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PAPER

Improving Generalization Ability through Active Learning

Sethu VIJAYAKUMAR† and Hidemitsu OGAWA††, Members

SUMMARY In this paper, we discuss the problem of active
training data selection for improving the generalization capabil-
ity of a neural network. We look at the learning problem from
a function approximation perspective and formalize it as an in-
verse problem. Based on this framework, we analytically derive a
method of choosing a training data set optimized with respect to
the Wiener optimization criterion. The final result uses the apri-
ori correlation information on the original function ensemble to
devise an efficient sampling scheme which, when used in conjunc-
tion with the learning scheme described here, is shown to result
in optimal generalization. This result is substantiated through a
simulated example and a learning problem in high dimensional
function space.
key words: active learning, wiener optimization criterion, gen-
eralization, inverse problem, training data selection

1. Introduction

The level of generalization, i.e., the ability to correctly
respond to novel inputs, achievable in supervised learn-
ing using a fixed number of training data is heavily
dependent on the quality of the data used [14]. It is
also interesting to note that many natural learning sys-
tems are not simply passive but make use of at least
some form of active learning to examine the problem
domain. By active learning, we mean any form of learn-
ing in which the learning program has some control
over the inputs over which it trains. In natural systems
(such as humans), this phenomenon is exhibited at both
high levels (e.g. active examination of objects) and low,
subconscious level (e.g. Fernald and Kulh’s [3] work on
infant reactions to ‘Motherese’ speech). It has been
shown that a smaller training set gathered by an ac-
tive learner produces generalization performance equal
to or better than a much larger data set containing re-
dundant examples [11].

The problem of “active learning” has been exten-
sively studied in economic theory and statistics [2]. Op-
timal data selection within the Bayesian framework
for interpolation have been studied by Luttrell [7] and
MacKay [8]. Recent studies of active learning in neural
network literature can be divided into groups based on
the following distinctions: query selection algorithms

Manuscript received March 2, 1998.
Manuscript revised August 29, 1998.

†The author is with the Information Synthesis Lab,
RIKEN Brain Science Institute, Wako-shi, 351–0106 Japan.

††The author is with the Graduate School of Information
Science and Engineering, Tokyo Institute of Technology, To-
kyo, 152–8550 Japan.

can be heuristic or obtained by optimizing an objective
function. Moreover, they can either construct training
queries, i.e. calculate the next optimal training loca-
tion or filter queries from a collection. Heuristic stud-
ies as in Baum [1] or Hwang et al.[6], although pow-
erful in specific instances, do not allow a systematic
study of improvements of query selection algorithms.
We, therefore, restrict our attention to active learning
by optimization of objective functions. Plutowski and
White [10] assume that a large amount of data has been
collected and work on principles of selecting a subset
of that data for efficient training; the entire data set
(inputs and outputs) is consulted at each iteration to
decide which example to add, an option that is not per-
mitted in this work.

We look at the learning in NNs as an inverse prob-
lem from a functional analytic perspective and define
an optimization measure which decides on the useful-
ness of the training data. Works based on the Shan-
non entropy and Fisher’s information criterion [4] al-
ready exist. However, in these approaches, the objec-
tive function considered mainly the information gain
or entropy reduction per training example; moreover,
the algorithms were chosen in such a way that they
directly reflected the posterior distribution of teach-
ers and hence, were optimally matched to the learn-
ing problem at hand. In contrast, here, we use the
Wiener objective criterion which directly reflect the
generalization error. The Wiener criterion described
in Sect. 3, enforces a bias towards approximating, with
higher precision, the functions with higher probabil-
ity of occurance as opposed to functions that seldom
show up. Apriori knowledge on the function ensemble
distribution and other invariances can be easily incor-
porated into the framework. Section 2 provides the
basic framework for dealing with learning from a func-
tional analytic perspective and formalizes it as an in-
verse problem. Section 3 describes the Wiener opti-
mization criterion, on the basis of which an efficient
sampling scheme is formulated in Sect. 4 with the view
to achieve maximum generalization ability or equiva-
lently, reduce the number of training examples neces-
sary to attain a certain level of generalization. The
effectiveness of this sampling scheme is demonstrated
through empirical evaluations in Sect. 5.
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2. Functional Analytic Framework for NN
Learning

