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Abstract

We investigate the problem of incremental learning in arti"cial neural networks by viewing it
as a sequential function approximation problem. A framework for discussing the generalization
ability of a trained network in the original function space using tools of functional analysis
based on reproducing kernel Hilbert spaces (RKHS) is introduced. Using this framework, we
devise a method of carrying out optimal incremental learning with respect to the entire set of
training data by employing the results derived at the previous stage of learning and incorporat-
ing the newly available training data e!ectively. Most importantly, the incrementally learned
function has the same (optimal) generalization ability as would have been achieved by using
batch learning on the entire set of training data, hence, referred to as exact learning. This ensures
that both the learning operator and the learned function can be computed using an online
incremental scheme. Finally, we also provide a simpli"ed closed-form relationship between the
learned functions before and after the incorporation of new data for various optimization
criteria, opening avenues for work into selection of optimal training set. We also show that
learning under this kind of framework is inherently well suited for applying novel model
selection strategies and introducing bias and a priori knowledge in a more systematic way.
Moreover, it provides a useful hint in performing kernel-based approximations, of which the
regularization and SVM networks are special cases, in an online setting. ( 1999 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Multi-layer feedforward neural networks are essentially approximators, mapping
from a "nite-dimensional input space to an output space. This paper discusses the
learning problem in these kinds of networks as an inverse problem from the functional
analytic point of view. The functional analytic approach to learning in neural net-
works (NNs) has been proved to improve generalizing ability because of their focus on
the original function space rather than the sampled space. In earlier research work on
this approach [13,14], learning has been discussed under the framework of obtaining
an optimal learning operator from a given set of training data. However, there is
a need to look at cases where we have an optimally trained NN and there are
additions to the training data to be incorporated at a later stage. Re-learning using the
entire training set is a possible but not very e$cient solution. These kind of situations
also arise when we are dealing with &active learning' in which the set of training data
can be provided only one after the another and also uses the intermediate learned
results for deciding on the next best sample [8,9]. Recently, a lot of work on these lines
have being carried out, some of them being the papers by Zhang [32], Jutten et al. [5].
However, most of them, though being incremental in the nature of addition of training
data or increase in the number of hidden units, etc., almost always involves re-learning
or re-training with the addition of information or units. Other incremental ap-
proaches like Kadirkamanathan and Niranjan [6] and Yingwei [31] have worked on
speci"c radial basis function neural networks with sequential learning capability.
However, in their work, the optimization criterion used reduces to an arbitrarily
smoothed version of the memorization learning criterion, which may not be appropri-
ate from a generalization point of view or the learning task at hand, as explained later.
Dunkin et al. [3] have looked at an approximate incremental learning scheme based
on training the network nodes one at a time and freezing the remaining network to
realize a speed-up. This method relies on an importance factoring down scheme to
correct mistakes learned by the intermediate stages.

In this paper, we use the inverse problem approach to formalize the concept of
learning in neural networks without imposing any restriction on the type of basis
functions used. The batch solutions for various optimization criteria are analytically
derived, which in the present context turns out to be a kernel-based approximation
in reproducing kernel Hilbert spaces. RKHS theory has been a well-studied topic,
stemming from the original works of Aronszajn [2], Kimeldorf and Wahba [7] and
Parzen [17] to more recent studies on their application by Wahba [28], Saitoh [19]
and many others. This kind of kernel-based approximation scheme is also closely
linked to regularization theory [4] and support vector machines [23] based approxi-
mation schemes, a topic that we will brie#y touch upon later. Based on this frame-
work, an e$cient method to incorporate new data incrementally, without re-learning
from scratch, is formulated. This incremental method is shown to reduce the computa-
tional overhead while computing the new learning operator. Also, we analytically
derive a relationship between the learned function before and after the addition of the
new training datum, a result that can be utilized in the problems of active training
data selection.

86 S. Vijayakumar, H. Ogawa / Neurocomputing 29 (1999) 85}113



Fig. 1. NN as a real-valued function.

An important point to be noted is that the results are extendable to any general
kind of optimization criterion; although from a generalization point of view, an
optimization criterion which focuses on the original function space rather than the
sampled space is recommended [14]. Moreover, the incremental learning worked on
here is exact in the sense that batch learning on the complete data set would give
exactly the same results.

2. Neural network learning as an inverse problem

In this section, we provide the basic functional analytic formulation of the learning
problem and de"ne the notations and operators used for the analysis.

Let us begin by considering a three-layer feedforward neural network whose
number of input, hidden, and output units are ¸, N, and 1, respectively as shown in
Fig. 1. Let m1, m2,2, m

L
be the inputs to the input layer neurons. Let these inputs

constitute the elements of an ¸-dimensional vector x, referred to as the &input vector'.
An input}output relation of the nth hidden unit is denoted by u

n
(x) and called the

basis function. In conventional NNs, the following basis function is used:

u
n
(x)"pA

L
+
l/1

w
nl
m
lB, (1)

where p( . ) is a sigmoidal function. However, here we generalize to any basis functions
of ¸-variables. Let w

n
be the corresponding weight connecting the nth hidden unit and

the output unit. In this case, the network can be considered as a real valued function
f
0
(x) of ¸ variables and expressed as follows:

f
0
(x)"

N
+
n/1

w
n
u
n
(x). (2)

Let the set of M input vectors Mx
m
NM
m/1

be the training set, My
m
NM
m/1

represent the
corresponding desired output values, where y

m
"f (x

m
) and y,(y

1
y
22

y
m
)T denote

the vector whose elements contain the output values. The learning problem is to
construct a neural network by using a training set so that the NN expresses the
best approximation f

0
(x) to a desired function f (x) under some given learning

criterion.
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1A Hilbert space always possesses a reproducing kernel if it is separable [2].

