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Abstract: We introduce a new algorithm, Locally Weighted
Projection Regression (LWPR), for incremental real-time
learning of nonlinear functions, as particularly useful for
problems of autonomous real-time robot control that re-
quires internal models of dynamics, kinematics, or other
functions. At its core, LWPR uses locally linear models,
spanned by a small number of univariate regressions in
selected directions in input space, to achieve piecewise lin-
ear function approximation. The most outstanding proper-
ties of LWPR are that it i) learns rapidly with second order
learning methods based on incremental training, ii) uses
statistically sound stochastic cross validation to learn iii)
adjusts its local weighting kernels based on only local in-
formation to avoid interference problems, iv) has a com-
putational complexity that is linear in the number of inputs,
and v) can deal with a large number of—possibly redun-
dant and/or irrelevant—inputs, as shown in evaluations
with up to 50 dimensional data sets for learning the inverse
dynamics of an anthropomorphic robot arm. To our knowl-
edge, this is the first incremental neural network learning
method to combine all these properties and that is well
suited for complex on-line learning problems in robotics.

1 Introduction
Motor control of complex movement systems requires
knowledge of a variety of continuous valued functions, for
instance coordinate transformations of the manipulator
kinematics and models of the forward or inverse dynamics.
Whenever analytical methods are not available to derive
these functions, e.g., as frequently the case in light-
weighted and complex (humanoid) dexterous robots (e.g.,
Figure 1), learning approaches need to be employed to find
approximate solutions. However, function approximation
for high dimensional nonlinear motor systems remains a
nontrivial problem. An ideal algorithm for such tasks needs
to eliminate redundancy in the input data, detect irrelevant
input dimensions, keep the computational complexity less

than quadratic in the number of input dimensions, and, of
course, achieve accurate function approximation and gen-
eralization. In this paper, we suggest to accomplish these
goals with techniques of projection regression. The key
idea of projection regression is to cope with the complexi-
ties of high dimensional function approximation by de-
composing the regression into a sequence of one-
dimensional localized regressions along particular direc-
tions in input space. The major difficulty of projection re-
gression becomes how to select efficient projections, i.e., to
achieve the best fitting result with as few as possible one-
dimensional regression.

Figure 1: Humanoid robot in our laboratory

Previous work in the learning literature has focussed on
finding good global projections for fitting nonlinear one-
dimensional functions. Among the best known algorithms
is projection pursuit regression ([1]), and its generalization
in form of Generalized Additive Models ([2]). Sigmoidal
neural networks can equally be conceived of as a method
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of projection regression, in particular when new projections
are added sequentially, e.g., as in Cascade Correlation [3]).
Here we suggest an alternative method of projection re-
gression, focussing on finding efficient local projections.
Local projections can be used to accomplish local function
approximation in the neighborhood of a query point. Such
methods allow fitting locally simple functions, e.g., low
order polynomials, along the projection, which greatly
simplifies the function approximation problem. Local pro-
jection regression can thus borrow most of its statistical
properties from the well-established methods of locally
weighted learning and nonparametric regression ([4], [5]).
Counterintuitive to the curse of dimensionality ([6]), local
regression methods can work successfully in high dimen-
sional spaces ([7]), as we will empirically demonstrate be-
low.

In the next section, we will first motivate why function
approximation in high dimensions is complicated, and why
there is hope that the “curse of dimensionality” is not really
a problem for high-dimensional movement systems. Sec-
ond, we will introduce our new learning algorithm, Locally
Weighted Projection Regression (LWPR) that can effi-
ciently deal with high-dimensional learning problems. In
the last section, we will show learning results on synthetic
data and data from a Sarcos Dexterous Robot, an anthro-
pomorphic robot arm, whose inverse dynamics model was
learned by our algorithm, even when contaminated with ir-
relevant and redundant inputs.

2 The Curse of Dimensionality
Both in research of biological and robotic motor control,
the need for internal models has been emphasized in order
to achieve accurate control of fast movements ([8]; [9]).
For models with only few input dimensions, learning ap-
proaches have been quite successful (e.g, [10]; [11]; [12]).
However, for higher dimensional learning tasks, it has been
unclear whether learning approaches can succeed. For in-
stance, we are interested in learning the inverse dynamics
model of a humanoid robot (Figure 1). The robot has 30
degrees-of-freedom (DOFs), amounting to a 90-dimen-
sional input space to the inverse dynamics function (30 po-
sition, 30 velocity, and 30 acceleration states). A rigid body
dynamics model performs poorly for this hydraulically ac-
tuated light-weighted system.

