots.

Locally weighted regression refers to 7supervised
learning of continuous functions (otherwise known as

function approximation or 7regression) by means of
spatially localized algorithms, which are o�en discussed

in the context of7kernel regression,7nearest neighbor
methods, or7lazy learning (Atkeson, Moore, & Schaal,
). Most regression algorithms are global learning

systems. For instance, many algorithms can be under-

stood in terms of minimizing a global 7loss function
such as the expected sum squared error:

Jglobal = E [ 


N

∑
i=

(ti − yi)
] = E [ 



N

∑
i=

(ti − ϕ (xi)Tβ)


]

()

where E [⋅] denotes the expectation operator, ti the
noise-corrupted target value for an input xi, which is
expanded by basis functions into a basis function vec-

tor ϕ (xi), and β the vector of (usually linear) regression
coe�cients. Classical feedforward 7neural networks,
7radial basis function networks, 7mixture models, or
7Gaussian Process regression are all global function
approximators in the spirit of Eq. ().

In contrast, local learning systems split up concep-

tually the cost function into multiple independent local

function approximation problems, using a cost function

such as the one below:

Jglobal = E [ 


K

∑
k=

N

∑
i=

wk,i (ti − xTi βk)
]

= 


K

∑
k=

E [
N

∑
i=

wk,i (ti − xTi βk)
] ()

Motivation and Background
Figure  illustrates why locally weighted regression

methods are o�en favored over global methods when

it comes to learning from incrementally arriving data,

especially when dealing with nonstationary input dis-

tributions.�e �gure shows the division of the training

data into two sets: the “original training data” and the

“new training data” (in dots and crosses, respectively).

Initially, a sigmoidal 7neural network and a locally
weighted regression algorithm are trained on the “orig-

inal training data,” using % of the data as a cross-

validation set to assess convergence of the learning. In

a second phase, both learning systems are trained solely

on the “new training data” (again with a similar cross-

validation procedure), but without using any data from

the “original training data.” While both algorithms gen-

eralizewell on the “new training data,” the global learner

incurred catastrophic interference, unlearning what

was learned initially, as seen in Fig. a, b shows that the

locally weighted regression algorithmdoes not have this

problem since learning (along with 7generalization) is
restricted to a local area.

Appealing properties of locally weighted regression

include the following:

● Function approximation can be performed incre-

mentally with nonstationary input and output dis-

tributions and without signi�cant danger of inter-

ference. Locally weighted regression can provide

7posterior probability distributions, o�er con�-
dence assessments, and deal with heteroscedastic

data.

● Locally weighted learning algorithms are compu-

tationally inexpensive to compute. It is well suited

for online computations (e.g., for 7online and
7incremental learning) in the fast control loop of a
robot – typically on the order of – Hz.

● Locallyweighted regressionmethods can implement

continual learning and learning from large amounts

of data without running into severe computational

problems on modern computing hardware.

● Locally weighted regression is a nonparametric

method (i.e., it does not require that the user deter-

mine a priori the number of local models in the

learning system), and the learning systems grows

with the complexity of the data it tries to model.

● Locally weighted regression can include 7feature
selection, 7dimensionality reduction, and 7Baye-
sian inference – all which are required for robust

statistical inference.
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Locally Weighted Regression for Control. Figure . Function approximation results for the function y = sin(x) +

exp(−x
)+N(, .)with (a) a sigmoidal neural network; (b) a locally weighted regression algorithm (note that the

data traces “true y,” “predicted y,” and “predicted y after new training data” largely coincide); and (c) the organization

of the (Gaussian) kernels of (b) after training. See Schaal and Atkeson () for more details

● Locally weighted regression works favorably with

locally linear models (Hastie & Loader, ), and

local linearizations are of ubiquitous use in control

applications.

Background
Returning to Eqs. () and (), the main di�erences

between both equations are listed below:

(i) A weightwi,k is introduced that focuses the func-

tion approximation on only a small neighbor-

hood around a point of interest ck in input space
(see Eq.  below).

(ii) �e cost function is split into K independent

optimization problems.