The learning problem of neural networks can, hence, be discussed from the point of
view of function approximation. In other words, the learning problem can be regarded
as the same problem as that of the general sampling theorem [12] and image
restoration [15]. In this context, x

m
and y

m
can be called the mth sample point and the

corresponding sample value of the desired function f (x), respectively.
Let H be the set of functions which includes f (x), the function to be approximated

by the neural network. Assume that H is a reproducing kernel Hilbert space (RKHS)
with a reproducing kernel K(x,x@). Let D be the domain of the basis functions, which is
a subset of the ¸-dimensional Euclidean space RL. The reproducing kernel K(x,x@) is
a bivariate function de"ned on D]D which satis"es the following two conditions:

1. For any "xed x@ in D, K(x,x@) is a function in H.
2. For any function f in H and for any x@ in D, it holds that

( f (x),K(x,x@))"f (x@), (3)

where the left-hand side of Eq. (3) denotes the inner product in H.

In the theory of Hilbert space, arguments are developed by regarding a function as
a point in that space. Thus, things such as &value of a function at a point' cannot be
discussed under the general framework of Hilbert space. However, if the Hilbert space
has a reproducing kernel,1 then it is possible to deal with the value of a function at
a point. Indeed, if we de"ne functions t

m
(x) as

t
m
(x)"K(x,x

m
): 14m4M, (4)

then, the value of f at a sample point x
m

is expressed in Hilbert space language as the
inner product of f and t

m
as

f (x
m
)"( f,t

m
). (5)

Once the training set Mx
m
NM
m/1

is "xed, the vector y,(y
1

y
2 2 y

m
)T is uniquely

determined from f. So, we can introduce an operator A which transforms f to y:

y"Af. (6)

The operator A, called the sampling operator, becomes a linear operator even when we
are concerned with nonlinear neural networks. It is expressed by using the Schatten
product as

A"

M
+

m/1

e
m
?t

m
, (7)

where Me
m
NM
m/1

is the so-called natural basis in RM, i.e., the vector e
m

is the
M-dimensional vector consisting of zero elements except the element m equal to 1.
The Schatten product denoted by (.?.6 ) is de"ned by

(e
m

?t
m

) f"( f,t
m
)e

m
. (8)
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Fig. 2. NN learning as an inverse problem.

Hence, the learning problem can be reformulated as the problem of obtaining an
estimate, say f

0
, to f from y in the model (see Fig. 2). This can be considered as an

inverse problem equivalent to obtaining an operator X which provides f
0

from y:

f
0
"Xy. (9)

The operator X is called the learning operator. It is also referred to elsewhere in other
"elds by di!erent names like restoration operator, reconstruction operator, approxima-
tion operator, etc. This operator X can be optimized based on di!erent criteria
and using various techniques [21,10]. Examples of the learning criteria we will
work with includes the memorization criterion, the Wiener criterion, the projection
criterion, etc.

3. Learning with optimal generalization ability

In approximation theory, we clearly see three stages in the development of the
learning problem [18]. First, there is the model selection problem, which addresses
which space to search for the optimal approximation. This is equivalent to the
problem of selecting the architecture, the number of hidden units and basis functions
in conventional NN literature. In our case, this is analogous to the question of which
Hilbert space is relevant for a particular class of problems. The other two stages
involve "nding the optimal approximation within this model space and devising fast
and cheap implementations of the algorithm to obtain this approximation. In this
section, we will deal, in turn, with each of the above issues for the batch learning case;
results which will be extended to the incremental learning scenario in the following
section.

3.1. Model selection and optimal search space

In Section 3, we talked about the Hilbert space H that contains the target func-
tion we are trying to approximate or learn. The selection of this search space has
a huge impact on the approximation results and is studied under model selection.
Although the emphasis of this paper is not on the model selection problem, in this
section, we show that this framework is already well adapted for carrying out model
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2 It has been pointed out by one of the reviewers that band-limitation using hyper-rectangle cuto!s,
which result in a tensor-product kernel in multidimensional case, may introduce preferred directions in the
frequency distribution. An alternate radially symmetric frequency distribution can be considered to
overcome this #aw.

selection and introducing bias in a systematic way. We show that the optimal basis
functions for the approximation are automatically determined based on the search
space used.

A function space that has extensive practical signi"cance in one or multi dimen-
sional signal processing is the space of band-limited functions, de"ned as a function
whose Fourier transform is zero outside a hyper-rectangle2 in the frequency domain.
Such a function space forms a Hilbert space (also referred to as the Paley}Wiener
space) and it's reproducing kernel can be determined as follows. Consider for simpli-
city, the function of two variables; if the Fourier transform F(u

1
,u

2
) of the function

f (x)"f (m
1
,m

2
) is zero for Du

1
D'p

1
, Du

2
D'p

2
, then the sampling series is based on the

functions

K(x)"
p
1
p
2

p2
sincC

p
1
p

m
1D sincC

p
2
p

m
2D, (10)

where sinc is the function

sinc(u)"sin(pu)/pu. (11)

The function K(x,x@)"K(x!x@) forms the reproducing kernel for the Hilbert space
of band-limited functions. Fig. 3 shows examples of such two-dimensional reproduc-
ing kernels for band-limited function spaces de"ned by parameters (a) p

1
"8, p

2
"8

and (b) p
1
"10, p

2
"3.

The approximation using these kinds of reproducing kernel Hilbert spaces (RKHS)
is close to the radial basis function (RBF) networks but the kernel of Eq. (10) or it's
generalization to ¸ dimensions,

K(x,x@)"
L
<
l/1

p
l

p
sincC

p
l

p
(m

l
!m@

l
)D, (12)

with x"(m
1
,2, m

l
), x@"(m@

1
,2, m@

l
), is not radially symmetrical. However, it has

a central &lump' whose width and shape is controlled automatically by the ¸ para-
meters p

l
specifying the band-limitation in the frequency domain. Note that the

sampling theorem provides a proof that asymptotically, approximations using these
kinds of basis functions can approximate any band-limited function to arbitrary
accuracy. Adjustment of the parameters p

l
in Eq. (12), which can potentially make this

frequency band arbitrarily large, can be carried out through cross validation or other
model selection techniques like complexity penalization in addition to systematically
introducing prior biases on the smoothness by controlling the frequency content of
the search space. An example of learning using the Paley}Wiener space is shown in
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Fig. 3. Reproducing kernels for two-dimensional band-limited function with cuto! frequency parameters
(a) p

1
"8, p

2
"8 and (b) p

1
"10, p

2
"3. Note the radial asymmetry in (b).