Let us consider a three-layer feedforward neural net-
work whose number of input, hidden, and output units
are L, N , and 1, respectively. It can be easily shown
that the input-output relationship of such a network
is equivalent to a real valued function of L variables.
Based on this interpretation, it follows that the learn-
ing in Neural Networks(NNs) is analogous to obtaining
an optimal approximation fm to a desired function f
from the set of m training data made up of the inputs
xi ∈ RL and the corresponding outputs yi ∈ R:

{(xi, yi)|yi = f(xi) : i = 1, · · · ,m}. (1)

Let a Hilbert space H , with a reproducing kernel
K(x, x′), represent the space of all functions to be ap-
proximated by the NN. Let D be the domain of the
functions to be approximated, which is a subset of the
L-dimensional Euclidean space RL. The reproducing
kernel K(x, x′) is a bivariate function defined on D×D
which satisfies the following two conditions:

1. For any fixed x′ in D , K(x, x′) is a function in H .
2. For any function f in H and for any x′ in D, it

holds that

(f(x),K(x, x′)) = f(x′), (2)

where the left hand side of Eq. (2), represented by
the notation (·, ·), denotes the inner product in H .

In the theory of Hilbert space, arguments are developed
by regarding a function as a point in that space. Thus,
things such as ‘value of a function at a point’ cannot be
discussed under the general framework of Hilbert space.
However, if the Hilbert space has a reproducing kernel,
then it is possible to deal with the value of a function
at a point. Indeed, if we define functions ψi(x) as

ψi(x) = K(x, xi) : 1 ≤ i ≤ m, (3)

then, the value of f at a sample point xi is expressed
in Hilbert space language as the inner product of f and
ψi as

f(xi) = (f, ψi). (4)

Let {yi}m
i=1 form the elements of the m-

dimensional vector y(m). Once the training set {xi}m
i=1

is fixed, we can introduce an operator Am such that

y(m) = Amf. (5)

The operator Am, called the sampling operator, be-
comes a linear operator even when we are concerned
with nonlinear neural networks. It is expressed by us-
ing the Schatten product as

Am =
m∑

i=1

ei ⊗ ψi, (6)

Fig. 1 NN learning as an inverse problem.

where {ei}m
i=1 is the so-called natural basis † in Rm.

The Schatten product denoted by (.⊗ .) is defined by

(ei ⊗ ψi)f = (f, ψi)ei. (7)

Now, the learning problem can be reformulated as an
inverse problem (See Fig. 1) of obtaining an operator
Xm which provides an optimal approximation fm of
the true function f from the sample value vector y(m):

fm = Xmy(m). (8)

The generalization ability of the NN, which corre-
sponds to the closeness of the original function f and
the approximated function fm, can be measured us-
ing various criteria. In this work, we will restrict our-
selves to the Wiener criterion, which will be discussed
in Sect. 3.1. Here, Xm is referred to as the learning
operator. Results on obtaining the optimal Xm for a
given sampling scheme has been dealt with in our pre-
vious work. The results will be reviewed in Sect. 3.2.

In the active learning problem, we have the task of
selecting the optimal training data, which is analogous
to deciding on the optimal sampling operator Am under
this framework.

3. Optimization Criterion for Training Data
Selection

As a measure of deciding the usefulness of the training
data as well as for obtaining an optimal approximation
using the selected training data, we make use of the
Wiener criterion, described in the next subsection.

3.1 Wiener Optimization Criterion

The Wiener optimization corresponds to finding an op-
timal sampling operator Am and learning operator Xm

such that it minimizes the functional

min
Xm,Am

JW [Xm, Am] (9)

where

JW [Xm, Am] = Ef‖XmAmf − f‖2 (10)

As can be seen from Eq. (9), actually we ought to
†The vector ei is the m-dimensional vector consisting of

zero elements except the element i equal to 1.
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Table 1 Examples of RKHS Kernels and the decision surfaces they define.

