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INTRODUCTION

In this chapter, we argue that many aspects
of human perception are best explained by
adopting a modeling approach in which exper-
imental subjects are assumed to possess a full
generative probabilistic model of the task they
are faced with, and that they use this model to
make inferences about their environment and
act optimally given the information available
to them. We apply this generative modeling
framework in two diverse settings—concurrent
sensory and motor adaptation, and multisensory
oddity detection—and show, in both cases, that
the data are best described by a full generative
modeling approach.

Bayesian ideal-observer modeling is an
elegant and successful normative approach to
understanding human perception. One par-
ticular domain in which it has seen much
success recently is that of understanding mul-
tisensory integration in human perception (see
Chapter 1).

Existing applications of this modeling
approach have frequently focused on a simple
special case where the ideal observer’s estimate
of an unknown quantity in the environment
is a reliability-weighted mean of the individual
observed cues. This is all that is needed
to understand a wide variety of interesting

perceptual phenomena. We argue, however,
that the Bayesian-observer approach can be
more powerfully and generally applied by clear
generative modeling of the perceptual task for
each experiment. In other words, this assumes
that people have access to a full generative model
of their observations and that they use this
model to make optimal decisions in performing
the task.

This systematic approach effectively provides
a “model for modeling” that has some key
advantages: (1) It provides the modeler with a
clear framework for modeling new tasks beyond
simply applying common normative models—
such as linear combination—which may not
apply for a new scenario and may fail to
explain important aspects of human behavior;
(2) Human performance can be measured
against these clear “optimal” models such that we
can draw conclusions about optimality of human
perception or reveal architectural limitations of
the human perceptual system, which cause it to
deviate from optimality.

For a particular perceptual task, the optimal
solution requires inference in the true generative
model of the task. Here, optimal is defined in the
sense that the posterior probability over relevant
unknowns in the environment is calculated. Any
actions or decisions to be made can then be taken

63



64 THEORY AND FUNDAMENTALS

with respect to this posterior and the required
loss function (see Chapter 1). As an intuition
for the significance of optimality, consider that
someone gambling on the state of the real world
given this “optimal” posterior is guaranteed not
to lose money in the long term to someone
gambling with any other distribution, includ-
ing the posterior from a “wrong” generative
model.

To make predictions about human behavior,
the modeler must therefore take care to construct
a generative model that encompasses all relevant
aspects of the task. These models often lead to
strong and surprising new predictions, which
can be tested experimentally. In this chapter,
we illustrate these ideas via two experiments for
which we show that it is crucial to consider
a complete normative generative model of the
data. In these cases, naive application of common
simple models fails to even qualitatively explain
the data. Rather than conclude that human
perception is suboptimal in these ways, we show
how a full generative modeling approach can
explain the data and provide insight into human
behavior.

We first consider the problem of concurrent
sensory and motor adaptation. Previous models
have assumed that sensory and motor adaptation
occur independently from one another, consid-
ering one model for sensory adaptation (e.g.,
Ghahramani, Wolpert, & Jordan, 1997), and
another for motor adaptation (e.g., Donchin,
Francis, & Shadmehr, 2003). We show that,
by considering a full generative model of
the joint observations and the disturbances
that affect them, a unified model of sensory
and motor adaptation can be derived that
makes strong and experimentally verifiable
predictions about interactions between sensory
and motor adaptation (Haith, Jackson, Miall,
& Vijayakumar, 2008). Next, we consider
the problem of multisensory oddity detection.
Common naive normative models of cue
combination are not robust, falsely predicting
the existence of infinitely many discrepant but
still indistinguishable stimuli. A full generative
model of the process is required to explain this
entire domain of human behavior (Hospedales
& Vijayakumar, 2009).

INTERACTIONS BETWEEN
SENSORY AND MOTOR
ADAPTATION

Many chapters in this book focus on problems
associated with combining multiple, possibly
discrepant cues. If, however, two cues are
persistently discrepant by the same amount, it
is likely that there is a systematic miscalibration
of one modality or the other. For example,
prism goggles can be worn which shift the entire
visual field, introducing a discrepancy between
visual and proprioceptive estimates of hand
position. Such discrepancies can be eliminated
by adapting the senses over time so that they
become realigned.

Previous Models of Sensory Adaptation

If the hand is viewed through prism goggles,
a realignment takes place between vision and
proprioception with, typically, a shift in the
visual estimate of hand position and an opposite
shift in the proprioceptive estimate of hand
position (Redding & Wallace, 1996). We model
sensory adaptation by assuming that the visually
and proprioceptively observed hand positions
are displaced by some systematic disturbances
(i.e., miscalibrations or unknown experimental
manipulations), with added Gaussian noise

vt = yt + rv
t + εv

t , (4.1)

pt = yt + rp
t + ε

p
t . (4.2)

Here vt and pt are the subject’s visual
and proprioceptive observations of their hand
position. rv

t and rp
t are miscalibrations of

vision and proprioception, and εv
t and ε

p
t

represent observation noise corrupting each
measurement, which we assume to be Gaussian
with variance σ 2

v and σ 2
p , respectively. We assume

that the subject maintains estimates r̂ v
t and r̂ p

t

of each disturbance over time. The subject’s
visual and proprioceptive estimates of hand
position will be given by subtracting the relevant
disturbance estimates from their observations,
that is,

ŷ v
t = pt − r̂ v

t , (4.3)

ŷ p
t = pt − r̂ p

t . (4.4)
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The maximum likelihood estimate (MLE) of the
true hand position yt is given by

ŷMLE
t = σ 2

p

σ 2
v + σ 2

p

ŷ v
t + σ 2

v

σ 2
v + σ 2

p

ŷp
t . (4.5)

This estimate optimally combines the two
unimodal estimates into a single estimate, taking
into account the relative observation noise
in each modality. Ghahramani et al. (1997)
proposed that we adapt the estimates of r̂ v

t and
r̂ p
t in such a way that the maximum likelihood

estimate (MLE) of the actual hand position
remains unchanged, which leads to the following
update for the disturbance estimates:

r̂ v
t+1 = r̂ v

t + ηwp[ŷ p
t − ŷ v

t ], (4.6)

r̂ p
t+1 = r̂ p

t + ηwv [ŷ v
t − ŷ p

t ], (4.7)

where η is some fixed adaptation rate and
wp and wv are the respective combination
weights in Eq. 4.5. From a statistical learning
viewpoint, this model can be understood as
treating the miscalibrations r̂ v

t and r̂ p
t as

unknown parameters, which are estimated via
an online variant of the standard expectation-
maximization algorithm (Bishop, 2006) for
parameter estimation in statistical models. The
corresponding graphical model is illustrated in
Figure 4.1. A crucial prediction of this model is
that sensory adaptation will be driven purely by
discrepancy between the two senses. This model
can successfully account for many features of
sensory adaptation, particularly in purely passive
contexts such as visual-auditory integration;
it has also been proposed as a model for
adaptation in visual-proprioceptive integration
during active movement (van Beers, Wolpert, &
Haggard, 2002).