Section 5.2, clearly illustrating the bias-variance tradeo! that results. A standard
practice in NN literature of using regularizers e.g. in splines, may be looked upon as
methods of controlling the frequency content of the search space, although their exact
relationship is still a topic of active research. More about their relationship will be
handled under the discussion at the end of the paper.

Another approach to selection of the relevant Hilbert space H involves para-
meterization of the space based on the highest degree of polynomial within the space.
For example, if we consider the Gram}Schmidt orthogonalization of the independent
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Fig. 4. Legendre polynomials : an example of orthogonal polynomials of increasing degree.

polynomial functions 1, t, t2,2 within the Hilbert space ¸
2
[!1, 1], we can generate

a set of orthonormal sequences given by

e
n
(t)"S

2n#1

2
P

n
(t), n"0, 1, 2,2, (13)

where P
n
(t) are the well-known Legendre polynomials (see Fig. 4)

P
n
(t)"

1

2nn!

dn

dtn
(t2!1)n. (14)

Based on this set of orthonormal bases (ONB), we can generate the reproducing
kernel for a function subspace with the highest degree of polynomial N as

K(x,x@)"
N
+
n/0

e
n
(x)e

n
(x@)

"G
(N#1)2

2(1!x2)
[P

N
(x)2!2xP

N
(x)P

N`1
(x)#P

N`1
(x)2] if x"x@,

N#1

2(x!x@)
[P

N`1
(x)P

N
(x@)!P

N
(x)P

N`1
(x@)] otherwise.

(15)

Fig. 5 shows how the reproducing kernel looks graphically for spaces with highest
polynomial degrees equals to two and "ve, respectively. The x- and x@-axis represent
the variables of the bi-variate reproducing kernel function and the z-axis shows the
value taken by these functions.
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Fig. 5 . Reproducing kernels K(x,x@) for function spaces spanned by polynomial functions with (a) highest
degree polynomial " 2 and (b) highest degree polynomial " 5.

A family of such strati"ed function spaces can be used with novel model selec-
tion strategies as described in Schuurmans [20], etc. Of course, the choice of the
appropriate kernels for a given problem should re#ect the prior knowledge on data
like, for example, the smoothness properties of the desired solution. Another impor-
tant question is: which Hilbert space and kernels correspond to standard approxi-
mation schemes used conventionally. Table 1 gives examples of kernel functions
corresponding to some RKHS and the type of decision surface they describe,
recovering some well-known approximation schemes like Gaussian RBF, MLP under
constraint, etc.
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Table 1
Examples of RKHS Kernels and the decision surfaces they de"ne

Kernel functions Approximation scheme

K(x,x@)"p
p
sinc[p

p
(x!x@)] Band-limited Paley Wiener space

K(x,x@)"exp(!DDx!x@DD2) Gaussian RBF
K(x,x@)"(1#x*x@)d Polynomial of degree d
K(x,x@)"tanh(x*x@!h) Multi layer perceptrons!
K(x,x@)"B

2n`1
(x!x@) B-Splines"

K(x,x@)"
sin(d#1

2
)(x!x@)

sin(x!x@)/2
Trigonometric polynomials of degree d

!Only for some values of h.
"B

n
are piecewise polynomials of degree n, de"nitions of which can be found in Unser et al. [22].

An extensive analysis of reproducing kernel Hilbert spaces (RKHS) including
Sobolev spaces for di!erent kinds of problem domains can be found in [19]. A separate
paper will address approaches and results of model selection under this framework,
especially for real-world problems like the learning of the sensorimotor map in
a complex anthropomorphic robot arm.

3.2. Optimization criteria

Once we decide on the search space, next, we need some kind of measure to evaluate
our learning results. As described in Section 2, the learning operator X can be
optimized based on di!erent criteria. Here, we will discuss three such speci"c criteria
and provide analytical solutions for optimization under the linear search constraint.
In practice, the suitable criterion should be chosen based on the requirements of the
problem.

3.2.1. Wiener criterion
The mathematical representation of the Wiener criterion J

W
for the noiseless case is

given in the following equation:

min. over X: J
W
[X]"E

f
DDXAf!f DD2, (16)

where DD.DD is the norm in H and E
f

is the expectation taken over the ensemble M f N. An
operator X satisfying the above criterion is called a Wiener learning operator. The
criterion aims at reducing the di!erence between the original function f and the
function f

0
reconstructed by using the learning operator X. The thing to be noted is

that this minimization is done in the original function space H and in an averaged
sense with respect to all the possible functions to be approximated.
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The Wiener criterion can be transformed into a more useful form [16]. Let R be the
correlation operator of the function ensemble and be de"ned as

R"E
f
( f?fM ). (17)

In order to use the Wiener criterion, it is essential that we know or estimate the
correlation operator R, which acts as an a priori information on the distribution in the
function space. This a priori is analogous to the Bayesian prior, i.e., the covariance
matrix in Gaussian processes [29].

The necessary and su$cient condition for the Wiener criterion to be satis"ed by an
operator X is given as

XARAH"RAH, (18)

where AH is the adjoint operator of A. A general form of the solution of Eq. (18) is
given as

X"RAH;s#=
1
(I!;;s), (19)

where=
1
is any operator from RM to H, ;s represents the Moore}Penrose generaliz-

ed inverse of ; [1] and ; is de"ned as

;"ARAH. (20)

Once the training set is "xed, A can be calculated using Eqs. (7) and (4). Hence,
corresponding to this sampling operator, a learning operator X satisfying the Wiener
criterion can be obtained using Eqs. (19) and (20).