Depending on the nonlinear activation function em-
ployed in the network units, two categories of neural net-
works are available for such a task. The traditional sigmoi-
dal activation function—or any other function with un-
bounded support—tries to find global projections in input
space that lead to a good approximation of the data. It is
well known that these networks learn rather slowly in high-
dimensional spaces, and that the network structure, i.e., the

number of hidden units, needs to be chosen carefully to
achieve good learning results. Moreover, neural networks
with unbounded activation functions are very vulnerable to
inference problems, i.e., the unlearning of relevant knowl-
edge when trained on new data points ([13]). Since an
autonomous robot in a dynamic environment will encoun-
ter new data all the time, complex off-line re-training pro-
cedures would need to be devised to cope with the interfer-
ence problem, and a substantial amount of data would have
to be stored for the re-training. From a practical point, this
approach is hardly useful.

Alternatively, networks types can be selected that have
bounded support in their activation functions. Radial basis
function networks with Gaussian kernels are among the
best known in this category ([14]; [15]). The selection of
the number of hidden units is usually easier with this net-
work type, and training proceeds rather fast and has re-
duced interference problems. However, in a 90-
dimensional input space, it is possible that a huge number
of radial basis functions would be needed to cover the input
space: even if each input dimension is only covered by 2
Gaussians, an astronomical number of 290 Gaussians would
be required for our humanoid.1

Therefore, the only hope for learning approaches is that
the data generated by a movement system actually lie on
low dimensional distributions. We tested this hypothesis
empirically by collecting data from human and robot (Sar-
cos Dexterous Arm, Figure 4) seven degree-of-freedom
unconstrained arm movements by recording about 100 Mb
of data of the joint angular trajectories during various
movement tasks. For the human data, we assumed a
biomechanically reasonable mass distribution and com-
puted the torque trajectories of every DOF; for the robot
data, load sensors measured the torques directly. Thus, we
obtained appropriate data for training a supervised neural
network. The network we chose employed Gaussian ker-
nels as nonlinear activation function that included a princi-
ple component dimensionality reduction (PCA) in each
kernel ([7]). Importantly, the PCA automatically deter-
mined the number of local dimensions needed in each ker-
nel to accomplish good function approximation. Results of
incremental learning with this system are shown in Figure
2. Besides that the neural network achieved very good ap-
proximation results, characterized by a low normalized
mean squared error (c.f. [16]), it most noteworthy that the
network only required on average 4 to 6 dimensions locally
for good function fitting (cf. the dashed lines in Figure 2).

                                                                        
1 This example is only to highlight the problem of function fit-

ting in high-dimensional spaces—it will never be possible to
collect enough data with a real robot to fill such big spaces,
even when running the robot for hundreds of years.
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These analyses confirmed our assumption that movement
data in high-dimensional spaces actually lie on locally low
dimensional distributions. Appropriate learning algorithms
that can discover the local distributions should thus be able
to approximate really complex internal models.
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Figure 2: Learning inverse dynamics models with a nonparametric
neural network that uses Gaussian activation functions with princi-
pal component-based dimensionality reduction in each Gaussian.
The “local learning” curves show the reduction of the mean
squared error as a function of the training iterations. The “linear re-
gression” straight line is the result of a global linear regression fit of
the training data, and the “Parametric Model” line demonstrates the
results from using a rigid-body based parameter estimation method
to fit the inverse dynamics model ([10])—the latter method was only
applicable for the robot data. a) Learning from human behavioral
data, b) learning from robot data.

A drawback of the PCA-based local dimensionality re-
duction of ([7]), however, is that PCA only reduces the di-
mensionality by looking at the input data. In this way, PCA
can mistake noise with relevant input signals, and irrele-
vant dimensions, as they may occur in some learning
problems, will influence the results of learning. These con-
siderations lead to a new learning network, as described in
the next section.