This model, however, is not quite sufficient
on its own to explain adaptation of reaching
movements during exposure to shifts in visual
feedback. While a recalibration of the visual sys-
tem will be reflected in reaches toward visual
targets, the extent of visual adaptation is always
less than the experimentally imposed visual shift.
The fact that subjects can nevertheless reach the
target successfully implies that they additionally

yt

vt pt

rv rp

Figure 4.1 Graphical model for a MLE-based
sensory-adaptation model. Shaded circles represent
observed random variables. Unshaded circles
represent unobserved random variables. Squares
represent unknown parameters. Noisy visual and
proprioceptive observations, vt and pt of unknown
hand position yt are available at each trial/time
step. These may be subject to unknown biases
rv and rp due to miscalibration or experimental
manipulation. In the MLE-based model, these
unknown biases are treated as parameters of the
model which are estimated via online expectation
maximization.

learn a correction to their movements as well
as compensating their perceptual estimates of
hand and target locations. Simani, McGuire,
and Sabes (2007) recently demonstrated that
the task performed during exposure affects
generalization to reach trials after the visual shift
is removed. This difference would not occur if
the adaptation were purely sensory in nature.

Although no explicit model of concurrent
sensory and motor adaptation has been previ-
ously proposed, it is straightforward to augment
the aforementioned sensory-adaptation model
with a standard state-space model of motor
adaptation. We assume that a motor disturbance
affects the relationship between the subject’s
motor commands and the position of the hand
at the end of the movement. Specifically

yt = ut + ry
t + ε

y
t , (4.8)

where ut is the subject’s motor command, ry
t is

the motor disturbance acting on the hand, and
ε

y
t ∼ N (0, σ 2

y ) is motor execution noise. Existing
state-space models of motor adaptation (e.g.,
Donchin et al., 2003) typically assume that an
estimate of this disturbance is updated according
to the error in the hand position midway through
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the movement. Although the subject does not
know the true error in the hand position (since
only noisy, corrupted observations of hand
position are available), the hand position error
can be estimated using the hand position MLE,
leading to the following learning rule

r̂ y
t+1 = r̂ y

t + ξ [ŷ∗
t − ŷMLE

t ], (4.9)

where v∗ is the visually observed target position,
and ŷ∗

t = (v∗ − r̂ v
t ) is the estimated desired hand

location, and ξ is some fixed adaptation rate.
This combined model reflects the view that

sensory and motor adaptations are distinct
processes. The sensory-adaptation component is
driven purely by discrepancy between the senses,
while the motor-adaptation component only has
access to a single, fused estimate of hand position
and is driven purely by estimated performance
error.

Bayesian Sensory- and
Motor-Adaptation Model

We propose an alternative approach to solving
the sensorimotor-adaptation problem. Rather
than modeling sensory and motor adaptation

independently, we consider a full generative
model of how sensory and motor disturbances
affect a subject’s visual and proprioceptive
observations. All three disturbances are now
treated as random variables that the subject
is attempting to estimate simultaneously. This
model is illustrated in Figure 4.2.

The subject generates a motor command
ut , which leads to a new hand position yt ,
perturbed by some unknown motor disturbance
ry
t as well as motor noise ε

y
t , as in Eq. 4.8.

This hand position is not directly observed,
but noisy and potentially biased visual and
proprioceptive observations are available, as
described in Eqs. 4.1 and 4.2.

In addition to this statistical model of how
actions and observations are affected by the three
disturbances, rv

t , ry
t , and rp

t , the subject has some
beliefs about how these disturbances evolve over
time. These beliefs are characterized by a trial-
to-trial disturbance dynamics model given by

rt+1 = Art + ηt , (4.10)

where A is some diagonal matrix and ηt , is a
random drift term with zero mean and diagonal

Trial t Trial t +1

rv
t

r v
t+1

ry
t

r y
t+1

rp
t

ut

yt

vt pt vt+1 pt+1

yt+1

ut+1

rp
t+1

Figure 4.2 Bayesian sensory- and motor-adaptation model. Shaded circles represent observed random
variables (motor command ut , visual and proprioceptive observations vt and pt ). Unshaded circles represent
unobserved random variables (hand position yt , visual and proprioceptive miscalibrations rv

t and rp
t and

motor disturbance ry
t ).
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covariance matrix Q, that is,

ηt ∼ N (0, Q). (4.11)

A and Q are both diagonal to reflect the fact
that each disturbance evolves independently.
We denote the diagonal elements of A by a =
(av , ap, ay) and the diagonal of Q by q =
(qv , qp, qy). The vector a describes the timescales
over which each disturbance persists, whereas q
describes the random drift in the disturbance
from one trial to the next. These parameters
reflect the statistics of the usual fluctuations
in sensory calibration errors and motor plant
dynamics, which the sensorimotor system must
adapt to on an ongoing basis. (Similar assump-
tions have previously been made elsewhere
[Körding, Tenenbaum, & Shadmehr, 2007;
Krakauer, Mazzoni, Ghazizadeh, Ravindran, &
Shadmehr, 2006]).

We propose that the patterns of adaptation
and the sensory after-effects exhibited by
subjects correspond to optimal inference of
the disturbances rt within this full generative
model, given the observations on each trial. This
is in contrast to alternative models presented
earlier in which sensory and motor adaptation
are assumed to be mediated by independent
processes.