3.2.2. Memorization criterion
Another optimization criterion is the memorization criterion. It minimizes the

following functional:

min. over X: J
M
[X]"DDAXy!yDD2"

M
+

m/1

( f
0
(x

m
)!y

m
)2, (21)

where DD . DD is the norm in the sampled space RM. As is evident from the criterion, it
reduces error over the sampled space. Minimization of the above functional yields the
general form of the solution for X as

X"As#=
2
!AsA=

2
AAs, (22)

where=
2

is any operator from RM to H. In standard backpropagation algorithms,
the memorization criterion is generally employed along with an additional regularizer
term, which is decided based on some heuristics.
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3.2.3. Projection criterion
Finally, we discuss about the Projection optimization criterion. The criterion for

X to satisfy projection learning is that for all f3H,

f
0
"XAf (23)

becomes the best approximation (orthogonal projection) of function f in a subspace
R(AH). The minimization of this criterion leads to the general form of the solution:

X"As#=
3
(I!AAs), (24)

where=
3

is any operator from RM to H.
In general, from an optimal generalization point of view, an optimization criterion

which reduce errors over the original function space (e.g. Wiener, projection) is
recommended over those which reduce errors in the sampled space (memorization) or
other variations of it (e.g. memorization#regularization term). However, practical
computational considerations and lack of prior knowledge may limit approximation
ability to the extent obtained through memorization learning.

3.3. Optimally generalizing neural network

A practical implementation of the optimally generalizing neural network (OGNN)
can be realized by determining the number of hidden units N, the basis functions of
the hidden units Mu

n
NN
n/1

and the connection weights Mw
n
NN
n/1

(refer Fig. 1) as follows:

1. Fix N such that

N5dim(R(XA))"rank(XA). (25)

2. Fix Mu
n
NN
n/1

such that

L(Mu
n
NN
n/1

)MR(XA). (26)

3. Compute the vector of weights w,(w
1
w

22
w

N
)T as

w"(¹H)sXy#(I!¹¹s)z, (27)

where ¹"+N
n/1

(e
n
? u6

n
) and z is any N-dimensional vector.

4. Incremental learning with optimal generalization

So far, the learning problem has been discussed under the basic framework of
"nding an optimum learning operator X from the given set of training data. In other
words, the sampling operator A is "xed based on the training data as shown in Eqs. (4)
and (7), and then, the corresponding learning operator is optimized based on various
criteria. If additional training data are made available at a later stage, it would involve
recalculating the learning operator from scratch to incorporate this new information,
which is highly ine$cient and computationally expensive.

96 S. Vijayakumar, H. Ogawa / Neurocomputing 29 (1999) 85}113



However, we now devise an incremental learning scheme which utilizes the results
of training computed so far and incorporates the newly added information in a com-
putationally e$cient manner. An important point to be noted here is that, unlike
other methods, the generalization ability achieved using this incremental learning
technique is exactly equal to that achieved while using batch learning for optimal
generalization on the entire set of training data (including the newly added one) as
discussed in the previous section; in other words, this form of incremental learning is
exact rather than an approximation.

Since we will be dealing with a variable number of sample points and hence,
a variable dimensional sampled space, we will use lower case letters to represent the
number of training data and the dimension of the sampled space from now on. Let
Me(m)

n
Nm
n/1

represent the natural basis of the sampled space Rm. Let A
m

be the sampling
operator from H to Rm while considering m sample points, de"ned as

A
m
"

m
+
n/1

(e(m)
n

?t
n
). (28)

Let y(m) be the vector consisting of elements My
n
Nm
n/1

and X
m

be the corresponding
learning operator for the m sample points. In the following subsections, we will derive
the incremental results for the Wiener optimization criterion in detail, which can be
extended for solving other optimization criterion results shown in the next section.

4.1. Incremental computation of the learning operator and the learned function for the
Wiener optimization criterion

First, we present a general result for the recursive computation of the generalized
inverse which will be used in our incremental computation of the learning operator.

Let <
m

be an m]m positive-semi-dexnite matrix. Let <
m`1

be represented in the
form

<
m`1

"A
<

m
s
m

sT
m

pB, (29)

where s
m

and p represent an m-dimensional vector and scalar, respectively. We assume
that <

0
"0, s

0
"0. Let t

m
and a be de"ned as

t
m
"<s

m
s
m
, (30)

a"p!(t
m
,s
m
). (31)

Lemma 1 (Albert [1]). If <
m`1

is positive semi-dexnite, then, a50 and the Moore}
Penrose generalized inverse of <

m`1
for a'0 is given as

<s
m`1

"C
<s

m
#

1

a
(t
m
?t

m
) !

1

a
t
m

!

1

a
tT
m

1

a D. (32)
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The result for the condition a"0 has been omitted because this condition works
out to be a trivial case in the context of the learning problem since it represents
a redundant training data (refer [26] for the proof ). Therefore, we will now deal with
the case a'0 only.

We shall apply Lemma 1 to our incremental learning operator computation.
Considering a particular solution for the Wiener learning, i.e., taking ="0 in
Eq. (19), we have

X
m`1

"RAH
m`1
;s

m`1
, (33)

where

;
m`1

"A
m`1

RAH
m`1

. (34)

In order to express the new sampling operator A
m`1

in terms of the old sampling
operator A

m
, we introduce an operator ¹ de"ned as

¹"

m
+
n/1

(e(m`1)
n

? e(m)
n

). (35)

Now, we can write the new sampling operator A
m`1

as

A
m`1

"¹A
m
#(e(m`1)

m`1
?t

m`1
), (36)

because of Eq. (28).
Let

s
m
"A

m
Rt

m`1
, (37)

p"(Rt
m`1

)(x
m`1

), (38)

t
m
";s

m
s
m
, (39)

a"p!(t
m
, s

m
). (40)

It follows from Eqs. (34) and (36) that

;
m`1

"¹;
m
¹H#(¹s

m
? e(m`1)

m`1
)#(e(m`1)

m`1
?¹s

m
)#p(e(m`1)

m`1
? e(m`1)

m`1
). (41)

Looking at di!erent terms of the expansion, it is easy to show that the matrix
;

m`1
can be written in the form

;
m`1

"A
;

m
s
m

sT
m

p B, (42)

as shown in Fig. 6, which also corresponds to the structure of Eq. (29). It can also be
proved that the matrix represented by the terms;

m`1
is positive semi-dexnite because

of Eq. (34). Therefore, Lemma 1 can be applied to calculate the term;?
m`1

recursively
for the condition a'0.

