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1 Abstract

We provide an RKHS based inverse problem
formulation[15] for analytically deriving the optimal
function approximation when probabilistic informa-
tion about the underlying regression is available in
terms of the associated correlation functions as used
in [9, 8]. On the lines of Poggio and Girosi[9], we
show that this solution can be sparsified using prin-
ciples of SVM and provide an implementation of
this sparsification using a novel, conceptually sim-
ple and robust gradient based sequential method
instead of the conventional quadratic programming
routines.

2 Introduction

In this paper, we consider the standard regression
task of estimating an underlying multivariate func-
tion (or representation) f from a given set of finite
training data, {xm, ym}M

m=1. This general frame-
work encompasses the problems of signal recon-
struction and image representation in artificial as
well as biological systems. Here, we assume that we
are given some information about the probabilistic
distribution of the underlying function f in form of
the associated correlation function R [9], which we
will formalize mathematically in the next section.
Then, the regression problem, from the standpoint
of image processing, can be stated as one of recon-
structing a specific image f given it’s pixel values at
discrete locations, where f corresponds to the input
image and x represents a vector in the image plane.

It has been argued that one of the major goals of
sensory processing should be to reduce dimension-
ality of the input space. There is experimental and
statistical evidence [5, 10, 11] which show that rep-
resentation of natural images uses a parsimonious
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parametrization of a suitable subspace to represent
the images during sensory processing.

In this work we will, at first, focus on providing
a framework for analytically obtaining optimal (not
necessarily sparse or parsimonious) approximations
to the underlying regression which incorporates the
apriori knowledge in form of correlation functions.
We will show that for a particular choice of the orig-
inal function space, the approximation reduces to
the linear combination of local correlation kernels-
moreover, this provides a direct justification for the
use of correlation kernels in image reconstruction as
done in [9, 8]. This particular choice of the function
space enables us to use the principles of sparsifica-
tion described in Poggio and Girosi[9] to find a more
parsimonious representation of the solution. Tradi-
tionally, the sparsification based on the principles
of SVM is carried out using quadratic programming
routines [12, 13]. Here, we present a novel gradient
based method [16] to arrive at the sparsified solu-
tion, an alternative that retains all the guarantees
of the Structural Risk Minimization (SRM) princi-
ple while being conceptually much simpler to imple-
ment. The algorithm is assured of convergence to
global maxima within theoretically derived bounds
of the learning rate, does not suffer from the nu-
merical instabilities of the quadratic programming
packages and is computationally very efficient.

3 Function approximation as
an inverse problem

In this section, we will review the inverse problem
formulation, details of which can be found in [15].
Let H be the set of functions which includes f(x),
the function to be approximated. Assume that H is
a Reproducing Kernel Hilbert Space(RKHS) with a
reproducing kernel K(x,x′). The reproducing ker-
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nel satisfies the Mercer’s condition[4], i.e.,

K(x,x′) = K(x′,x) and∫ ∫
K(x,x′)f(x)f(x′)dxdx′ ≥ 0

for every f ∈ H and has the following properties:

1. For all x′ in the domain of f , K(x,x′) is a
function in H .

2. For any function f in H , it holds that

<f(x),K(x,x′)>= f(x′), (1)

where the left hand side of eq.(1) denotes the
inner product in H .

In the theory of Hilbert space, arguments are de-
veloped by regarding a function as a point in that
space. Thus, things such as ’value of a function at a
point’ cannot be discussed under the general frame-
work of Hilbert space. However, if the Hilbert space
has a reproducing kernel1, then it is possible to deal
with the value of a function at a point. Indeed, if
we define functions ψm(x) as

ψm(x) = K(x,xm) : 1 ≤ m ≤ M, (2)

then, the value of f at a sample point xm is ex-
pressed in Hilbert space language as the inner prod-
uct of f and ψm as

f(xm) =<f, ψm> . (3)

Once the training set {xm}M
m=1 is fixed, the vector

y ≡ (y1 y2 ... yM )T is uniquely determined from f .
So, we can introduce an operator A which trans-
forms f to y:

y = Af. (4)

The operator A, called the sampling operator, be-
comes a linear operator even when we are concerned
with nonlinear approximators. It is expressed by
using the Schatten product as

A =
M∑

m=1

em ⊗ ψm, (5)

where {em}M
m=1 is the so-called natural basis in

IRM , i.e., the vector em is the M -dimensional vec-
tor consisting of zero elements except the element
m equal to 1. The Schatten product denoted by
(.⊗ .̄) is defined by

(em ⊗ ψm)f =<f, ψm> em (6)
1A Hilbert space always possesses a reproducing kernel if

it is separable [2]
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Figure 1: Learning as an inverse problem

and corresponds to an outer product of two vectors
when a vectorial representation of the functions are
possible. Hence, the approximation problem can be
reformulated as the problem of obtaining an esti-
mate, say f0, to f from y in the model (See Fig.1).
This can be considered as an inverse problem equiv-
alent to obtaining an operator X which provides f0

from y:
f0 = Xy. (7)

We will refer to the operator X as the learning
operator. This operator X can be optimized based
on different optimization criteria. We will look at a
particular cost function, the Wiener criterion, which
utilizes the apriori information on the function en-
semble correlation in the next section.