3 Locally Weighted Projection
Regression
In the following, we assume that the data generating model
for our regression problem has the standard form
y f= ( ) +x ε , where x ∈ℜ n  is a n-dimensional input vec-

tor, the noise term has mean zero, E{ }ε = 0, and the output
is one-dimensional. The key concept of our regression

network is to approximate nonlinear functions by means of
piecewise linear models. The region of validity, called a
receptive field, of each linear model is computed from a
Gaussian function:
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where ck is the center of the kth linear model, and Dk corre-
sponds to a distance metric that determines the size and
shape of region of validity of the linear model. Given an
input vector x, each linear model calculates a prediction yk.
The total output of the network is the weighted mean of all
linear models:

ŷ
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Previous work ([13]) computed the outputs of each linear
model yk by traditional recursive least squares regression
over all the input variables. Learning in such a system,
however, required more than O(n2) computations which
became infeasible for about more than 10 dimensional in-
put spaces. Here we suggest reducing the computational
burden in each local linear model by applying a sequence
of one-dimensional regressions along selected projections
ur in input space (note that we dropped the index k from
now on unless it is necessary to distinguish explicitly be-
tween different linear models):
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The projections ui, the univariate regression parameters βi ,

the mean x0, and the number of projections r are deter-
mined by the learning algorithm. Additionally, the learning
algorithm also finds a projection vector pi  that reduces the

input space for the next univariate regression. As will be
explained below, this step allows to find more efficient
projections ui at subsequent univariate regression steps.

In order to determine the open parameters in Equation
(3), the technique of partial least squares (PLS) regression
can be adapted from the statistics literature ([17]). The im-
portant ingredient of PLS is to choose projections accord-
ing to the correlation of the input data with the output data.
The following algorithm, Locally Weighted Projection Re-
gression (LWPR), uses an incremental locally weighted
version of PLS to determine the linear model parameters:
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In the above equations, λ ∈ [ , ]0 1  is a forgetting factor that
determines how much older data in the regression parame-
ters will be forgotten, similar as in recursive system identi-
fication techniques ([18]). The variables SS, SR, and SZ are
memory terms that enable us to do the univariate regres-
sion in step f) in a recursive least squares fashion, i.e., a
fast Newton-like method. Step g) regresses the projection
pi  from the current projected data s and the current input

data z. This step guarantees that the next projection of the
input data for the next univariate regression will result in a
ui+1 that is orthogonal to ui. Thus, for r=n, the entire input
space would be spanned by the projections ui and the re-
gression results would be identical to that of a traditional
linear regression. Step j) will be discussed below.

There are several important properties in PLS. First, if
all the input variables are statistically independent, PLS
will find the optimal projection direction ui in a single it-
eration—the optimal projection direction corresponds to
the gradient of the assumed locally linear function to be
approximated. Second, choosing the projection direction
from correlating the input and the output data in Step a)
automatically excludes irrelevant input dimensions, i.e., in-
puts that do not contribute to the output. And third, there is
no danger of numerical problems in PLS due to redundant
input dimensions as the univariate regressions will never be
singular.

The above update rule can be embedded in an incre-
mental learning system that automatically allocates new lo-
cally linear models as needed ([13]):

Initialize the LWPR with no receptive field (RF);
For every new training sample (x,y):
     For k=1 to #RF:
          calculate the activation from (1)
          update according to (4)
     end;
     If no linear model was activated by more than wgen;

          create a new RF with r=2, c=x, D=Ddef

     end;
end;

In this pseudo-code algorithm, wgen is a threshold that de-
termines when to create a new receptive field, and Ddef is
the initial (usually diagonal) distance metric in (1). The
initial number of projections is set to r=2. The algorithm
has a simple mechanism of determining whether r should
be increased by recursively keeping track of the mean-
squared error (MSE) as a function of the number of projec-
tions included in a local model, i.e., Step j) in (4). If the
MSE at the next projection does not decrease more than a
certain percentage of the previous MSE, i.e.,

MSE

MSE
i

i

+ > ∈ [ ]1 0 1φ φ, , where (6)

the algorithm will stop adding new projections to the local
model.

It is even possible to learn the correct parameters for
the distance metric D in each local model. The algorithm
for this update was derived in ([13]) for normal locally lin-
ear regression based on an incremental cross validation
technique. This algorithm is directly applicable to LWPR,
and is strongly simplified, as it only needs to be done in the
context of univariate regressions. Due to space limitations,
we will not provide the update rules in this paper as they
can be derived from ([13]).