Theorem 1. Let s
m
, p, t

m
and a be dexned as in Eqs. (37)}(40), respectively. If a'0,

then the new learning operator X
m`1

can be computed incrementally from the previous
learning operator X

m
as

X
m`1

"(X
m
#>

m
)¹H#(v

m
? e(m`1)

m`1
), (43)
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Fig. 6. Structure of the matrix ;
m`1

.

where

v
m
"

1

a
(Rt

m`1
!RAH

m
t
m
), (44)

>
m
"!(v

m
? t

m
). (45)

Proof. It follows from Eqs. (33) and (36) that

X
m`1

"R[¹A
m
#(e(m`1)

m`1
?t

m`1
)]H;?

m`1
. (46)

Since ;
m`1

in Eq. (46) is positive semi-de"nite and has the structure as shown in
Fig. 6, we can apply Lemma 1 to Eq. (46). Hence, we have

X
m`1

"R[AH
m
¹H#(t

m`1
? e(m`1)

m`1
)]C
;s

m
#C o

oT qD, (47)

where C,o, and q are de"ned below.

C"

1

a
(t
m

? t
m
), (48)

o"!

1

a
t
m
, (49)

q"
1

a
. (50)

From Eq. (47), we have

X
m`1

"R[AH
m
¹H#(t

m`1
? e(m`1)

m`1
)][¹(;s

m
#C)¹H

#(¹o? e(m`1)
m`1

)#(e(m`1)
m`1

?¹o)#q(e(m`1)
m`1

? e(m`1)
m`1

)]. (51)
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Since ¹H¹"I and ¹He(m`1)
m`1

"0, it follows from Eqs. (51) and (33) that

X
m`1

"RAH
m
(;s

m
#C)¹H#(RAH

m
o? e(m`1)

m`1
)

#(Rt
m`1

?¹o)#q(Rt
m`1

?e(m`1)
m`

1)

"(X
m
#RAH

m
C#(Rt

m`1
? o))¹H#(RAH

m
o#qRt

m`1
)?e(m`1)

m`1
. (52)

Substituting Eqs. (48)}(50), into Eq. (52), we have

X
m`1

"X
m
¹H#C

1

a
(RAH

m
(t
m
? t

m
)!R(t

m`1
? t

m
))D¹Hu

#C
!1

a
(RAH

m
t
m
!Rt

m`1
) ? e(m`1)

m`1 D
"[X

m
!(v

m
? t

m
)]¹H#(v

m
? e(m`1)

m`1
)

"(X
m
#>

m
)¹H#(v

m
? e(m`1)

m`1
). (53)

Hence, the theorem holds.

Theorem 2. When a'0, the learned function f
m`1

due to m#1 sample points can be
computed incrementally from the previous learned function f

m
and the new sample

value f (x
m`1

) as

f
m`1

"f
m
#>

m
y(m)#f (x

m`1
)v

m
, (54)

where >
m

v
m

and >
m

are given by Eqs. (44) and (45), respectively.

Proof. From the general form of Eq. (9), we can write the newly learned function
f
m`1

as

f
m`1

"X
m`1

y(m`1). (55)

Using Eq. (43) of Theorem 1 to compute X
m`1

in Eq. (55), we have

f
m`1

"(X
m
#>

m
)¹Hy(m`1)#(v

m
? e(m`1)

m`1
)y(m`1)

"(X
m
#>

m
)y(m)#(y(m`1), e(m`1)

m`1
)v

m
,

which yields Eq. (54).
On reducing Eq. (54), we can further clarify the relationship between f

m
and f

m`1
,

which we will proceed to do in the next theorem.
Let S

m
and S

m#
be de"ned as

S
m
"R(RAH

m
), (56)

S
m#
"R(R)WN(A

m
), (57)

whereR( . ) and N( . ) refer to the range and the null space of an operator, respectively.
The following lemma holds.
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3P
B,C

refers to the projection onto a subspace B along a subspace C.

Lemma 2 (Vijayakumar and Ogawa [26]). For Wiener learning, the learned function
f
m
"X

m
A

m
f, for every f3R(R), is an oblique projection of f onto S

m
along S

m#
, that is,3

f
m
"X

m
A

m
f"P

Sm,Sm#
f. (58)

Let f
m#

be the complement projection of f
m
, i.e. a projection of f onto S

m#
along S

m
.

Now, consider a function / de"ned as

/,Rt
m`1

. (59)

Let /
m

and /
m#

be the projection of / onto S
m

and S
m#

, respectively. Then, it can be
proved, as shown in Appendix A.1, that a of Eq. (31) is equivalent to the value of the
function /

m#
at the new sampled location x

m`1
, that is,

a"/
m#

(x
m`1

). (60)

Using these relations and further reducing Eq. (54), we have the following theorem.

Theorem 3 (Vijayakumar and Ogawa [26]). When a'0, it holds that

f
m`1

"f
m
#

f
m#

(x
m`1

)

/
m#

(x
m`1

)
/
m#

. (61)

A proof of the theorem is provided in Appendix A.2.
A schematic diagram of the relationship is shown in Fig. 7. It is clear from Eq. (61)

and Fig. 7 that the newly learned function f
m`1

can be expressed as the sum of f
m

and
a scalar multiple of the function /

m#
. Here, /

m#
is the projection of / onto S

m#
, which

again depends on the location of the new sample due to Eqs. (59) and (4). Another
point to be noted is that the term f

m#
(x

m`1
) which appears in the scalar part of Eq. (61)

is, in fact, the error between the actual function and the learned function at the new
sample point, i.e.,

f
m#

(x
m`1

)"( f!f
m
)(x

m`1
). (62)

A closed-form relationship between the newly sampled location x
m`1

, the newly
learned function and the previous function provides a basis for the work on active
data selection for improving generalization.