The linear dynamics and Gaussian noise of
the observer’s model mean that the posterior
probability of the disturbances given the
observations can be calculated analytically, and
it becomes equivalent to a Kalman filter. The
latent state tracked by the Kalman filter is
the vector of disturbances rt = (rv

t , rp
t , ry

t )T ,
with state dynamics given by Eq. 4.10. The
observations vt and pt are related to the
disturbances via

(
vt

pt

)
=

(
ut

ut

)
+

(
1 0 1
0 1 1

)(
rt +εt

)
,

(4.12)

where εt = (εv
t , ε

p
t , ε

y
t )T . We can write this in a

more conventional form as

zt = Hrt + Hεt (4.13)

where zt = (vt − ut , pt − ut )
T and

H =
(

1 0 1
0 1 1

)
. The observation noise

covariance is given by

R = E
[
(Hεt )(Hεt )

T
]

=
(

σ 2
v + σ 2

y σ 2
y

σ 2
y σ 2

p + σ 2
y

)
, (4.14)

where σ 2
y is motor execution noise, and σ 2

v and
σ 2

p represent the noise in the subjects visual and
proprioceptive estimates as before. The standard
Kalman filter update equations can be used to
predict how a subject will update estimates of the
disturbances following each trial and therefore
what actions to select on the next trial, leading
to a full prediction of performance from the first
trial onward.

Experiment: Testing Sensory Adaptation
during Force-Field Exposure

While the MLE-based model predicts there will
be sensory adaptation only when there is a
discrepancy between the senses, the Bayesian
model predicts that there will also be sensory
adaptation in response to a motor disturbance
(such as an external force applied to the hand).
Just as a purely visual disturbance can lead to
a multifaceted adaptive response, the Bayesian
models predicts that a purely motor disturbance
will result in both motor and sensory adaptation,
even though there is never any discrepancy
between the senses. This occurs because there
are three unknown disturbances, but only two
observation modalities on each trial. There are
therefore many combinations of disturbances
that can account for the observations on each
trial. Because of the subject’s assumptions about
how the disturbances vary over time (i.e.,
Eq. 4.10), explanations that assign credit to all
three disturbances are more likely than the true
disturbance that was experienced.

We experimentally tested the hypothesis
that force-field adaptation would lead to
sensory adaptation. We tested 11 subjects who
performed a series of trials consisting of reach-
ing movements interleaved with perceptual-
alignment tests.
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Subjects grasped the handle of a robotic
manipulandum with their right hand. The hand
was not visible directly, but a cursor displayed via
a mirror/flat-screen-monitor setup (Fig. 4.3A)
was exactly coplanar and aligned with the
handle of the manipulandum. In the movement
phase, subjects made an out-and-back reaching
movement toward a visual target with their
right hand. In the visual localization phase, a
visual target was displayed pseudorandomly in
one of five positions and the subjects moved
their left fingertip to the perceived location of
the target. In the proprioceptive localization
phase, the right hand was passively moved to
a random target location, with no visual cue
of its position, and subjects moved their left
fingertip to the perceived location of the right
hand. Left fingertip positions were recorded
using a Polhemus motion tracker. Neither hand
was directly visible at any time during the
experiment.

Subjects were given 25 baseline trials with
zero external force, after which a force field
was gradually introduced (Fig. 4.3B). A leftward
lateral force Fx was applied to the right hand
during the reaching phase. The magnitude of the
force was proportional to the forward velocity ẏ

of the hand, that is,

Fx = −aẏ . (4.15)

The force was applied only on the outward part
of the movement (i.e., only when ẏ > 0). After
steadily incrementing a during 50 adaptation
trials, the force field was then kept constant
at a = 0.3N/(cm s−1) for a further 25
postadaptation test trials.

We compared the average performance in the
visual and proprioceptive alignment tests before
and after adaptation in the velocity-dependent
force field. The results are summarized in
Figure 4.4A. Most subjects exhibited small but
significant shifts in alignment bias in both the
visual- and proprioceptive-alignment tests. Two
subjects exhibited shifts that were more than
two standard deviations away from the average
shift and were excluded from the analysis. We
found significant lateral shifts in both visual and
proprioceptive alignment bias in the direction of
the perturbation (both p < .05, one-tailed paired
t-test). In the y-direction, the initial alignment
bias was very high. However, there was no
significant shift in either modality (Fig. 4.4B),
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Figure 4.3 (A) Experimental setup. (B) Subjects made reaching movements in a single direction while
perturbed by a force field, the magnitude of which was gradually increased over trials. These reaching
movements were interleaved with perceptual alignment tests to measure the extent of sensory recalibration.
In these alignment tests, subjects moved their (unseen) left hand to align it as best as possible with either a
visual target, or their (unseen) right hand.
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Figure 4.4 Comparison of visual and proprioceptive alignment biases before vs. after adaptation,
(A) in the direction of and (B) perpendicular to the perturbation.

consistent with the fact that there was no
perturbation in this direction.

We assessed subjects’ ability to counteract
the force during the reach trials by measuring
the amount by which subjects missed the target.
We quantified this as the perpendicular distance
between the furthest point in the trajectory
and the straight line passing through both
the start position and the target. We fitted
the Bayesian and MLE-based models to the
data using nonlinear optimization to minimize
the squared error between the model and
the data across the alignment tests and reach
performance. Figure 4.5 shows the averaged data
along with the model fits. Both models were
able to account similarly well for the trends in
reaching performance across trials (Fig. 4.5A).
Figures 4.5B and 4.5C show the model fits for
the alignment tasks. The Bayesian model is able
to account for both the extent of the shift and
the time course of this shift during adaptation.
Since there was never any sensory discrepancy,
the MLE-based model predicted no change in
the localization task.

These results support the prediction of the
Bayesian model that adaptation to a force
field would also lead to sensory adaptation.
Alternative models in which sensory and motor
adaptation are considered to be independent
processes fail to predict this effect, since there is
never any discrepancy between the two sensory
estimates of hand position. Furthermore, the

Bayesian model was able to account accurately
for the trends in both reaching performance
and alignment-test errors on a trial-to-trial
basis, strongly suggesting that the brain uses
the principles of Bayesian estimation to guide
adaptation.

The brain in this case can be considered
to act as an “ideal observer,” since it makes
the best possible use of all information that it
receives through application of an appropriate
generative model capturing the dependence of
its observations on unknown features of the
environment. In the next section, we show how
this same general principle can be applied in a
different context where information from visual
and haptic modalities must be combined to
guide decision making in an oddity detection
task.