(iii) Due to the restricted scope of the function

approximation problem, we do not need a non-

linear basis function expansion and can, instead,

work with simple local functions or local polyno-

mials (Hastie & Loader, ).

�e weights wk,i in Eq. () are typically computed from

some 7kernel function (Atkeson, Moore, & Schaal,

) such as a squared exponential kernel

wk,i = exp(−



(xi − ck)T Dk (xi − ck)) ()

with Dk denoting a positive semide�nite distance met-

ric and ck the center of the kernel.�e number of ker-
nels K is not �nite. In many local learning algorithms,

the kernels are never maintained in memory. Instead,

for every query point xq, a new kernel is centered at
ck = xq, and the localized function approximation is
solved with weighted7regression techniques (Atkeson
et al., ).

Locally weighted regression should not be con-

fused with mixture of experts models (Jordan & Jacobs,

). 7Mixture models are global learning systems

since the experts compete globally to cover train-

ing data. Mixture models address the 7bias-variance
dilemma (Intuitively, the 7bias-variance dilemma
addresses how many parameters to use for a func-

tion approximation problem to �nd an optimal bal-

ance between 7over�tting and oversmoothing of the
training data) by �nding the right number of local

experts. Locally weighted regression addresses the

7bias-variance dilemma in a local way by �nding the
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optimal distance metric for computing the weights

in the locally weighted regression (Schaal & Atkeson,

). We describe some algorithms to �ndDk next.

Structure of Learning System
For a locally linear model centered at the query point

xq, the regression coe�cients would be

βq = (XTWqX)
−
XTWqt ()

where X is a matrix that has all training input data
points in its rows (with a column of s added in the last

column for the o�set parameter in7linear regression).
Wq is a diagonal matrix with the corresponding weights

for all data points, computed from Eq. () with ck = xq,
and t is the vector of regression targets for all train-
ing points. Such a “compute-the-prediction-on-the-�y”

approach is o�en called lazy learning (�e approach

is “lazy” because the computational of a prediction is

deferred until the last moment, i.e., when a predic-

tion is needed) and is a memory-based learning system

where all training data is kept in memory for making

predictions.

Alternatively, kernels can be created as needed to

cover the input space, and the su�cient statistics of

the weighted regression are updated incrementally with

recursive least squares (Schaal & Atkeson, ). �is

approach does not require storage of data points in

memory. Predictions of neighboring local models can

be blended, improving function �tting results in the

spirit of committee machines.

Memory-Based Locally Weighted
Regression (LWR)
�e original locally weighted regression algorithm was

introduced by Cleveland () and popularized in the

machine learning and learning control community by

Atkeson (). �e algorithm is largely summarized

by Eq. () (for algorithmic pseudo-code, see (Schaal,

Atkeson, & Vijayakumar, )):

● All training data is collected in the matrix X and the
vector t (For simplicity, only functions with a scalar
output are addressed. Vector-valued outputs can be

learned either by �tting a separate learning system

for each output or by modifying the algorithms to

�t multiple outputs (similar to multi-output linear

regression)).

● For every query point xq, the weighting kernel is
centered at the query point.

● �e weights are computed with Eq. ().

● �e local regression coe�cients are computed

according to Eq. ().

● A prediction is formed with yq = [xTq ] βq.

As in all kernel methods, it is important to optimize

the kernel parameters in order to get optimal function

�tting quality. For LWR, the critical parameter deter-

mining the7bias-variance tradeo� is the distance met-
ric Dq. If the kernel is too narrow, it starts �tting noise.

If it is too broad, oversmoothing will occur. Dq can be

optimizedwith leave-one-out cross-validation to obtain

a globally optimal value, i.e., the same Dq = D is used
throughout the entire input space of the data. Alter-

natively, Dq can be locally optimized as a function of

the query point, i.e., obtain a Dq as a function of the

query point (as already indicated by the subscript “q”).

In the recent machine learning literature (in particular,

work related to kernel methods), such input dependent

kernels are referred to as nonstationary kernels.