4.2. Generalized incremental learning results for various optimization criteria

Using a similar approach as adopted for the Wiener criterion, we can "nd in-
cremental closed-form solutions for the general class of optimization criterion as
follows.
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Fig. 7. Relationship between f
m

and f
m`1

for Wiener optimization criterion.

Theorem 4 (Incremental learning operator: projection learning (Nakazawa [11])).
The incremental learning operator for projection learning can be computed as

X(P)
m`1

"(X(P)
m
!v(P)

m
? t(P)

m
)CH#v(P)

m
? e(m`1)

m`1
, (63)

where v(P)
m

, t(P)
m

and s(P)
m

are dexned as

v(P)
m
"

1

a
(t

m`1
!AH

m
t(P)
m

), (64)

t(P)
m
"(A

m
AH

m
)ss(P)

m
, (65)

s(P)
m
"A

m
t
m`1

. (66)

Theorem 5 (Incrementally learned function: projection learning (Nakazawa [11])).
The function learned by projection learning using m#1 training data, f

m`1
, can be

incrementally computed as

f
m`1

"f
m
#

y
m`1

!f
m
(x

m`1
)

t
m#

(x
m`1

)
t
m#

, (67)

where t
m#

is the orthogonal projection of t
m

onto N(A
m
).

Theorem 6 (Incremental learning operator: memorization learning (Nakazawa
[11])). The incremental learning operator for memorization learning can be computed as

X(M)
m`1

"(X(M)
m

!f
m

? h(m))CH#c
m
? e(m`1)

m`1
, (68)
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where f
m
, c

m
and h(m) are dexned as

f
m
"

1

a
(t

m
!AH

m
t(M)
m

), (69)

c
m
"g8

m
#(1!g8

m
(x

m
#1))f

m
, (70)

h(m)"t(M)
m

!K?
m
K

m
(XH

m
t(M)
m

!q
m
). (71)

Theorem 7 (Incrementally learned function: memorization learning (Nakazawa [11])).
The function learned by projection learning using m#1 training data, f

m`1
, can be

incrementally computed as

f
m`1

"f
m
#y

m`1
g
m#
#

b!y
m`1

g
m#

a
t
m#

, (72)

where t
m#

is the orthogonal projection of t
m

onto N(A
m
).

5. Empirical experiments

In this section, we will give the pseudocode for implementation of the algorithm
introduced in the previous section and illustrate incremental function approximation
in an arti"cial example.

5.1. Pseudocode of incremental learning algorithm

The pseudocode for implementation of incremental learning for optimal generaliz-
ation for the Wiener optimization criterion is as follows:

1. Decide on optimal search space H based on model selection techniques de-
scribed in Section 4.1.

2. Construct reproducing kernel.
(a) Use existing reproducing kernel for H, if known. For example, for band-

limited function spaces, use Eq. (12).
(b) Else, construct ONBs Mu

n
NN
n/1

for the Hilbert space H. Then, compute
the reproducing kernel corresponding to the Hilbert space H as
K(x,x@)"+N

n/1
u

n
(x)u

n
(x@).

3. If using the Wiener criterion, approximate the correlation operator R.
4. Initialize to zero function: f

0
"0.

5. For each new training data (x
m`1

,y
m`1

),
(a) Use the reproducing kernel K(x,x@) to instantiate t

m`1
"K(x,x

m`1
).

(b) Compute /"Rt
m`1

.
(c) Compute projection /

m#
"PN(A),R(RA

H)
/.

(d) Compute f
m#

(x
m`1

) as

f
m#

(x
m`1

)"f (x
m`1

)!f
m
(x

m`1
)"y

m`1
!f

m
(x

m`1
).
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Fig. 8. Function approximation using the projection learning criterion and using original function spaces
with frequency cut-o! (b) p"3, (c) p"10 and (d) p"40.

6. Compute the newly learned function f
m`1

as f
m`1

"f
m
#

f
mc

(x
m`1

)

/
mc

(x
m`1

)
/
mc

.

7. If no more training data to incorporate, STOP.
Else, goto step 5.

5.2. Learning in Paley}Wiener spaces

First, we show an example of approximation using the Paley}Wiener space of band
limited functions (refer Section 3.1). The original function to be approximated is
a nearly linear function with a non-linear bump in the middle (see Fig. 8(a)) given by

y"x#2 exp(!16x2). (73)

The function is sampled at 200 locations with an additive noise of the order of 10%
(Noise variance"0.1). The sampled locations are shown with dots in Fig. 8. We show
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results of approximation using the projection learning criterion. Fig. 8(b)}(d)
show approximations (solid line) when we consider a band limited function space
(refer Section 3.1) with band frequency cut-o! p"3, p"10 and p"40, respectively.
As can be seen from the comparison with the original function, function space with
p"3 has a large bias, hence, the high-frequency components of the functions are
smoothed out. On the other hand, p"40 results in a approximation which has very
low bias but highly depends on the noisy data; i.e. has high variance. A suitable
tradeo! between bias and variance results when we consider the function space with
frequency cuto! p"10. Standard model selection techniques can be used to arrive at
ideal values of the frequency cuto! for the search space.

5.3. Incremental learning in trigonometric spaces

Next, we consider an example in which we take the problem of approximating
a trigonometric function f given by

f"!2 sin(x)#3 cos(x)# sin(2x)#4 cos(2x)!0.5 sin(3x). (74)

This function is represented by the solid line in Fig. 9(a) and (b). To show the e!ect of
the model selection, we consider two Hilbert spaces H

1
and H

2
, the former being the

subspace of the latter. Let H
1

be a six-dimensional function space spanned by the
orthonormal functions

Mu(1)
i

(x)N6
i/1

,Msin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x)N,

where the inner product in H
1

is de"ned as

( f, g)"
1

pP
p

~p

f (x)g(x) dx, ∀f, g3H
1
. (75)

In general, for function spaces of the kind spanned by orthonormal functions
Msin(nx), cos(nx)NN

n/1
, the reproducing kernel can be written as

K(x,x@)"
N
+
n/1

(cos(nx) cos(nx@)# sin(nx) sin(nx@))

"

N
+
n/1

cos(n(x!x@))

"G
N if x"x@,

1
2
[ sin2N`1(x~x{)

2
/ sinx~x{

2
!1] otherwise,

(76)

which correspond to the Dirichlet kernel in [24]. Using the above result of Eq. (76),
the reproducing kernel for the Hilbert space H

1
can be written as

K(1)(x,x@)"G
3 if x"x@,

1
2
[ sin

7(x!x@)
2

/sin
x!x@

2
!1] otherwise.