Kernel Functions Approximation Scheme

K(x, x′) = σ
π
sinc[ σ

π
(x− x′)] Band-limited Paley Wiener space

K(x, x′) = exp(−‖x− x′‖2) Gaussian RBF

K(x, x′) = (1 + x ∗ x′)d Polynomial of degree d

K(x, x′) = tanh(x ∗ x′ − θ) Multi layer perceptrons (Only for some values of θ)

K(x, x′) = B2n+1(x− x′) B-Splines (Bn: piecewise polynomials of degree n)

K(x, x′) = sin (d+1/2)(x−x′)
sin (x−x′)/2

Trigonometric polynomials of degree d

minimize the functional by changing both the sampling
operator Am and the learning operator Xm simultane-
ously. However, here we use a substitute or modified
criterion due to ease of solution. The modified criterion
is as given below.

min
Am

J
(0)
W [Am], (11)

where

J
(0)
W [Am] = min

Xm

JW [Xm], (12)

JW [Xm] = Ef‖XmAmf − f‖2
. (13)

This involves a two-stage optimization in which we
first optimize the learning operator Xm for a fixed sam-
pling scheme and then, use the result of this optimiza-
tion to minimize a functional involving a variable sam-
pling operator Am.

3.2 Optimal Learning Operator for Given Sampling
Scheme

Methods of obtaining the optimal learning operators
Xm for a given sampling scheme, i.e., for fixed Am, has
already been obtained based on [16]. This corresponds
to minimizing the functional JW [Xm] of Eq. (13) with
respect to the learning operator Xm.

Let R represent the correlation operator of the
function ensemble, i.e.,

R = Ef (f ⊗ f).

This is an apriori information about the learning prob-
lem that we assume to possess. This apriori informa-
tion is analogous to the Bayesian prior, i.e., the covari-
ance matrix in Gaussian processes [15]. If the original
function space H is finite dimensional, then, essentially
there is no restriction on the type of correlation oper-
ator used. In the event that we consider an infinite
dimensional H , only such R that has a finite trace is
allowed. Then, we have the following lemma.

Lemma 3.1: [16] The necessary and sufficient condi-
tion for minimizing the functional of Eq. (13) is that
the following relation holds.

XmAmRA∗
m = RA∗

m (14)

Solving Eq. (14) for Xm, we obtain the general so-
lution of the optimal Wiener learning operator X(W )

m for
a fixed sampling scheme as shown in the next lemma.

Lemma 3.2: The general form of the optimal Wiener
learning operator X

(W )
m for a given sampling scheme,

i.e., for fixed Am is given as

X(W )
m = RA∗

m(AmRA∗
m)† + Y (I − UmU †

m), (15)

where Y is an arbitrary operator, † refers to the Moore-
Penrose generalized inverse and

Um = AmRA∗
m. (16)

This framework might seem very constrained at
the outset. However, it can be shown that kernel based
approximation, a general form of which has been used
here, is a formal way of representing many of the tradi-
tional approximation schemes [5]. Of course, the choice
of the function space and their corresponding kernels
for a given problem should reflect the prior knowledge
on data like, for example, the smoothness properties of
the desired solution. An important question is: which
Hilbert space and kernels correspond to standard ap-
proximation schemes used conventionally. Table 1 gives
examples of kernel functions corresponding to some
RKHS and the type of decision surface they describe,
recovering some well known approximation schemes like
Gaussian RBF, MLP under constraint etc.

4. Active Learning

Active learning involves using the apriori information
available about the learning problem and devising a
sampling scheme to achieve good generalization ability
with limited training data. We will separate the prob-
lems of selecting an optimal search space and selecting
optimal training data within that search space. Vari-
ous approaches to the former problem, corresponding to
model selection in this framework, has been dealt upon
in Vijayakumar [12] and Vijayakumar & Ogawa [13].
Here, we only deal with the question: how do we ef-
ficiently sample the function space to obtain maximum
generalization.
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4.1 Training Data Selection for Optimal Generaliza-
tion

Here, we propose a training data selection scheme which
selects m optimal data points in a batch operation to
optimize the generalization ability, i.e., minimizes the
functional of Eq. (11).