MULTISENSORY ODDITY
DETECTION AS BAYESIAN
INFERENCE

Bayesian ideal-observer modeling has been
applied extensively and successfully to under-
stand tasks that require integration of two or
more cues in the estimation of some real-world
stimulus. Much of this work makes common,
but simple generative modeling assumptions
of independence with Gaussian noise, under
which the ideal-observer’s strategy for inference
in these generative models has the particularly
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Figure 4.5 Trial-by-trial reaching and alignment
test performance, with model fits. (A) Reaching
error. (B) Alignment bias during left-hand-to-
visual alignment tests, corresponding to r̂ v

t in the
models. (C) Alignment bias during right hand to
visual alignment tests, corresponding to r̂ p

t in the
models.

simple form of reliability-weighted linear cue
combination (see Chapter 1). We will refer to
this as maximum likelihood integration (MLI).
This approach presumes that the correspon-
dence between observations and latent variables
(relevant unknown aspects of world state) is
obvious and therefore unnecessary to model.

In some cases, experimenters have relaxed
this assumption and provided subjects with
stimuli where this correspondence (causal
structure) was not obvious. That is, it was
not obvious which of multiple possible sources
caused the observations (Hairston et al., 2003;
Shams, Kamitani, & Shimojo, 2000; Shams, Ma,
& Beierholm, 2005; Wallace et al., 2004), or
which of multiple possible world models was
true (Knill, 2007). In these cases, the standard
MLI linear-cue-combination approach fails to
explain human performance. As we shall see,
this seems not to be due to suboptimality of
human perception, but mismatch between the
experiments and overly simple experimental
models.

Under the generative modeling approach
proposed in this chapter, we see that uncertain
correspondence in a perceptual problem corre-
sponds to uncertain structure in the generative
model. An ideal Bayesian observer should also
infer this uncertain structure. Recently, studies
have begun to apply a complete Bayesian-
structure-inference perspective (Hospedales &
Vijayakumar, 2008) to experiments with cor-
respondence or structure uncertainty and have
provided a good explanation for the human
perception in these cases (Chapters 2 and 13;
Körding, Beierholm et al., 2007).

Here, we consider the challenging modeling
problem of multisensory oddity detection, in
which we shall see that structure uncertainty
occurs simultaneously in two different ways. We
show how to formalize a generative model of
this problem, and how this can explain and
unify a pair of experiments (Hillis, Ernst, Banks,
& Landy, 2002) where MLI previously failed
dramatically.

Next, we briefly review standard MLI ideal-
observer modeling for cue combination, and
show—by way of theoretical argument as well
as a concrete experimental example—why the
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naive application of mandatory MLI approaches
qualitatively fails to explain human multisensory
oddity detection.

Standard Ideal-Observer Modeling for
Sensor Fusion

A generative probabilistic model (Bishop, 2006)
for a perceptual problem describes the way in
which signals are generated by a source, and how
they are then observed—including any distorting
noise processes. Predictions made by the results
of optimal inference in this model can then be
compared to experimental results.

Formalized as a generative model, standard
cue-combination theory (Fig. 4.6) assumes that
multisensory observations xm in modalities m
are generated from some source y in the world,
subject to independent noise in the environment
and physical sensor apparatus, for example, xm ∼
N (y, σ 2

m). Ernst and Banks (2002) asked subjects
to make haptic xh and visual xv observations of a
bar’s height y and estimate the true height (ŷh,y)
in order to compare the sizes of two bars. This
requires computing the posterior distribution
over height, which under these modeling
assumptions is Gaussian p(y|xh, xv; σ 2

h , σ 2
v ) =

N (y; μy|h,v , σ
2
y|h,v), with mean and variance given

by Eqs. 4.16–4.17:

μy|h,v = σ−2
h

σ−2
h + σ−2

v

xh + σ−2
v

σ−2
h + σ−2

v

xv ,

(4.16)

σ 2
y|h,v = σ 2

h σ 2
v

σ 2
h + σ 2

v

. (4.17)

Psychophysics experiments (e.g., Alais & Burr,
2004; Battaglia, Jacobs, & Aslin, 2003) typically
test multisensory perception for optimality by
matching to the ideal-observer performance in
two ways. First, the optimal estimate of the
true height is ŷh,v = μy|h,v , so the variance
of the human’s responses ŷh,v to multisensory
stimuli should match the variance of the optimal
response σ 2

y|h,v (Eq. 4.17). Note from Eq. 4.17
that this is always less than the variance of
individual observations σ 2

h , σ 2
v ; hence, it is less

than the variance of the unimodal responses
ŷh, ŷv . Secondly, the multisensory response of the

y

xh xv

Figure 4.6 Standard sensor-fusion model. Bar size
y is inferred on the basis of haptic and visual
observations xh and xv (Hillis et al., 2002). Shaded
circles indicate observed quantities and empty
circles indicate quantities to estimate.

ideal observer is the precision-weighted mean of
the unimodal observations (Eq. 4.16). Therefore,
experimentally manipulating the variances σ 2

h ,
σ 2

v of the individual modalities should produce
the appropriate changes in the human perceptual
response ŷh,v . These quantities can be deter-
mined directly in direct-estimation experiments
(e.g., Wallace et al., 2004) or indirectly via fitting
a psychometric function in two-alternative
forced-choice experiments (e.g., Alais & Burr,
2004; Battaglia et al., 2003).

Oddity Detection

In direct-estimation scenarios, subjects try to
make a continuous estimate of a particular
unknown quantity y , such as the height of a
bar or spatial stimulus location based on noisy
observations xm , such as visual and haptic heights
or auditory and visual locations, respectively.
In contrast, in the oddity-detection paradigm,
subjects observe i = 1. . .N separate stimuli
xm,i ∼ N (yi, σ

2
m) and must make a discrete

determination of the “odd” stimulus o from
among the N ≥ 3 options {yi}N

i=1. Depending
on the experimental paradigm, the odd stimulus
may be detectable because it is, for example,
larger or smaller than the other stimuli.

Multisensory oddity detection is a particularly
interesting problem to study because it provides
novel paradigms for manipulating the oddity.
Specifically, the mandatory MLI theory of cue
combination predicts that a single fused estimate
ŷh,v will be made for each multisensory stimulus
(Eq. 4.16), and oddity detection will proceed
solely based on these estimates. This means
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that a particular stimulus might be the same
as the others when averaged over its modalities
of perception (Eq. 4.16), while each individual
stimulus modality could simultaneously be
radically discrepant. Such stimuli would be
known as perceptual metamers, meaning that
although they would be physically distinct, they
would be perceptually indistinguishable under
this theory of cue combination. This provides a
new and interesting test of Bayesian perception,
because if the nervous system was to use solely
the fused estimates to detect oddity, then it would
not be able to discriminate such metamers. If,
on the other hand, the nervous system made an
inference about structure in the full generative
model of the observations, it could detect such
stimuli on the basis of structure (correspon-
dence) oddity. In the following section, we
formalize this inference paradigm and look in
detail at a pair of experiments that tested oddity
detection and found MLI mandatory fusion
models unsatisfactory in explaining the data
completely.