(77)
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Fig. 9. Function approximation result for original function f"!2 sin(x)#3 cos(x)# sin(2x)#4
cos(2x)!0.5 sin(3x) with one ( f

1
), two ( f

2
) and three ( f

3
) sample points. (a) uses a 6-dimensional Hilbert

space H
1

while (b) uses an eight-dimensional Hilbert space H
2
.

Similarly, consider H
2

to be a eight-dimensional function space spanned by the
orthonormal functions

Mu(2)
n

(x)N8
n/1

,M sin(x), cos(x), sin(2x), cos(2x), sin(3x), cos(3x), sin(4x), cos(4x)N,
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such that H
1

becomes a subspace of H
2
. The reproducing kernel K(2)

m
(x) for H

2
, by

similar computation, works out to be

K(2)(x,x@)"G
4 if x"x@,

1
2
[ sin9(x~x{)

2
/ sinx~x{

2
!1] otherwise.

(78)

Noiseless training data is obtained from the original function at locations
x
1
"!2, x

2
"2 and x

3
"0 and is marked by tiny squares on the graphs. Here, for

the sake of simplicity, we assume R, the correlation operator, to be an identity
operator; in other words, all possible functions have an equal and independent
probability of occurrance.

Fig. 9(a) shows the incremental learning results when learning with Hilbert space
H

1
. Here, f

1
refers to learned function using one sample point, f

2
with two sample

points and so on. We can observe the improved generalization as the number of
sample points increase. On the other hand, Fig. 9(b) shows the approximation results
for the same problem when we change the original search space to H

2
. We observe,

especially for f
3
, that the generalization capability drops when we use a more general

search space with more parameters (as in H
2
) compared to one with a stronger and

correct bias (as in H
1
).

6. Discussion

A functional analytic framework based on reproducing kernel Hilbert spaces
(RKHS) for theorizing on the generalization ability of the trained network is provided
and based on this, a scheme for e$ciently incorporating new training data is present-
ed. This framework is applied to compute the new learning operator X

m`1
from the

intermediate results of the previous stage like X
m
, A

m
, and the next sample point x

m`1
.

This has provided an e$cient computation strategy to implement sequential learning
with optimal generalization ability. An analytic relationship between the newly
learned function and the previous function is derived, hence, opening possibilities of
modifying sampling strategy to optimize generalization. The framework o!ers the
following advantages:

f The incremental learning is exact and not an approximation to the batch learning
results.

f The results are extendable to any standard kind of optimization criteria including
special cases of regularization.

f The Hilbert space framework provides a systematic tool for introduction of apriori
knowledge and bias.

f Novel model selection strategies based on strati"ed search spaces can be easily
implemented using this framework.

Another interesting observation is that the RKHS kernel-based approximation
derived here is closely related to the regularization networks and support vector
machine approximations. It is clear from the analysis that our "nal approximation
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4This is evident from the fact that the learned function lies in the space R(AH).

has the kernel functions K(x,x
i
), one for each training data, as the basis functions.4

The exact linear combinations of these basis functions depend upon the optimization
criterion we are minimizing. It can be shown, as demonstrated in Appendix B, on the
lines of Kimeldorf and Wahba [7] and Girosi [4], that the solution for regularization
networks and SVM approximation is also a linear superposition of the kernel function
K(x,x

i
) irrespective of the cost function used. Therefore, the results on incremental

learning derived here can be expected to provide a useful hint in performing regression
using SVM-based methods in an online setting. Moreover, controlling the smoothness
in regularization networks can be interpreted as changing the rate of decrease of the
sequence Mj

n
N=
n/1

(refer Appendix B), which corresponds to using kernels with di!erent
frequency components [4], an automatic implementation of which was described in
Section 3.1.

One of the drawbacks of this method } and in general, of most kernel-based
approximation methods } is that exact incremental learning in this setting is relatively
computationally expensive, increasing in the order of the square of training set size.
However, using cost functions which allow selection of subset of e!ective training data
(e.g. support vectors) or active selection of non-redundant training data [27] can
circumvent this problem to some extent.

As a follow up, results have already been derived for incremental update in the weight
space for e!ective hardware implementation. Future research work will focus on
extending these results for incremental learning in the presence of additive white noise.
Avenues of using these results for the task of optimal training data selection using
intermediate learning results, often referred to as active learning, is currently being
explored.

Acknowledgements

This work was funded in parts by a fellowship grant to S. Vijayakumar provided by
the Ministry of Education, Science and Culture, Japan (Mombusho) and the Mom-
busho Grant-in-Aid for Scienti"c Research (B) No. 08458076 to H. Ogawa. The
author acknowledges the contribution of S. Nakazawa in extending the incremental
framework to the memorization and projection learning criterion.