To begin with, we rewrite the functional JW [Xm]
of Eq. (13) as

JW [Xm] = E
f
‖XmAmf − f‖2

= E
f
tr{(XmAm−I)(f⊗f)(XmAm−I)∗}

= tr{(XmAm − I)R(XmAm − I)∗}
= tr(XmAmRA∗

mX∗
m −XmAmR

−RA∗
mX∗

m + R) (17)

Based on Eq. (17) and Lemma 3.1, the functional
J

(0)
W [Am] of Eq. (12) can be written as

J
(0)
W [Am] = tr(X(W )

m AmRA∗
mX(W )

m

∗ −X(W )
m AmR

−RA∗
mX(W )

m

∗
+ R)

= tr(RA∗
mX(W )

m

∗ −X(W )
m AmR

−RA∗
mX(W )

m

∗
+ R)

= tr(R) − tr(X(W )
m AmR). (18)

Since R is a fixed apriori information specific to the
learning problem being solved, tr(R) can be considered
as a fixed quantity. Therefore, we can convert the prob-
lem of minimizing the functional described in Eq. (11)
to the following equivalent maximization problem:

min
Am

J
(0)
W [Am] = max

Am

J
′
W [Am], (19)

where

J
′
W [Am] = tr(X(W )

m AmR). (20)

Using the general form of solution of X(W )
m given

in Eq. (15) with Y = 0 in the functional of Eq. (20), we
have

J
′
W [Am] = tr(X(W )

m AmR)

= tr{RA∗
m(AmRA∗

m)†AmR}
= (RA∗

m(AmRA∗
m)†AmR, I)

= ((AmRA∗
m)†AmR,AmR). (21)

Let us substitute T = AmR
1
2 in the above functional.

Then, we have

J
′
W [Am] = ((TT ∗)†TR

1
2 , TR

1
2 )

= (T ∗(TT ∗)†T,R)

= (T †T,R)

J
′
W [Am] = (PR(T∗), R), (22)

where PR(T∗) is the orthogonal projection operator
onto the range of R(R

1
2A∗

m).
From now on, in the intermediate equations, we

will represent this projection operator as P without
specifying the subspace of projection. Now, the func-
tional of Eq. (22) can be written as

J
′
W [P ] = (P,R) = (PR,P ) (23)

based on the property of orthogonal projection opera-
tors, i.e., P ∗ = P and P 2 = P . Again, based on these
properties, we have

P ∗P = P. (24)

Furthermore, if we assume the dimensionality of the
subspace R

1
2A∗

m to be equal to K, then, we have

tr(P ∗P ) = K. (25)

Hence, our optimization problem of Eq. (19) can be
restated as “Obtain an operator P which maxi-
mizes Eq. (23) under constraints of Eqs. (24) and
(25).”

Let C and λ be the Lagrange multiplier operator
and the Lagrange multiplier, respectively. Then, the
above variational problem with constraints is reduced
to the following variational problem without constraints
with respect to P , C and λ:

J
′
W [P,C, λ] = (PR,P ) + 2(C,P ∗P − P )

+ λ[tr(P ∗P ) −K]. (26)

Since we have to maximize this functional, equating the
partial derivative of J

′
W in Eq. (26) with respect to P

to zero yields

(P (R + C + C∗ + λP ) − C, δP ) = 0, (27)

which in turn gives the relationship

P (R + C + C∗ + λP ) = C. (28)

Using the properties of the projection operator P and
the fact that R∗ = R, we can prove the following
lemma, as shown in Appendix A.

Lemma 4.1: The functional represented by Eq. (26)
is maximized only if

PR = RP. (29)

We can convert the result of the above lemma into
more useful form through the following results. The
proof of these, on the lines of analysis in [9], is fairly
straightforward.

Lemma 4.2: [12] PR = RP if and only if

RR(R
1
2A∗

m) ⊆ R(R
1
2A∗

m). (30)
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Lemma 4.3: [12] RR(R
1
2A∗

m) ⊆ R(R
1
2A∗

m) if and
only if R(R

1
2A∗

m) is a Karhunen-Loéve subspace of the
kernel R.