4 Empirical Evaluations
In order to provide a graphical illustration of the learning
algorithm, as a first test, we ran LWPR on 500 noisy
training data drawn from the synthetic two dimensional
function:

z e e e Nx y x y
= 








+ ( )− − − +( )max , , . , .10 50 52 2 2 2

1 25 0 0 01  (7)

shown in Figure 3a. A second test added 8 constant dimen-
sions to the inputs and rotated this new input space by a
random 10-dimensional rotation matrix. A third test added
another 10 input dimensions to the inputs of the second
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test, each having N(0,0.052) Gaussian noise, thus obtaining
a 20-dimensional input space. The learning results with
these data sets are illustrated in Figure 3. In all three cases,
LWPR reduced the normalized mean squared error (thick
lines) on a noiseless test set rapidly in 10-20 epochs of
training to less than nMSE=0.05, and it converged to the
excellent function approximation result of nMSE=0.01 af-
ter 100,000 data presentations. Figure 3b illustrates the re-
construction of the original function from the 20-
dimensional test—an almost perfect approximation. The
rising thin lines in Figure 3c show the number of local mo-
dels that LWPR allocated during learning. The very thin
lines at the bottom of the graph indicate the average num-
ber of projections that the local models allocated: the aver-
age remained at the initialization value of two projections,
as appropriate for this originally two dimensional data set.

In the second evaluation, we approximated the inverse
dynamics model of a 7-degree-of-freedom anthropomor-
phic robot arm (Figure 4a) from a data set consisting of
45,000 data points, collected at 100Hz from the actual ro-
bot performing various rhythmic and  discrete movement
tasks (this corresponds to 7.5 minutes of data collection).
The inverse dynamics model of the robot is strongly non-
linear due to a vast amount of superpositions of sine and
cosine functions in the robot dynamics. The data consisted
of 21 input dimensions: 7 joint positions, velocities, and
accelerations. The goal of learning was to approximate the
appropriate torque command of the shoulder robot motor in
response to the input vector. To increase the difficulty of
learning, we added 29 irrelevant dimensions to the inputs
with N(0,0.052) Gaussian noise. 5,000 data points were ex-
cluded from the training data as a test set. Figure 4b shows
the learning results in comparison to a global linear regres-
sion of the data. From the very beginning, LWPR outper-
formed the global linear regression. Within about 500,000
training points, LWPR converged to the excellent result of
nMSE=0.042.  It employed an average of only 3.8 projec-
tions per local model despite the fact that the input dimen-
sionality was 50. During learning, the number of local
models increased by a factor of 6 from about 50 initial
models to about 325 models. This increase is due to the
adjustment of the distance metric D in Equation (1), which
was initialized to form a rather large kernel. Since this
large kernel oversmoothes the data, LWPR reduced the
kernel size, and in response more kernels needed to be al-
located. In comparison to the robot learning results in
Figure 2, it is noteworthy that LWPR required much fewer
local dimensions than the PCA-based algorithm in ([7]).
This is due to the fact the LWPR chooses projections much
more efficiently than PCA, e.g., for independent input data
distributions, only one projection would suffice, as men-
tioned before.
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Figure 3: a) Target and b) learned nonlinear cross function. c)
Learning curves for 2-D, 10-D, and 20-D data.

5 Conclusions
This paper presented a new learning algorithm, Locally
Weighted Projection Regression (LWPR), a nonlinear
function approximation network that is particularly suited
for problems of on-line incremental motor learning. The
essence of LWPR is to achieve function approximation
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with piecewise linear models by finding efficient local
projection to reduce the dimensionality of the input space.
High-dimensional learning problems can thus be dealt with
efficiently: updating one projection direction has linear
computational cost in the number of inputs, and since the
algorithm accomplishes good approximation results with
only 3-4 projections irrespective of the number of input
dimensions, the overall computational complexity remains
linear in the inputs.. Moreover, the mechanisms of LWPR
to select low dimensional projections are capable of ex-
cluding irrelevant and redundant dimensions from the input
data. As an example, we demonstrated how LWPR leads to
excellent function approximation results in up to 50 dimen-
sional data sets, extracted from a 7 degree-of-freedom an-
thropomorphic robot arm. To our knowledge, this the first
incremental learning system that can efficiently work in
high dimensional spaces.

a)

b)

0

0.05

0.1

0.15

0.2

0.25

0.3

0

50

100

150

200

250

300

350

10000 100000 1000000 10000000

nM
S

E
 o

n 
T

es
t S

et

#R
ec

ep
tiv

e 
F

ie
ld

s

#Training Data Points

Linear
Regression

LWPR

Figure 4: a) Sarcos Dexterous Robot Arm; b) Learning curve for
learning the inverse dynamics model of the robot from a 50 dimen-
sional data set that included 29 irrelevant dimensions.
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