Locally Weighted Projection Regression
(LWPR)
Schaal and Atkeson () suggested a memoryless ver-

sion of LWR in order to avoid the expensive 7nearest
neighbor computations – particularly for large training

data sets – of LWR and to have fast real-time (In most

robotic systems, “real-time”means on the order ofmax-

imally –ms computation time, corresponding to a

–Hz control loop) prediction performance.�e

main ideas of the RFWR algorithm (Schaal & Atkeson,

) are listed below:

● Create new kernels only if no existing kernel in

memory covers a training point with some minimal

activation weight.

● Keep all created kernels in memory and update the

weighted regression with weighted recursive least

squares for new training points {x, t}:

βn+
k = βn

k +wPn+x̃ (t − x̃Tβn
k)

where Pn+k = 
λ

⎛
⎝
Pnk −

Pnk x̃x̃
TPnk

λ
w
+ x̃TPnk x̃

⎞
⎠

and x̃ = [xT ]T . ()
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● Adjust the distance metric Dq for each kernel with

a gradient descent technique using leave-one-out

cross-validation.

● Make a prediction for a query point taking a weig-

hted average of predictions from all local models:

yq =
∑K

k= wq,kŷq,k
∑K

k= wq,k

()

Adjusting the distance metric Dq with leave-one-

out cross-validation without keeping all training data

in memory is possible due to the PRESS residual.

�e PRESS residual allows the leave-one-out cross-

validation error to be computed in closed form with-

out needing to actually exclude a data point from the

training data.

Another de�ciency of LWR is its inability to

scale well to high-dimensional input spaces since the

7covariance matrix inversion in Eq. () becomes
severely ill-conditioned. Additionally, LWR becomes

expensive to evaluate as the number of local models

to be maintained increases. Vijayakumar, D’Souza and

Schaal () suggested local 7dimensionality reduc-
tion techniques to handle this problem. Partial least

squares (PLS) regression is a useful 7dimensionality
reduction method that is used in the LWPR algo-

rithm (Vijayakumar et al., ). In contrast to PCA

methods, PLS performs7dimensionality reduction for
7regression, i.e., it eliminates subspaces of the input
space that minimally correlate with the outputs, not just

parts of the input space that have low variance.

LWPR is currently one of the best developed locally

weighted regression algorithms for control (Klanke,

Vijayakumar, & Schaal, ) and has been applied

to learning control problems with over  input

dimensions.

A Full Bayesian Treatment of Locally
Weighted Regression
Ting, Kalakrishnan, Vijayakumar, and Schaal ()

proposed a fully probabilistic treatment of LWR in

an attempt to avoid cross-validation procedures and

minimize any manual parameter tuning (e.g., gradient

descent rates, kernel initialization, and forgetting rates).

�e resulting Bayesian algorithm learns the distance

metric of local linear model (For simplicity, a local lin-

ear model is assumed, although local polynomials can

be used as well) probabilistically, can cope with high

input dimensions, and rejects data outliers automati-

cally.�e main ideas of Bayesian LWR are listed below

(please see Ting () for details):

● Introduce hidden variables z to the local linear
model (as inVariational Bayesian least squares (Ting

et al., )) to decompose the statistical estima-

tion problem into d individual estimation prob-

lems (where d is the number of input dimensions).

�e result is an iterative Expectation-Maximization

(EM) algorithm that is of linear 7computational
complexity in d and the number of training data

samples N, i.e., O(Nd).
● Associate a scalar weight wi with each training data

sample {xi, ti}, placing a Bernoulli7prior probabil-
ity distribution over a weight for each input dimen-

sion so that the weights are positive and between 

and :

wi =
d

∏
m=

wim where

wim ∼ Bernoulli (qim) for i = , ..,N;m = , ..,d
()

where the weight wi is decomposed into indepen-

dent components in each input dimension wim and

qim is the parameter of the Bernoulli 7probability
distribution.�e weightwi indicates a training sam-

ple’s contribution to the local model. An outlier

will have a weight of  and will, thus, be automati-

cally rejected.�e formulation of qim determines the

shape of the weighting function applied to the local

model.�e weighting function qim used in Bayesian

LWR is listed below:

qim = 

 + (xim − xqm)

hm
for i = , ..,N;m = , ..,d

()

where xq ∈ Rd× is the query input point and hm
is the bandwidth parameter/distance metric of the

local model in the m-th input dimension (�e dis-

tance metric/bandwidth is assumed to be a diagonal

matrix, i.e., bandwidths in each input dimension are

independent.�at is to say, D = H, where h is the
diagonal vector and hm are the coe�cients of h).
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● Place a Gamma7prior probability distribution over
the distance metric hm:

hm ∼ Gamma (ahm, bhm) ()

where {ahm, bhm} are the prior parameter values of
the Gamma distribution.