Lemma 4.2 and Lemma 4.3 mean that when the
relation PR = RP holds, the subspace R(R

1
2A∗

m) is
spanned by the eigenfunctions of R. Let λn be the n-th
eigenvalue of the correlation operator R arranged in de-
creasing order and ϕn the corresponding eigenfunction
with unit norm, i.e.,

Rϕn = λnϕn (λ1 ≥ λ2 ≥ . . .). (31)

Then, P can be represented, due to Lemma 4.3, as

P =
K∑

n=1

(ϕmn ⊗ ϕmn). (32)

where {mn : 1 ≤ n ≤ K} is a set of indices. Hence,
our problem has been reduced to that of obtaining a set
of eigenfunctions {ϕmn : 1 ≤ n ≤ K} which maximizes
Eq. (23). Since the functional being maximized, J

′
W [P ],

is given as

J
′
W [P ] = (P,R), (33)

from Eq. (32), we have,

J
′
W [P ] = (R,P ) (34)

=
K∑

n=1

(Rϕmn , ϕmn) (35)

=
K∑

n=1

λmn . (36)

Since λn are arranged in decreasing order, Eq. (23) is
maximized if and only if we take

{λmn : 1 ≤ n ≤ K} = {λn : 1 ≤ n ≤ K}. (37)

Hence, to maximize the functional and select the opti-
mal set of training data, we should use a sampling oper-
ator Am such that R(R

1
2A∗

m) is the subspace spanned
by L({ϕn}K

n=1), where ϕn are the eigenfunctions corre-
sponding to the K largest eigenvalues λn of the corre-
lation operator R.

Based on the above analysis, we can write a theo-
rem summarizing the necessary and sufficient condition
for selecting the optimal training set.

Theorem 4.1 (Optimal selection of training data):
The necessary and sufficient condition for the opti-
mization of the functional for optimal training data
selection, represented by Eq. (23) is that R(R

1
2A∗

m)
is the subspace spanned by L({ϕn}K

n=1) where K =
dim(R(R

1
2A∗

m)) and ϕn are the eigenfunctions corre-
sponding to the K largest eigenvalues λn of the corre-
lation operator R.

4.2 An Alternate Interpretation of the Optimal Sam-
pling Result

In this section, we will further analyze the implications
of the Theorem 4.1 on optimal training data selection.
Since the sampling operator Am is given by Eq. (6), we
have

R(A∗
m) = L({ψk}m

k=1) (38)

and

R(R
1
2A∗

m) = L({R 1
2ψk}m

k=1). (39)

Also based on the eigenvalue decomposition of R, we
can express the correlation operator and it’s root as

R =
∑

n

λn(ϕn ⊗ ϕn),

R
1
2 =

∑
n

√
λn(ϕn ⊗ ϕn). (40)

Hence, using the result of Eq. (40), we can show that

R
1
2ψk(x) =

∑
n

√
λn(ϕn ⊗ ϕn)ψk(x)

=
∑

n

√
λn(ϕn, ψk)ϕn(x)

=
∑

n

√
λnϕn(xk)ϕn(x). (41)

Now, turning our attention to the condition to be
satisfied for optimal training data selection, we know
from Theorem 4.1 that the necessary and sufficient con-
dition for optimal sampling is that the following rela-
tion holds:

R(R
1
2A∗

m) = L({ϕn}K
n=1), (42)

where K = dim(R(R
1
2A∗

m)) and L({ϕn}K
n=1) is the

maximum variance subspace of the correlation oper-
ator. Based on Eq. (39), we can write the relation of
Eq. (42) as

L({R 1
2ψk}m

k=1) = L({ϕn}K
n=1), (43)

which, due to Eq. (41), is equivalent to

L
({∑

n

√
λnϕn(xk)ϕn

}m

k=1

)
=L({ϕn}K

n=1). (44)

Whether the condition specified in Eq. (44) can al-
ways be satisfied will depend on the nature of the cor-
relation operator and the function space being used. A
more general solution can be obtained by changing the
step where we substituted the minimization of the func-
tional of Eq. (22) with Eq. (23). The point to be noted
here is that we solved for a general projection opera-
tor P whereas in the original function, the projection
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Table 2 Learning conditions and results : sampling for optimal generalization.