4 The Wiener cost criterion
and analytical optimization

Most optimization criteria reduces errors in the
sample space, i.e., reduce errors at the training lo-
cation while using some form of regularization etc.
This does not necessarily gaurantee good general-
ization ability. Since we do not have the knowledge
of the original function f , it is expected that one
cannot do better. However, when we have apriori
information about the function correlation ensem-
ble, we can analytically find optimal approxima-
tions which reduce errors in the original function
space in an averaged sense over the entire ensem-
ble.

4.1 The Wiener criterion

The functional representing the Wiener criterion
JW for the noiseless case is given as:

min
X

JW [X ] = Ef‖f0 − f‖2 = Ef‖XAf − f‖2
, (8)

where ‖.‖ is the norm in H and Ef is the expec-
tation taken over the ensemble {f}. An operator
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X satisfying the above criterion is called a Wiener
learning operator. The criterion aims at reducing
the difference between the original function f and
the function f0 reconstructed by using the learning
operator X . This minimization is done in the origi-
nal function space H and in an averaged sense with
respect to the function ensemble.

4.2 Analytical batch and incremen-
tal solutions

The Wiener criterion can be transformed into a
more useful form [15, 7]. Let R be the correlation
operator of the function ensemble and be defined as

R = Ef (f ⊗ f). (9)

This is the ensemble correlation function described
in Penev and Atick [8] and used for constructing
kernels in Poggio and Girosi[9]. Techniques for com-
puting/generating this correlation function is de-
scribed in Penev and Atick[8] which involves col-
lecting generic images, scaling, aligning and crop-
ping them and then, computing the correlation. By
looking at the saddle points of the functional (8),
it can be shown [7, 14] that the necessary and suf-
ficient condition for the Wiener criterion to be sat-
isfied by an operator X is given as

XARA∗ = RA∗, (10)

where A∗ is the adjoint operator of A.

Theorem 1 (Batch Wiener approximation)
A general form of the solution of eq.(10) is given
as

X = RA∗U † + W (I − UU †), (11)

where W is any operator from IRM to H, U † rep-
resents the Moore-Penrose generalized inverse of U
[1] and U is defined as

U = ARA∗. (12)

The approximated function f0 can be computed
based on eq.(11) as

f0 = Xy = RA∗U †y, (13)

since I − UU † lies in the null space of A.

Once the training set is fixed, A can be calcu-
lated using eqs.(5) and (2). Hence, corresponding
to this sampling operator, a learning operator X
satisfying the Wiener criterion can be obtained us-
ing eqs.(11) and (12). The function approximation
using the Wiener criterion can also be carried out
incrementally. Let Am and fm represent the sam-
pling operator and the approximated function using
m training data, respectively.

Theorem 2 (Incremental learning) [15] The
approximation due to m + 1 training data, fm+1,
can be expressed as a function of the previous
approximation fm as

fm+1 = fm +
ym+1 − fm(xm+1)

φmc(xm+1)
φmc. (14)

where φm = Rψm+1 and φmc is the projection of
φm onto N (Am) along R(RA∗

m).

Here, R(.) and N (.) refer to the range and the null
space of an operator, respectively. This incremen-
tal learning is exact in the sense that the function
approximation that results from applying this in-
cremental scheme exactly coincides with the results
obtained using the batch scheme, i.e., it is not an
approximation.

5 Sparsifying the function
representation

In using our functional analytic framework, we have
so far not specifically dealt with which Hilbert space
H to use. Vijayakumar and Ogawa [15] have looked
at a variety of possible function spaces with charac-
teristic properties. Here we concentrate on a par-
ticular choice of the function space H and it’s cor-
responding kernel suitable for sparsifying the solu-
tion.