Human Multisensory Oddity
Detection Performance

Hillis et al. (2002) studied multisensory oddity
detection in humans using N = 3 options
in two conditions: visual-haptic cues for size
(across-modal cues) and texture-disparity cues
for slant (within-modal cues). We describe this
experiment in some detail and will formalize the
oddity-detection problem and our solution to
it in the context of this experiment. It should
be noted that our approach can trivially be
generalized to other conditions, such as more
modalities of observation and selecting among
N ≥ 3 options.

Three stimuli are presented in two modalities
v and h (Fig. 4.7). (To simplify the discussion,
we will refer generally to the visual-haptic (v-h)
modalities when discussing concepts which
apply to both the visual-haptic and texture-
disparity experiments.) Two of the stimuli are
instances of a fixed standard stimulus ys and
one is an instance of the (potentially odd)
probe stimulus yo . The standard stimuli are
always concordant, meaning that there is no
experimental manipulation across modalities

so ys = yh,s = yv,s . The probe stimulus yo is
experimentally manipulated across a wide range
of values so that the visual and haptic sources,
yv,o and yh,o , may or may not be similar to each
other or to the standard ys . The subject’s task is
to detect which of the three stimuli is the probe.
If all the stimuli are concordant and the probe
is set the same as the standard ys = yo , then
we expect no better than random (33%) success
rate (Fig. 4.7A). If all the stimuli are concordant
and the probe discrepancy is set very high
compared to the standard, then we expect close
to 100% success rate (Fig. 4.7B). However, if the
probe stimulus is experimentally manipulated
to be discordant so that yh,o �= yv,o , then the
success rate expected will depend on precisely
how the subjects combine their observations of
yh,o and yv,o (Fig. 4.7C). The two-dimensional
distribution of detection success/error rate as a
function of controlled probe values yh,o, yv,o can
be measured and used to test different theories
of cue combination.

For a single modality, for example, h, the
error rate distribution for detection of the probe
yh,o can be approximated as a one-dimensional
Gaussian bump centered at the standard yh,s .
(If yh,s = yh,o then detection of the odd stimulus
will be at chance level; if yh,o � yv,o then detec-
tion of the odd stimulus will be reliable, etc.)
The shape of the two-dimensional performance
surface for multimodal probe stimulus detection
p(success|yh,o, yv,o) can be modeled as a two-
dimensional bump centered at (ys, ys). Per-
formance thresholds (the equipotentials where
p(success|yh,o, yv,o) = 66%) are computed from
the performance surfaces predicted by theory
and those of the experimental data. Cue-
combination theories are evaluated by the match
of their predicted thresholds to the empirical
thresholds.

Basic Cue-Combination Theories

To parameterize models for testing, the obser-
vation precisions first need to be determined.
Following standard practice for MLI modeling,
Hillis et al. (2002) measured the variances of the
unimodal error distributions and then used these
to predict the combined variance and hence the
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Figure 4.7 Schematic of visual-haptic height oddity-detection experimental task from (Hillis et al., 2002).
Subjects must choose the odd probe stimulus based on haptic (textured bars) and visual (plain bars)
observation modalities. (A) Probe stimulus is the same as the standard stimuli: detection at chance level.
(B) Probe stimulus bigger than standard: detection is reliable. (C) Haptic and visual probe modalities are
discordant: detection rate will depend on cue-combination strategy.

multimodal error distribution under MLI cue-
combination theory (Eqs. 4.16–4.17). (In the
next section, we will discuss why this approach
is not quite ideal for this experiment.)

Specifically, under the MLI theory, the brain
would compute a fused estimate ŷo based on
the two observations xh,o, xv,o (Eqs. 4.16–4.17)
and then discriminate based on this estimate.
In this case, although both cues are now being
used, some combinations of cues would produce
a metameric probe, that is, physically distinct but
perceptually indistinguishable. Specifically, if we
parameterize the probe stimuli as yh,o = yh,s +
�yh,o, yv,o = yv,s +�yv,o , then along the diagonal
line through the performance surface where
�yh,o = −(σ 2

v /σ 2
h )�yv,o , the fused estimate is on

average the same as the standard ŷh,o = ys and
the probe would be undetectable. Performance
along the cues-concordant diagonal, however,
would be improved compared to the single-cue
estimation cases because the combined variance
is less than the individual variances (σ 2

y|h,v < σ 2
h

and σ 2
y|h,v < σ 2

v ).
Two variants of the experiment were per-

formed, one for size discrimination across

visual and haptic modalities (standard: ys =
55 mm), and one for slant discrimination using
texture and stereo disparity cues within vision
(standard: ys = 0 deg). Figure 4.8 illustrates
the predicted performance surface contours for
unimodal models (red lines), the MLI model
(green lines), and those observed (dots) by Hillis
et al. (2002) for two sample subjects. Contour
points closer to the origin ys indicate better
performance.

There are several points to note in Figure 4.8:
(1) In the cues-concordant quadrants (1 and 3),
the multimodal performance is improved com-
pared to the unimodal performance, as predicted
by the MLI theory (magenta points and green
lines are inside the red lines in quadrants
1 and 3). (2) Particularly in the intramodal
case (Fig. 4.8B), the observed experimental
performance is significantly worse than the
unimodal performance in the cues-discordant
quadrants (2 and 4) (magenta points are outside
of the red lines in Fig. 4.8B, quadrants 2
and 4). Note that the green intramodal predicted
thresholds in Figure 4.8B are curved, unlike
the straight intermodal predicted thresholds in



74 THEORY AND FUNDAMENTALS

−40 −20 0 20 40

−40

−20

0

20

40

Disparity Probe, yd,o (deg)

T
ex

tu
re

 P
ro

be
, y    

 t,
o   
 (

de
g)

B    Within Modality

Std

45 50 55 60 65
45

50

55

60

65

Visual Probe, yv,o (mm)

H
ap

tic
 P

ro
be

, y    
h,

o   
(m

m
)

A    Across Modality

Std

Figure 4.8 MLI oddity-detection predictions and experimental results. (A) Visual-haptic experiment.
(B) Texture-disparity experiment. Red lines: Observed uni-modal discrimination thresholds. Green
lines: Discrimination-threshold predictions assuming mandatory fusion. Magenta points: Discrimination
threshold observed experimentally for two sample subjects from Hillis et al. (2002).