● Treat the model as an EM-like 7regression prob-
lem, using 7variational approximations to achieve
analytically tractable inference of the 7posterior
probability distributions.

�e initial parameters {ahm, bhm} should be set so
that the7prior probability distribution over hm is unin-
formative andwide (e.g., ahm = bhm = −).�e other
7prior probability distribution that needs to be speci-
�ed is the one over the noise variance random variable –

and this is best set to re�ect how noisy the data set is

believed to be.More details can be found inTing ().

�is Bayesian method can can also be applied as

general kernel shaping algorithm for global 7kernel
learning methods that are linear in the parameters (e.g.,

to realize nonstationary 7Gaussian processes (Ting
et al., ), resulting in an augmented nonstationary

7Gaussian Process).

Figure  illustrates Bayesian kernel shaping’s band-

width adaptation abilities on several synthetic data sets,

comparing it to a stationary 7Gaussian Process and
the augmented nonstationary 7Gaussian Process. For
the ease of visualization, the following one-dimensional

functions are considered: (i) a function with a disconti-

nuity, (ii) a spatially inhomogeneous function, and (iii)

a straight line function. �e data set for function (i)

consists of  training samples,  test inputs (evenly

spaced across the input space), and output noise with

variance of .; the data set for function (ii) consists

of  training samples,  test inputs, and an output

signal-to-noise ratio (SNR) of ; and the data set for

function (iii) has  training samples,  test inputs, and

an output SNR of . Figure  shows the predicted out-

puts of all three algorithms for data sets (i)–(iii). �e

local kernel shaping algorithm smoothes over regions

where a stationary 7Gaussian Process over�ts and yet,
it still manages to capture regions of highly varying

curvature, as seen in Figs. a and b.

It correctly adjusts the bandwidths h with the cur-

vature of the function. When the data looks linear, the

algorithm opens up the weighting kernel so that all data

samples are considered, as Fig. c shows.
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Locally Weighted Regression for Control. Figure . Predicted outputs using a stationary Gaussian Process (GP), the

augmented nonstationary GP and local kernel shaping on three different data sets. Figures on the bottom row show

the bandwidths learned by local kernel shaping and the corresponding weighting kernels (in dotted black lines) for

various input query points (shown in red circles)
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From the viewpoint of 7learning control,

7over�tting – as seen in the 7Gaussian Process in
Fig.  – can be detrimental since 7learning control
o�en relies on extracting local linearizations to derive

7controllers (see Applications section). Obtaining the
wrong sign on a slope in a local linearizationmay desta-

bilize a7controller.
In contrast to LWPR, the Bayesian LWR method

is memory-based, although memoryless versions could

be derived. Future work will also have to address how

to incorporate7dimensionality reduction methods for
robustness in high dimensions. Nevertheless, it is a �rst

step toward a probabilistic locally weighted regression

methodwithminimal parameter tuning required by the

user.

Applications
Learning Internal Models with LWPR

Learning an internal model is one of most typical

applications of LWR methods for control. �e model

could be a forward model (e.g, the nonlinear di�er-

ential equations of robot dynamics), an inverse model

(e.g., the equations that predict the amount of torque

to achieve a change of state in a robot), or any other

function that models associations between input and

output data about the environment. �e models are

used, subsequently, to compute a 7controller e.g., an
inverse dynamics controller similar to Eq. (). Mod-

els for complex robots such as humanoids exceed easily

a hundred input dimensions. In such high-dimensional

spaces, it is hopeless to assume that a representative data

set can be collected for o�ine training that can general-

ize su�ciently to related tasks.�us, the LWR philoso-

phy involves having a learning algorithm that can learn

rapidly when entering a new part of the state space such

that it can achieve acceptable 7generalization perfor-
mance almost instantaneously.