(1) Eigenvalues and eigenfunctions of R

Eigen value Vector expression of eigenfunctions†

λ
(R)
1 = 9 ϕ

(R)
1 = (1 0 0)T

λ
(R)
2 = 4 ϕ

(R)
2 = (0 1 0)T

λ
(R)
3 = 1 ϕ

(R)
3 = (0 0 1)T

(2) Sampling scheme (a) and (b)

Optimal scheme (a) Non-optimal scheme (b)

x
(a)
1 = π

5
, ψ

(a)
1 =(−0.59 0 0)T x

(b)
1 = π

2
, ψ

(b)
1 =(0 0 − 1)T

x
(a)
2 = π

3
, ψ

(a)
2 =(0 − 0.87 0)T x

(b)
2 = π

8
, ψ

(b)
2 =(0.71 − 0.71 − 0.38)T

‖f − f
(a)
2 ‖2 = 3.91 ‖f − f

(b)
2 ‖2 = 60.74

Fig. 2 Learning results under two different sampling scheme:
Optimal (dashed) and non-optimal (dotted).

operator was a projection onto a particular subspace
R(R

1
2A∗

m).
At this stage, for many function spaces and objec-

tive functions the active learning scheme is more like
a filter (differentiates between an optimal set and a
non-optimal set of training data) since the closed form
equations of the central theorem can be analytically
solved to derive the optimal samplng scheme only for
particular function spaces. However, ongoing research
in the field aims at generalizing this to the construct
kind of querying scheme for all objective functions and
functions spaces.

5. Empirical Evaluations

5.1 An Illustrative Artificial Example

In this section, we demonstrate the effectiveness of the
sampling scheme designed here using an artificial ex-
ample. Let us consider learning in a Hilbert space H
spanned by the functions {sin 6x, sin 10x, sin 15x}. Let
the correlation operator R be given as

R =


 9 0 0

0 4 0
0 0 1


. (45)

The function to be learned, f = 9 sin 6x +
4 sin 10x + sin 15x, is shown by a solid line in Fig. 2.
We consider selecting a set of two training data from
an optimal generalization perspective. For comparison,

we look at two sampling schemes (a) using training set
{x(a)

k , y
(a)
k }2

k=1 and (b) using training set {x(b)
k , y

(b)
k }2

k=1

as shown in Table 2-(2).
In Fig. 2, the learning result due to sampling

scheme (a) is shown by a dashed line (f (a)
2 ) while the

result due to sampling scheme (b) is represented by
a dotted line (f (b)

2 ). The comparison of the normed
generalization error is shown in the bottom half of Ta-
ble 2-(2). The eigenvalues and eigenfunctions of R in
vector representation† are given in Table 2-(1). The
space spanned by the sampling functions of scheme (a),
i.e., L(ψ(a)

1 , ψ
(a)
2 ) forms a K-L subspace of R and it

is equivalent to the space spanned by the eigenfunc-
tions corresponding to the two largest eigenvalues of R,
i.e., L(ϕ(R)

1 , ϕ
(R)
2 ) (refer Table 2). On the other hand,

the space spanned by the sampling functions of scheme
(b), i.e., L(ψ(b)

1 , ψ
(b)
2 ), does not form a K-L subspace of

R. Based on Theorem 4.1, we predict that sampling
scheme (a) will provide a better generalization result, a
fact that is supported by the results of the simulation
(refer Fig. 2 and the normed generalization error shown
at the bottom of Table 2-(2)).

5.2 Active Learning in High Dimensional Space

We have demonstrated the mechanism by which the
active learning scheme shows selectivity in the training
data location through a simple artificial example in the
previous section. Here, we demonstrate that the tech-
nique scales well with the complexity of the problem
by considering a learning problem in high dimensional
spaces (infinite dimensional original function space).

We consider a real world problem of approximat-
ing the contours of a macroscopic surface in the pro-
duction line from a finite number of ultrasonically sam-
pled heights. In these problems, we usually have some
apriori knowledge about the smoothness levels of the
contours†† and the probability of distribution of peaks,
i.e., the contours are likely to be more peaked at the
center than at the edges etc. A sample contour is shown
using a bold line in Fig. 3.