Figure 4.8A. This is due to the use of a slightly
more complicated model than described here,
which reflects the fact that the variance of the
slant cue σ 2

s itself depends on the current slant ys

(see Hillis et al., 2002, for details). The essential
insights remain the same, however.

Hillis et al. concluded that mandatory fusion
applied within (Fig. 4.8B) but not between
(Fig. 4.8A) the senses, in part because poor
performance in the cues-discordant quadrants
2 and 4 was noted to be less prominent in
the intermodal case. They hypothesized that the
discrepancy between the observed limited region
of poor performance in the intramodal cues-
discordant quadrants 2 and 4, and the MLI
predicted infinite region of nondiscriminability
could be due to a separate texture consistency
mechanism ultimately enabling the discrimina-
tion in quadrants 2 and 4 (Hillis et al., 2002).

Nevertheless, the classical unifying theory of
ideal-observer maximum-likelihood combina-
tion retains a strong qualitative discrepancy with
the experimental results (Fig. 4.8, green lines and
points) in both experiments. It does not predict
good performance in the cues-concordant
quadrants 1 and 2 as well as a limited region
of poor performance in the cues-discordant
quadrants 2 and 4. In the next sections, we
will show how an alternative unifying approach,

exploiting a complete generative model of
the oddity-detection problem, including the
associated structure uncertainty, can explain
both of these experiments quantitatively and
intuitively.

Modeling Oddity Detection

The classical MLI approach to sensor fusion has
failed as a means to understand human per-
formance in this multisensory oddity-detection
problem. Let us step back and reconsider the
match between the problem and its generative
model. There are two key components of this
problem that are not modeled by the classical
approach (Fig. 4.6): the discrete model-selection
nature of the problem, and the variable structure
component of the problem.

The task posed—“Is stimulus 1, 2 or 3 the
odd one out?”—is actually no longer simply an
estimation of a combined stimulus ŷh,v . This
estimation is involved in solving the task, but
ultimately the task effectively asks subjects to
make a probabilistic model selection (Mackay,
2003) between three models. To understand
the model-selection interpretation intuitively,
consider the following reasoning process: I
have experienced three noisy multisensory
observations. I do not know the true values of
these three stimuli, but I know they come from
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two categories, standard and probe. Which of the
following is more plausible:

1. Multisensory stimuli two and three come
from one category, and stimulus one comes
from another.

2. Stimuli one and three come from one
category, and stimulus two comes from a
different category.

3. Stimuli one and two come from one category,
and stimulus three comes from another.

With this in mind, to take a Bayesian ideal-
observer point of view on this experiment, the
experimental task is clearly to estimate which
of three distinct models is the best one for the
data. That is, the experiment effectively asks
which model in an entire set of models best
explains the data, rather than asking the value of
some variable within a model. The ideal-observer
should integrate over the distribution of unknown
stimulus values ys and yo (since subjects are not
directly asked about these) in determining the
most plausible model (assignment of oddity).

The second key aspect of this task which
must be included in any full generative model
of this problem is that oddity can be entailed
in the probe stimulus not only by its combined
difference from the standard, but by discrepancy
within the probe stimulus. In this case (similar
to other recent multisensory perception exper-
iments with variable causal structure: Hairston

et al., 2003; Shams et al., 2000, 2005; Wallace
et al., 2004), the variable structure can effectively
“give away” the probe. We introduced the
approach needed to solve this type of problem
in multisensory perception as structure inference
(Hospedales & Vijayakumar, 2008). Körding,
Beierholm et al. (2007) carried out a detailed
analysis of the experiments of Hairston et al.
(2003) and Wallace et al. (2004) and showed how
the structure inference approach was necessary
to explain the results, but they termed the
procedure causal inference (see Chapter 2).

Formalizing Optimal Oddity Detection

A generative-model Bayesian network formal-
ization of the oddity-detection task for the
three multisensory observations {xh,i, xv,i}3

i=1 is
shown in Figure 4.9, where the aim is to
determine which observation is the odd probe.
The graph on the left indicates that the four
observations composing the other two standard
stimuli are all related to the standard stimulus
value ys . The graph on the right indicates
that the probe visual-haptic observations are
independent of the standard but might be related
via their common parent, the latent probe
stimulus of value yo . The latent variable C
switches whether the probe observations have
a common cause in the generative model. The
prior probability of common causation is given

i {1,2,= 3}\ o

ys

xh, i

xh,i xh,ixv,i

xv,i

xv,i

Standard Stimuli

yo

C = 1

yh,o yv,o

C = 0

C

Probe Stimuli

Observations 1,2,3

Figure 4.9 Graphical model for oddity detection via structure inference. A subject observes three
multisensory stimuli, xh,i and xv,i , i = 1,2,3. The three options for assigning oddity correspond to three
possible models indexed by o = 1,2,3. The uncertain causal structure of the probe stimulus is now represented
by C , which is computed in the process of evaluating the likelihood of each model o.
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by the new parameter πc , so p(C = 1) = πc and
p(C = 0) = 1 − πc . Under the hypotheses of
common causal structure C = 1, we assume that
the two observations xh,o, xv,o were produced
from a single latent variable ys . Alternately, if
C = 0, we assume separate sources yh,o and
yv,o were responsible for each. An ideal Bayesian
observer in this task should integrate over both
the unknown stimulus values and the causal
structure C (i.e., whether we are feeling and
seeing the same thing).