Let us consider the case of M training data and
revert back to the batch approximation notation.
It can be shown [14] that the approximated func-
tion f0 using the Wiener optimization criterion
is an oblique projection of f onto R(RA∗) along
R(R) ∩ N (A), i.e., f0 ∈ R(RA∗). However, if we
choose a Hilbert function search space using the cor-
relation operator on the lines of Poggio and Girosi[9]
such that H = R(R), it is easily seen that f0 can
now be written as an orthogonal projection of f
onto R(A∗) along N (A) 2, i.e., f0 ∈ R(A∗). Since

A =
M∑

m=1

em ⊗K(x, xm) and (15)

A∗ =
M∑

m=1

K(x, xm) ⊗ em, (16)

it is clear from the properties of the schatten op-
erator that the approximated function f0 can be
represented as

f0 =
M∑
i=1

aiK(x, xi), (17)

2R(A∗) and N (A) are orthogonal decompositions of the
approximation space H in this case
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where ai is a set of scalar coefficients. This is sim-
ilar to the correlation kernel based approximation
derived in Poggio and Girosi[9] which result from
regularization functionals (Appendix B, [6]).

The resulting function approximation has an ex-
pansion in terms of the weighted sums of the corre-
lation kernels at each training data location. These
kind of kernels generated using the correlation func-
tion of the natural images have been shown to be
local in nature (refer to LFA of Penev and Atick[8]).
Also, the function representation is topographic in
nature - the nearby values of x ellicit similar re-
sponses - because the kernels are indexed by the
grid variable x. Locality and topography may be
desirable feature in certain segmentation and pat-
tern analysis tasks and there are evidence to sup-
port such properties in the biological sensory pro-
cessing, at least in the early to intermediate stages
of the visual pathway. However, if the number of
training data is large, this leads to an overcomplete
and redundant dictionary of basis functions.

In order to sparsify our representation, we look
at a trade-off functional. A sparse approxima-
tion scheme chooses, among all the approximating
schemes with similar training error, the one with
the minimum non-zero coefficients. Therefore, we
look at minimizing the following functional with re-
spect to the coefficients a = (a1 · · · aM )T :

J [a] =
1
2
‖f(x)−

M∑
i=1

aiK(x,xi)‖2
H + ε‖a‖L1 . (18)

This functional results from the fact that we can
write the approximated function in the first part of
the functional as an expansion of the kernel corre-
lation due to eq.(17). This error functional is in the
spirit of Basis Pursuit De-noising (BPD) of Chen
et al. [3]. The difference, as pointed out in [9],
is that while BPD uses the L2 norm to measure
the reconstruction error, we use the true distance
in form of the H norm. This has been shown in
approximation theory to lead to better generaliza-
tion properties [15] due to its emphasis on reducing
errors in the original function space rather than the
sampled space or parameter space.

Here, we borrow from the results of Girosi[6]
which says that minimizing the functional (18) - un-
der the assumption of noiseless data - is equivalent
to solving the following dual minimization prob-
lem3:

3Strictly speaking, there is an additional constraint that,
assuming the target function has zero mean, the approximat-
ing function also has zero mean.

Min. JD[α, α∗] =
1
2

M∑
i,j=1

(α∗
i −αi)(α∗

j −αj)K(xi,xj)

+ ε

M∑
i=1

(αi + α∗
i ) −

M∑
i=1

yi(α∗
i − αi) (19)

subject to 0 ≤ αi, α
∗
i ≤ C, i = 1, . . . ,M, (20)

and
M∑
i=1

(α∗
i − αi) = 0 (21)

where αi, α
∗
i are non-negative Lagrange multipliers

and are related to the scalar variables ai as ai =
α∗

i − αi. Since, we are considering the noiseless
case, C can be equated to infinity in line with the
argument in [6]. The minimization of functional
(19) leads to the solution obtained by the support
vector machines for regression [13] and has been
traditionally solved using quadratic programming
routines.

5.1 Gradient descent based sequen-
tial implementation

In this work, we introduce a modification of the
bias term and augment the kernel K(x, xi) with a
constant term λ. This augmentation, as analysed in
detail in the work on modified margin optimization
for sequential SVMS by the authors[16], leads to an
margin maximization which is sufficiently justified
in the high dimensional learning cases. This helps in
absorbing the condition (21) into the cost function,
making a sequential implementation possible. The
optimal approximation surface using the modified
formulation is now given as

f(x) =
M∑
i=1

(α∗
i − αi)(K(xi,x) + λ2). (22)

Due to sparseness properties of the large margin
approximators, very few number of the coeffcients
(α∗

i −αi) are non-zero and hence, the representation
of the approximated function is sparse.

Using the gradient of the cost function (19), we
propose an update rule to approximate the vari-
ables αi and α∗

i iteratively. Let the kernel function
K(xi, xj) be constructed using the correlation oper-
ator R of the learning problem such that the RKHS
corresponding to this kernel spans the space R(R).
Fig.2 gives the update rule for iteratively approx-
imating the variables. Here, λ is the augmenting
factor, which should be chosen in the scale of the
input vectors. ε is the user defined error insensitiv-
ity parameter which controls the balance between
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Algorithm for Sparse Representation

1. Initialize αi = 0, α∗
i = 0. Compute

[R]ij = K(xi,xj) + λ2 for i, j = 1, . . . ,M .