Figure  demonstrates 7online learning of an
inverse dynamics model for the elbow joint (cf. Eq. )

for a SarcosDexterous RobotArm.�e robot starts with

no knowledge about this model, and it tracks some ran-

domly varying desired trajectories with a proportional-

derivative (PD) controller.During itsmovements, train-

ing data consisting of tuples (q, q̇, q̈, τ) – which model
a mapping from joint position, joint velocities and joint

accelerations (q, q̇, q̈) tomotor torques τ – are collected

(at about every ms). Every data point is used to train a

LWPR function approximator, which generates a feed-

forward command for the controller. �e 7learning
curve is shown in Fig. a.

Using a test set created beforehand, the model pre-

dictions of LWPR are compared every , training

points with that of a parameter estimation method.

�e parameter estimation approach �ts the minimal

number of parameters to an analytical model of the

robot dynamics under an idealized rigid body dynam-

ics (RBD) assumptions, using all training data (i.e.,

not incrementally). Given that the Sarcos robot is a
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hydraulic robot, the RBD assumption is not very suit-

able, and, as Fig. a shows, LWPR (in thick red line)

outperforms the analytical model (in dotted blue line)

a�er a rather short amount of training. A�er about

min of training (about , data points), very good

performance is achieved, using about  local models.

�is example demonstrates (i) the quality of func-

tion approximation that can be achieved with LWPR

and (ii) the online allocation of more local models as

needed.

Learning Paired Inverse-Forward Models

Learning inverse models (such as inverse kinematics

and inverse dynamics models) can be challenging since

the inverse model problem is o�en a relation, not a

function, with a one-to-many mapping. Applying any

arbitrary nonlinear function approximation method to

the inverse model problem can lead to unpredictably

bad performance, as the training data can form non-

convex solution spaces, in which averaging is inap-

propriate. Architectures such as 7mixture models (in
particular, mixture density networks) have been pro-

posed to address problems with non-convex solution

spaces. A particularly interesting approach in control

involves learning linearizations of a forward model

(which is proper function) and learning an inversemap-

ping within the local region of the forward model.

Ting et al. () demonstrated such a forward-

inverse model learning approach with Bayesian LWR

to learn an inverse kinematics model for a haptic robot

arm (shown in Fig. ) in order to control the end-

e�ector along a desired trajectory in task space. Training

Locally Weighted Regression for Control. Figure .

SensAble Phantom haptic robotic arm

data was collected while the arm performed random

sinusoidalmovements within a constrained box volume

of Cartesian space. Each sample consists of the arm’s

joint angles q, joint velocities q̇, end-e�ector position in
Cartesian space x, and end-e�ector velocities ẋ. From
this data, a forward kinematics model is learned:

ẋ = J(q)q̇ ()

where J(q) is the Jacobian matrix.�e transformation
from q̇ to ẋ can be assumed to be locally linear at a
particular con�guration q of the robot arm. Bayesian
LWR is used to learn the forward model, and, as in

LWPR, local models are only added if a training point

is not already su�ciently covered by an existing local

model. Importantly, the kernel functions in LWR are

localized only with respect to q, while the regression
of each model is trained only on a mapping from q̇ to
ẋ – these geometric insights are easily incorporated as
priors in Bayesian LWR, as they are natural to locally

linear models. Incorporating these priors in other func-

tion approximators, e.g.,7Gaussian Process regression,
is not straightforward.