The three different possible models are
given by the different probe hypotheses o =
1, 2, 3, which separate the standard and probe
stimuli into different clusters. We represent
this clustering in terms of the set difference
operator “\.” For example, o = 3 would
mean that stimuli {1,2,3}\3 = {1, 2} are
drawn from the standard ys , and there-
fore observations {xh,1, xv,1, xh,2, xv,2} (Fig. 4.9,
left) should be similar to each other—and
potentially dissimilar to odd probe observa-
tions {xh,3, xv,3} (Fig. 4.9, right), which were
generated independently. The ideal Bayesian
observer would base its estimation of oddity
on the marginal likelihood of each stimu-
lus/model o being odd, p(o|{xh,i, xv,i}3

i=1θ) ∝
p({xh,i, xv,i}3

i=1|o, θ)p(o|θ):

p({xh,i,xv,i}3
i=1|o,θ)

=ps({xh,i,xv,i}i∈{1,2,3}\o|o,θ)po(xh,o,xv,o|o,θ),

ps({xh,i,xv,i}i∈{1,2,3}\o|o,θ)

=
∫ ∏

i∈{1,2,3}\o

∏
j=h,v

N (xj,i |ys,θ)N (ys |θ)dys,

po(xh,o,xv,o|o,θ)=
∫ ∏

j=h,v

N (xj,o|yo,θ)N (yo|θ)

×πcdyo +
∫∫ ∏

j=h,v

N (xj,o|yj,o,θ)N (yj,o|θ)

×(1−πc)dyh,odyv,o. (4.18)

The marginal likelihood factors into a product
of standard ps and probe po parts, which may be
decomposed into integrals of Gaussian products,
which are simple to evaluate analytically (see
Hospedales & Vijayakumar, 2009, for more

details). This procedure evaluates how likely
each stimulus o is to be odd, accounting for
the uncertainty in stimulus values y (integrals)
and the uncertain causality of the probe data
C (sum). Here, θ summarizes all the fixed
model parameters, for example, the observation
variances σ 2

h and σ 2
v .

Results

To evaluate our multisensory oddity-detection
model, we assume no prior preference for which
stimulus is odd (p(o) uniform) and therefore
estimate the probe based on the likelihood,
ô = arg maxo p({xh,i, xv,i}3

i=1|o, θ). Evaluating
the detection success rate for a range of probe
values yv,o and yh,o , we can then compare the
66% performance thresholds of the model’s
success rate pm(ôcorrect|ys, yh,o, yv,o) against the
human success rate pe(ôcorrect|ys, yh,o, yv,o) as
reported by Hillis et al. (2002). To set the
various model parameters: The prior variance
σ 2

y is fixed globally to an arbitrary large value
so as to be fairly uninformative; the prior
mean μy is assumed known; the unimodal
variances σ 2

h and σ 2
v and so forth are determined

a priori for each experiment and subject by
fitting to the unimodal data as in Hillis et al.
(2002); and only πc is fit to the data for each
multisensory experiment, with πc = 0.935 and
0.99 for the across and within-modality cases,
respectively (see Hospedales & Vijayakumar,
2009, for further details).

Detection Threshold Contours Figures 4.10A
and 4.10B illustrate the across- and within-
modality results, respectively, for the two sample
subjects from Figure 4.8. The experimental
data (dots) are shown along with the global
performance of the model across the whole
input space (grayscale background, with white
indicating 100% success) and the 66% per-
formance contour (blue lines). The human
experimental measurements broadly define a
region of nondetection centered about the
standard stimuli and slanted along the cues-
discordant line and stretched slightly outside
the bounds of the inner unimodal threshold
rectangle. The extent of the nondetection region
along this line is increased somewhat in the
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Figure 4.10 Oddity-detection predictions of the structure-inference approach. (A,B) Oddity-detection-
rate predictions for the ideal Bayesian observer (grey-scale background) using a variable-structure model
(Fig. 4.9); Oddity-detection contours of our model (blue lines) and human (magenta points) are overlaid
with the MLI prediction (green lines); Chance = 33%. (C,D) Fusion report rates for the ideal observer
using the variable-structure model. Across-modality conditions are reported in (A,C) and within-modality
conditions are reported in (B,D).

within-modality case as compared to the across-
modality case (Hillis et al., 2002). Recall that
the only free parameter varying between these
experiments is the common-causation prior
πc , (a larger πc leads to a longer band of
nondetection), which would be expected to vary
between pairs of cue modalities.

The MLI model makes the qualitative error
of predicting infinite bands of indiscriminability
(Fig. 4.10, green lines). In contrast, our Bayesian
model provides an accurate quantitative fit to the
data (Fig. 4.10, blue lines).

To gain some intuition into these results,
consider the normalized distribution of the data
(Eq. 4.18) under each model. For example, for
o = 3, the probability mass in the standard
part ps lies bunched on a four-dimensional
line through the standard (where xh,1 = xv,1 =
xh,2 = xv,2). The probability mass in the probe

part po is a mixture between a simple model
(C = 1) around xh,3 = xv,3, and a more complex
model (C = 0), spread more uniformly over
the space. Therefore, model o = 3 will be likely
for multisensory observations involving a set of
similar pairs i = 1, i = 2 and a third pair i = 3,
which is either different from the first set or
different from each other.

Perception of Fusion Another benefit of the
full generative modeling of this problem is
that it also yields a perceptual inference for
the fusion (common multisensory source) of
the probe p(C |{xh,i, xv,i}3

i=1). This is shown in
Figures 4.10C and 4.10D and corresponds to the
predicted human answer to the question “Do
you think the odd visual and haptic observations
are caused by the same object, or have they
become discordant?” This question was not asked
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systematically (Hillis et al., 2002), but they did
note that subjects sometimes reported oddity
detection by way of noticing the discordance of
cues, which is in line with the strategy that falls
out of inference with our model.

Along the cues-concordant line, the model
has sensibly inferred fusion (Fig. 4.10C and D,
quadrants 1 and 3). In these regions, the model
can effectively detect the probe (Fig. 4.10A and B,
quadrants 1 and 3), and the fused probe estimate
ŷo is different from the standard probe estimate
ŷs . Considering instead trials moving away from
the standard along the cues-discordant line, the
model eventually infers fission (Fig. 4.10C and D,
quadrants 2 and 4). The model infers the probe
stimuli correctly in these regions (Fig 4.10A and
B, quadrants 2 and 4) where the mandatory
fusion models cannot (Fig. 4.10a, b, quadrants
2 and 4, green lines) because the probe and
standard estimates would be the same ŷo = ŷs .
The strength of discrepancy between the cues
required before the fission is inferred depends
on the variance of the observations (σ 2

h and σ 2
v )

and the strength of the fusion prior πc , which
will vary depending on the particular subject,
combination of modalities, and task.