2. For each training point, i=1 to M , compute

2.1 Ei = yi −
∑l

j=1(α
∗
i − αi)Rij .

2.2 δα∗
i = min{max[γ(Ei − ε),−α∗

i ], C − α∗
i }.

δαi = min{max[γ(−Ei−ε),−αi], C−αi}.
2.3 α∗

i = α∗
i + δα∗

i .
αi = αi + δαi.

3. If the training has converged, then stop else
goto step 2.

Figure 2: Sequential algorithm for sparseness

the sparseness of the solution and the closeness to
the training data and γ is the learning rate. The
value of the tradeoff parameter C is set to infinity
for the case of noiseless data, hence, not necessitat-
ing the outer min comparison in the step 2.2 of the
algorithm.

If we look at the gradient of the cost function (19)
or the change in cost function with small changes in
α and α∗, we can write the following relationship.

∆JD = δα∗
i (−ε + Ei − 1

2
Riiδα

∗
i ) + δα∗

i δαiRii

+δαi(−ε− Ei − 1
2
Riiδαi), (23)

where the elements of matrix R and the scalars Ei

are defined as shown in the algorithm. With some
additional analysis which is omitted for brevity, we
can show that this cost function monotonically de-
creases to a minimum value and converges provided
the learning rate satisfies γ < 1/max{i} Rii. Faster
convergence can be obtained by using a data depen-
dent learning rate like γi < 1/Rii.

6 Illustrative examples

In this section, we look at a synthetic regression task
and compare the approximation properties of the
RKHS based analytical solution against the more
parsimonious sparse representation.

We look at the task of approximating a function
f = 4−sinx+sin 2x−sin 3x+sin 4x−sin 5x shown
in Fig.3 from a set of 20 uniformly sampled train-
ing data. First, we consider approximation using a
function space spanned by H = {sinnx, cosnx}5

n=0.
This ensures that the function to be approximated
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Figure 3: Approximation results using 20 uniform
training data (a) Sparse approximation using sine
kernels (b) RKHS analytic solution with RBF ker-
nels (c) Sparse approximation using RBF kernels

lies within the model space being considered. The
reproducing kernel of this space can be written as

K(x, x′) =
5∑

n=0

(cosnx cosnx′ + sinnx sinnx′)

=
{

6 if x = x′
1
2 [sin 11∗(x−x′)

2 / sin x−x′
2 + 1] otherwise

(24)

This choice is equivalent to having a correlation op-
erator R which spans the approximation space H .
Using the analytical method of solving described in
Section 4.2, we achieve perfect generalization i.e.,
the function is learned exactly. This is expected
since we have noiseless data and the function resides
in the search space. In comparison, when we spar-
sify the solution using the same sin kernel K(x, x′)
(24), we get a parsimonious representation using 11
basis vectors with a normalised mean squared er-
ror(nMSE) of .00029 on a test data set as shown
in Fig.3(a). The epsilon parameter in the sparse
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training was set to ε = 0.01.
Next, we consider learning with a space spanned

by RBF kernels with reproducing kernels

K(x, x′) = e‖x−x′‖2/2σ2
, (25)

where σ is the variance parameter of the kernel
which we set here to a value of σ = 0.5. Hence,
in this case the function we are trying to approxi-
mate does not strictly lie in the search space. The
result of learning with 20 points using the RKHS
analytic method is shown in Fig.3(b) resulting in an
nMSE=0.00092. Using the sparseness constraint in
this function space leads to an approximation with
12 basis vectors and an nMSE of 0.0361 as shown in
Fig.3(c). Here, an ε = 0.2 was used. The tradeoff
between accuracy and degree of sparseness can be
controlled by varying the thickness of the ε-tube.

7 Conclusion and Discussion

In this paper, we formulate the problem of learning
a mapping as an inverse problem and provide ana-
lytical solutions by using an optimization criterion
which exploits the apriori knowledge on the probilis-
tic distribution of function ensembles. Although
this solution is optimal from a generalization per-
spective, it is expensive in terms of the resources
since it employs one kernel function at every train-
ing data location to represent the learned result.
However, it is shown that if we choose a particular
search space spanned by the correlation operator
(apriori knowledge usually accessable) and enforce
a sparseness constraint on the solution on the lines
of Poggio and Girosi[9], the problem reduces to the
same dual problem encountered in support vector
regression. Here, we introduce a novel gradient de-
scent based sequential learning algorithm to solve
this dual problem for sparsification. This algorithm
is simple to implement and assured of convergence
within theoretically derived learning rate bounds.
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