Appendix A. Exact incremental update formula: rigorous proofs

A.1. Proof of Eq. (6)

From Eqs. (40) and (38), we have

a"(Rt
m`1

)(x
m`1

)!(t
m
, s

m
). (A.1)
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Looking at the second term of the expansion in Eq. (A.1) and using Eqs. (37) and (39),
we have

(t
m
, s

m
)"(;s

m
A

m
Rt

m`1
,A

m
Rt

m`1
)

"(RAH
m
;s

m
A

m
Rt

m`1
,t

m`1
). (A.2)

Using Eq. (33) and Lemma 2, we can write Eq. (A.2) as

(t
m
, s

m
)"(X

m
A

m
Rt

m`1
,t

m`1
)

"(P
Sm,Sm#

Rt
m`1

,t
m`1

)

"(P
Sm,Sm#

Rt
m`1

)(x
m`1

). (A.3)

Substituting Eq. (A.3) in Eq. (A.1) and using the de"nition of /, /
m

and /
m#

, we have

a"(Rt
m`1

)(x
m`1

)!(P
Sm,Sm#

Rt
m`1

)(x
m`1

)

"/(x
m`1

)!/
m
(x

m`1
)

"/
m#

(x
m`1

). (A.4)

A.2. Proof of Theorem 3

From Eqs. (44) and (39),

v
m
"

1

a
(Rt

m`1
!RAH

m
t
m
)

"

1

a
(Rt

m`1
!RAH

m
;s

m
s
m
). (A.5)

Applying Eqs. (33) and (37) to Eq. (A.5), we have

v
m
"

1

a
(Rt

m`1
!X

m
s
m
)

"

1

a
(Rt

m`1
!X

m
A

m
Rt

m`1
)

"

1

a
(I!X

m
A

m
)Rt

m`1
. (A.6)

Using the result of Lemma 2, we write Eq. (A.6) as

v
m
"

1

a
(I!P

Sm,Sm#
)Rt

m`1

"

1

a
P
Sm#,Sm

Rt
m`1

"

1

a
P

Sm#,Sm
/. (A.7)
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By de"nition of /
m#

and a (Eq. (60)), we can reduce Eq. (A.7) to

v
m
"

/
m#

/
m#

(x
m`1

)
. (A.8)

On the other hand, on substituting the value of >
m

from Eq. (45) into Eq. (54), we
have

f
m`1

"f
m
!(v

m
?t

m
)y(m)#f (x

m`1
)v

m

"f
m
!(y(m), t

m
)v

m
#f (x

m`1
)v

m

"f
m
#[ f (x

m`1
)!(y(m), t

m
)]v

m
. (A.9)

Now, let us look at the term (y(m),t
m
) in the above equation. It can be written as

(y(m), t
m
)"(A

m
f, t

m
)"( f, AH

m
t
m
). (A.10)

Assume f3R(R), which holds true for Wiener learning. Then, f"Ru for some u.
Hence, Eq. (A.10) can be written as

(y(m), t
m
)"(Ru,AH

m
t
m
)"(u,RAH

m
t
m
). (A.11)

Expanding for t
m

using Eqs. (39) and (37) in Eq. (A.11),

(y(m), t
m
)"(u, RAH

m
;s

m
A

m
Rt

m`1
)

"(u,X
m
A

m
Rt

m`1
). (A.12)

Using Lemma 2, Eq. (A.12) can be written as

(y(m),t
m
)"(u,PRt

m`1
)

"(Pu,Rt
m`1

)

"(RPu,t
m`1

), (A.13)

where P is the projection on S
m

along S
m#

. It can be easily shown that PR"RP. Using
this result in Eq. (A.13), we have

(y(m), t
m
)"(PRu,t

m`1
)

"(Pf,t
m`1

)

"(f
m
,t

m`1
). (A.14)

Using the property of the function t
m`1

, Eq. (A.14) becomes

(y(m), t
m
)"f

m
(x

m`1
). (A.15)

Now, using Eqs. (A.8) and (A.15) in Eq. (A.9), we have

f
m`1

"f
m
#[ f (x

m`1
)!f

m
(x

m`1
)]

/
m#

/
m#

(x
m`1

)

"f
m
#

f
m#

(x
m`1

)

/
m#

(x
m`1

)
/
m#

. (A.16)
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Appendix B. Regularization, SVMs and kernel approximation

Let us consider a Hilbert Space H which contains functions that can be represented
as

f (x)"
=
+
n/1

c
n
u
n
(x), (B.1)

where Mu
n
(x)N=

n/1
is a set of given linearly independent basis functions and c

n
are the

scalar parameters to be estimated. Let the inner product in H be de"ned as

( f, g)
H
"A

=
+
n/1

c
n
u

n
(x),

=
+
n/1

d
n
u
n
(x)B

H

"

=
+
n/1

c
n
d
n

j
n

, (B.2)

where Mj
n
N=
n/1

is a positive, decreasing sequence. The reproducing kernel K of this
RKHS can then be written as

K(x,x@)"
=
+
n/1

j
n
u
n
(x)u

n
(x@). (B.3)

Now, let us look at the solution of the variational problem for regularization given by
the functional:

min
f|H

J[ f ]"C
m
+
i/1

<(y
i
!f (x

i
))#

1

2
U[ f ], (B.4)

where< is some cost function, C is a positive number controlling the tradeo! between
the two terms and U[ f ] is the regularizing term, which we take here as

U[ f ]"DD f DD2
H
"

=
+
n/1

c2
n

j
n

. (B.5)

We can think of functional J[ f ] as a function of coe$cients c
n
. In order to minimize

J[ f ], we take its derivative with respect to c
n

and equate to zero obtaining the
following:

!C
m
+
i/1

<@(y
i
!f(x

i
))u

n
(x

i
)#

c
n

j
n

"0. (B.6)

If we de"ne unknowns a
i
,C<@(y

i
!f (x

i
)), then, using Eq. (B.6), we can write c

n
as

c
n
"j

n

m
+
i/1

a
i
u
n
(x

i
). (B.7)

From Eqs. (B.1), (B.7) and (B.3), we know that the solution of the variational problem
has the form

f (x)"
=
+
n/1

c
n
u
n
(x)"

=
+
n/1

m
+
i/1

a
i
j
n
u
n
(x

i
)u

n
(x)"

m
+
i/1

a
i
K(x,x

i
). (B.8)

This shows that irrespective of the cost function < used, the solution of the regulariz-
ation functional of Eq. (B.4) is always a superposition of kernel functions, one for each
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data point. The cost function a!ects the computation of the coe$cients a
i
. When the

cost function < is of the form

<(x)"DxDe,G
0 if DxD(e,

DxD!e otherwise,
(B.9)

then, the solution of the functional yields the support vector machine approximation
scheme.
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