Discussion

We have developed a Bayesian ideal-observer
model for multisensory oddity detection and
tested it by reexamining the experiments of
Hillis et al. (2002). In those experiments,
the standard maximum-likelihood-integration
ideal-observer approach failed with drastic
qualitative discrepancy compared to human
performance; however, we argue that this was
due to simple MLI being an inappropriate model
rather than a failure of ideal-observer modeling
or human suboptimality. The more complete
Bayesian ideal-observer model developed here
represents the full generative model of the
experimental task. This required modeling the
multisensory oddity-detection problem as a
full model-selection problem with potentially
variable probe structure. The Bayesian ideal-
observer provides an accurate quantitative
explanation of the data with only one free
parameter, πc , which represents a clearly inter-
pretable quantity: prior probability of common

causation. Moreover, our interpretation of the
problem is satisfying in that it models explicitly
and generatively the unknown discrete index o of
the odd object: a quantity that the brain is clearly
computing since it is the goal of the task.

Generative Modeling Assumptions We have
consciously made a stronger assumption than
MLI does about how much the human subject
knows about the experiment, notably that
probe stimulus was possibly discordant. The
justification for this is that the subjects were
instructed to detect oddity by any means, for
which both interstimuli and within-stimulus
intercue discrepancy are reasonable indicators.
We therefore expect that perceptual circuitry
dealing with oddity detection should allow for
both kinds of oddity, and as such we model both.
Moreover, as discussed in the Introduction,
from a normative point of view on generative
modeling and ideal observers, we should start
with the assumption that the subject has—or
learns over the session—a good generative model
of the problem; and we were able to model the
data without altering this assumption. Of course,
it makes more sense for the perceptual system
to allow for intermodal discrepancy (because
we regularly see and touch different things
simultaneously) than intramodal discrepancy
as in the texture-disparity case. Nevertheless,
this second unintuitive assumption allowed
us to make a much better model of the
experiment. Exactly why intramodal discrepancy
should be permitted and how it is resolved
by the perceptual system are open research
questions, but we speculate that this could imply
some sharing of perceptual integration circuitry
between different cue pairs.

Alternative Oddity Models A simple estima-
tor for unimodal three-alternative oddity task
is the “triangle rule” (Macmillan & Creelman,
2005). This measures the distances between
all three-point combinations, discards the two
points with minimum distance between them,
and nominates the third point as odd. Note that
this simple rule does not provide an acceptable
alternative model of the multisensory oddity
detection scenario studied here because it still
does not address the uncertain correspondence
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between multisensory observations. Specifically,
if the multisensory observations were considered
to be fused first (Eq. 4.16), metameric discordant
probe observations would still occur—and these
cannot be detected by this rule, again producing
an infinite band of nondetectability (Fig. 4.8,
green lines). In contrast, if the rule were applied
directly to the multisensory observations in
two dimensions, there would be no room for
fusion effects, and detection would be good
throughout, in contrast to the tendency toward
fusion illustrated by the human data (Fig. 4.8,
magenta dots).

Generative Modeling and Structure Inference
The theory and practice of generative modeling
for inference problems is extensively studied
in other related fields, for example, artificial
intelligence (Bishop, 2006). In this context, gen-
erative modeling of uncertain causal structure in
inference tasks goes back to Bayesian multinets
(Geiger & Heckerman, 1996). Today, this theory
is applied, for example, in building artificial-
intelligence systems to explicitly understand
“who said what” in multiparty conversations
(Hospedales & Vijayakumar, 2008).

Robust Cue Combination A variety of recent
studies have investigated the limits of multi-
sensory cue combination and have reported
“robust” combination, that is, fusion when the
cues are similar and fission when the cues
are dissimilar (Bresciani, Dammeier, & Ernst,
2006; Ernst, 2005; Körding, Beierholm et al.,
2007; Roach, Heron, & McGraw, 2006; Shams
et al., 2005; Wallace et al., 2004). Some authors
have tried to understand robust combination
by simply defining a correlated joint prior
p(yh, yv) over the multisensory sources like yh

and yv (Bresciani et al., 2006; Ernst, 2005,
2007; Roach et al., 2006). These are in general
special cases of the full generative approach
introduced here (and the equivalent models for
other experimental paradigms, e.g., Körding,
Beierholm et al., 2007). In the correlated-prior
approach, the uncertain structure C , is not
represented, and the joint prior over latents
is defined as

∑
C p(yh,o, yv,o|C, θ)p(C |θ). See

Chapter 2 for more details. In our case this would
be unsatisfactory because the perceptual system

would then not represent causal structure, which
subjects do infer explicitly in the work of Hillis
et al. (2002) and other related experiments
(Wallace et al., 2004). Another reason for
the perceptual system to represent and infer
causal structure explicitly is that it may be of
intrinsic interest. For example, in an audio-
visual context, explicit knowledge of structure
corresponds to knowledge of “who said what” in
a conversation (for example, see Hospedales &
Vijayakumar, 2008).

CONCLUSIONS

In this chapter, we have argued that the
normative modeling approach of choice for
perceptual research should be generative model-
ing of the perceptual task for each experiment.
In this chapter, we have illustrated two sets
of experiments in which striking results in
human perception can only be explained by
full generative models of the respective tasks.
These were in domains as diverse as multisensory
integration for oddity detection (Hospedales &
Vijayakumar, 2009), and visual-proprioceptive
integration for sensorimotor adaptation (Haith
et al., 2008). The nature of the generative models
is quite different in each of these cases: For
multisensory integration we considered models
in which the unknown variables to be estimated
are discrete variables describing the dependency
between observations. For sensorimotor learn-
ing, we considered a model with continuous,
time-varying unknown variables that describe
the various possible sources of systematic error
affecting each sensory observation. The success
of these two contrasting models supports the
quite general principle—that the experimental
results can only be properly explained by
considering a complete generative model of the
subject’s observations.

In our view, there are two key areas for future
research: perceptual learning and physiological
implementation. Chapter 9 of this volume
introduces some current research progress in
perceptual learning. This encompasses questions
such as: How do people learn appropriate
generative models and parameters for particular
tasks? Are there limits to the types of learnable
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distributions (e.g., Gaussian, unimodal) and
the complexity of learnable models? In online
learning, how can the brain adapt parameters
online rapidly from trial to trial? How does the
brain know when to adapt an existing model or
set of parameters versus creating a new one for a
new task? Chapter 21 of this volume introduces
some current research progress in physiological
implementation. This encompasses questions
such as: How could these models be computed by
biological machinery? Does the brain carry out
the exact ideal-observer computations like those
we describe here, or is it using heuristics that
offer a good approximation in the circumstances
considered here. Insofar as human performance
falls short of ideal-observer performance in
particular experiments, what can this tell us
about the architecture of the brain?
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