�e goal of the robot task is to track a desired trajec-

tory (x, ẋ) speci�ed only in terms of x, z positions and
velocities, i.e., the movement is supposed to be in a ver-

tical plane in front of the robot, but the exact position

of the vertical plane is not given.�us, the task has one

degree of redundancy, and the learning system needs to

generate a mapping from {x, ẋ} to q̇. Analytically, the
inverse kinematics equation is

q̇ = J#(q)ẋ − α(I − J#J) ∂g
∂q

()

where J#(q) is the pseudo-inverse of the Jacobian.�e
second term is an gradient descent optimization term

for redundancy resolution, speci�ed here by a cost func-

tion g in terms of joint angles q.
To learn an inverse kinematics model, the local

regions of q from the forward model can be re-used
since any inverse of J is locally linear within these
regions. Moreover, for locally linear models, all solution

spaces for the inverse model are locally convex, such

that an inverse can be learned without problems. �e

redundancy issue can be solved by applying an addi-

tional weight to each data point according to a reward

function. Since the experimental task is speci�ed in
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terms of {ẋ, ż}, a reward is de�ned, based on a desired
y coordinate, ydes, and enforced as a so� constraint.

�e resulting reward function, is g = e−


h(k(ydes−y)−ẏ)



,

where k is a gain and h speci�es the steepness of the

reward. �is ensures that the learned inverse model

chooses a solution that pushes ẏ toward ydes. Each for-

ward local model is inverted using a weighted 7linear
regression, where each data point is weighted by the

kernel weight from the forward model and addition-

ally weighted by the reward. �us, a piecewise locally

linear solution to the inverse problem can be learned

e�ciently.

Figure  shows the performance of the learned

inverse model (Learnt IK) in a �gure-eight tracking

task. �e learned model performs as well as the ana-

lytical inverse kinematics solution (Analytical IK), with

root mean squared tracking errors in positions and

velocities very close to that of the analytical solution.

Learning Trajectory Optimizations

Mitrovic, Klanke, andVijayakumar () have explored

a theory for sensorimotor adaptation in humans, i.e.,

how humans replan their movement trajectories in the

presence of perturbations. �ey rely on the iterative

Linear Quadratic Gaussian (iLQG) algorithm (Todorov

& Li, ) to deal with the nonlinear and chang-

ing plant dynamics that may result from altered mor-

phology, wear and tear, or external perturbations.�ey

take advantage of the “on-the-�y” adaptation of locally

weighted regression methods like LWPR to learn the

forward dynamics of a simulated arm for the purpose of

optimizing amovement trajectory between a start point

and an end point.

Figure a shows the diagram of a two degrees-of-

freedom planar human arm model, which is actuated

by four single-joint and two double-joint antagonis-

tic muscles. Although kinematically simple, the sys-

tem is over-actuated and, therefore, it is an interesting

testbed because large redundancies in the dynamics

have to be resolved. �e dimensionality of the con-

trol signals makes adaptation processes (e.g., to external

force �elds) quite demanding.

�e dynamics of the arm is, in part, based on stan-

dard RBD equations of motion:

τ =M (q) q̈ +C (q, q̇) q̇ ()

where τ are the joint torques; q and q̇ are the joint
angles and velocities, respectively; M(q) is the two-
dimensional symmetric joint space inertia matrix; and

C (q, q̇) accounts for Coriolis and centripetal forces.
Given the antagonistic muscle-based actuation, it is not

possible to command joint torques directly. Instead, the

e�ective torques from the muscle activations u – which
happens to be quadratic in u – should be used. As a
result, in contrast to standard torque-controlled robots,

the dynamics equation in Eq. () is nonlinear in the

control signals u.
�e iLQG algorithm (Todorov & Li, ) is used

to calculate solutions to “localized” linear and quadratic

approximations, which are iterated to improve the

global control solution. However, it relies on an ana-

lytical forward dynamics model ẋ = f (x,u) and �nite
di�erence methods to compute gradients. To alleviate

this requirement and to make iLQG adaptive, LWPR

can be used to learn an approximation of the plant’s

forward dynamics model. Figure  shows the control
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diagram, where the “learned dynamics model” (the for-

ward model learned by LWPR) is then updated in an

online fashion with every iteration to cope with changes

in dynamics.�e resulting framework is called iLQG-

LD (iLQG with learned dynamics).