We consider learning this contour by using a
band-limited Paley-Wiener space H = L({σ

π sinc(σ
πx −

†A vector (a b c)T denotes a function a sin 6x +
b sin 10x + c sin 15x.

††Strictly speaking, we need only to know a rough upper
bound on the frequency content of the resulting contours.
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Fig. 3 Passive uniform sampling of contour data.

i)}∞i=−∞), where σ represents our apriori knowledge on
the frequency content of the function space implying
the Fourier transform F (ω) of the function f(x) is zero
for |ω| > σ. If we define the inner product in this
Hilbert space as

(f, g) =
∫ +∞

−∞
f(x)g(x)dx, (46)

the sampling functions, which are instantiations of the
reproducing kernel at the training data points are writ-
ten as

K(x, xi) = ψi(x) =
σ

π
sinc

(σ
π

(x− xi)
)
. (47)

In this problem, to take the sample noise into ac-
count, we slightly modify our problem formulation. The
training data labels are now defined as:

{(xi, yi)|yi = f(xi) + ni : i = 1, · · · ,m}. (48)

where ni is the additive noise.
In this setting, we use a decomposition of the gen-

eralization error into the noise and the signal compo-
nent in order to monitor the learning results:

Jgen = EfEn‖fm − f‖2 (49)

= Ef‖XmAmf − f‖2 + En‖Xmn(m)‖2 (50)
= tr{(XmAm − I)R(XmAm − I)∗}︸ ︷︷ ︸

signal component Js

+ tr{XmQX∗
m}︸ ︷︷ ︸

noise component Jn

,

where Qm = En(n(m)⊗n(m)) represents the correlation
matrix of the noise vectors. Selection of training data
to reduce the signal component error, i.e. the first half
of the R.H.S. of Eq. (50), corresponds to the active data
selection method devised in this work.

We look at a task of approximating the contour

Fig. 4 Optimal sampling of contour data based on active learn-
ing scheme.

using a set of 40 training points. We choose a function
space with a band limitation corresponding to σ = 10,
which has been found to be suitable in these prob-
lems based on the smoothness properties and SNR of
the sampling scheme. Although we use an infinite di-
mensional function space, we are able to compute the
apriori information about the correlation operator R
by restricting the range of input values xi. Apriori
that peaks are most likely in the center are reflected
by higher weighting of the sinc functions in these lo-
cations which are translated and summed to form the
correlation operator R.

The result of learning clearly shows that we achieve
a better generalization error with the data points se-
lected on the basis of our active learning scheme (see
Fig. 4) as compared to the results achieved using pas-
sive uniform sampling (refer Fig. 3). This observation
is supported by theoretical computations of the gener-
alization error for the active sampling which works out
to be Jgen = Js + Jn = 3.18 + 2.36 = 5.54 as com-
pared to Jgen = Js +Jn = 12.37 + 2.17 = 14.90 for the
passive uniform sampling.

6. Conclusion

The generalization ability of a learning system depends
not only on the learning methods used but also on the
quality of the training data used. The framework devel-
oped here provides an effective mechanism of incorpo-
rating apriori information about the function ensemble
to select training data, which in conjunction with the
optimal learning framework developed in our previous
work, is shown to ensure optimal generalization ability.
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Appendix A: Proof of Lemma 4.1

The maximization of the functional Eq. (26) is equiva-
lent to solving for P in Eq. (28),

P (R + C + C∗ + λP ) = C. (A· 1)

Multiplying Eq. (A· 1) with P from the left, we get the
relation

PR + PC∗ + λP = 0. (A· 2)

Taking conjugate of Eq. (A· 2), we have

RP + CP + λP = 0. (A· 3)

Multiplying Eq. (A· 1) with P from the right, we get
the relation

P (R + C + C∗ + λP )P = CP, (A· 4)

which in turn implies that

CP = (CP )∗ = PC∗. (A· 5)

Combining Eqs. (A· 2), (A· 3), and (A· 5), we have

PR = RP,

which completes the proof.
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