Movements of the arm model in Fig. a are stud-

ied for �xed time horizon reaching movement. �e

manipulator starts at an initial position q and reaches
towards a target qtar.�e cost function to be optimized
during the movement is a combination of target accu-

racy and amount of muscle activation (i.e., energy con-

sumption). Figure b shows trajectories of generated

movements for three reference targets (shown in red

circles) using the feedback controller from iLQG with

the analytical plant dynamics. �e trajectories gener-

ated with iLQG-LD (where the forward plant dynamics

are learned with LWPR) are omitted as they are hardly

distinguishable from the analytical solution.

A major advantage of iLQG-LD is that it does

not rely on an accurate analytic dynamics model; this

enables the framework to predict adaptation behav-

ior under an ideal observer planning model. Reaching

movements were studied where a constant unidirec-

tional force �eld acting perpendicular to the reach-

ing movement was generated as a perturbation (see

Fig.  (le�)). Using the iLQG-LD model, the manip-

ulator gets strongly de�ected when reaching for the

target because the learned dynamics model cannot

yet account for the “spurious” forces. However, when

the de�ected trajectory is used as training data and

the dynamics model is updated online, the tracking

improves with each new successive trial (Fig.  (le�)).

Please refer to Mitrovic et al. () for more details.

A�ere�ects upon removing the force �eld, very simi-

lar to those observed in human experiments, are also

observed.
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Synonyms
Generality and logic; Induction as inverted deduction;

Inductive inference rules; Is more general than; Is more

speci�c than; Specialization

Definition
One hypothesis is more general than another one if it

covers all instances that are also covered by the latter

one.�e former hypothesis is called a 7generalization

of the latter one, and the latter a 7specialization of the

former.When using logical formulae as hypotheses, the

generality relation coincides with the notion of logical

entailment, which implies that the generality relation

can be analyzed from a logical perspective.�e logical

analysis of generality, which is pursued in this chap-

ter, leads to the perspective of induction as the inverse

of deduction. �is forms the basis for an analysis of

various logical frameworks for reasoning about gener-

ality and for traversing the space of possible hypothe-

ses. Many of these frameworks (such as for instance,

θ-subsumption) are employed in the �eld of7inductive
logic programming and are introduced below.

Motivation and Background
Symbolic machine learning methods typically learn by

searching a hypothesis space.�e hypothesis space can

be (partially) ordered by the7generality relation, which
serves as the basis for de�ning operators to traverse the

space as well as for pruning away unpromising parts

of the search space.�is is o�en realized through the

use of7re�nement operators, that is, generalization and

specialization operators. Because many learning meth-

ods employ a 7hypothesis language that is logical or
that can be reformulated in logic, it is interesting to ana-

lyze the generality relation from a logical perspective.

When using logical formulae as hypotheses, the gener-

ality relation closely corresponds to logical entailment.

�is allows us to directly transfer results from logic

to a machine learning context. In particular, machine

learning operators can be derived from logical inference

rules.�e logical theory of generality provides a frame-

work for transferring these results. Within the standard

setting of inductive logic programming, learning from

entailment, specialization is realized through deduc-

tion, and generalization through induction, which is

considered to be the inverse of deduction. Di�erent

deductive inference rules lead to di�erent frameworks

for generalization and specialization. �e most popu-

lar one is that of θ-subsumption, which is employed

by the vast majority of contemporary inductive logic

programming systems.

Theory
A hypothesis g ismore general than a hypothesis s if and

only if g covers all instances that are also covered by s,

more formally, if covers(s) ⊆ covers(g), in which case,
covers(h) denotes the set of all instances covered by the
hypothesis h.

�ere are several possibleways to represent hypothe-

ses and instances in logic (De Raedt, , ), each

of which results in a di�erent setting with a correspond-

ing covers relation. Some of the best known settings are

learning from entailment, learning from interpretations,

and learning from proofs.

Learning from Entailment

In learning from entailment, both hypotheses and

instances are logical formulae, typically de�nite clauses,

which underlie the programming language Prolog

(Flach, ). Furthermore, when learning from entail-

ment, a hypothesis h covers an instance e if and only

if h ⊧ e, that is, when h logically entails e, or equiva-

lently, when e is a logical consequence of h. For instance,

consider the hypothesis h:

flies :- bird, normal.
bird :- blackbird.
bird :- ostrich.


