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Abstract

In this paper, we discuss the problem of active training data selection in the presence of noise. We formalize
the learning problem in neural networks as an inverse problem using a functional analytic framework and use the
Averaged Projection criterion as our optimization criterion for learning. Based on the above framework, we look at
training data selection from two objectives, namely, improving the generalization ability and secondly, reducing the
noise variance in order to achieve better learning results. The final result uses the apriori correlation information on
noise characteristics and the original function ensemble to devise an efficient sampling scheme, which can be used
in conjunction with the incremental learning schemes devised in our earlier work to achieve optimal generalization.

1 Introduction

It has been well known that supervised learning in non-asymptotic cases is highly data dependent. The level of
generalization, i.e., the ability to correctly respond to novel inputs, achievable using a fixed number of training data
is heavily dependent on the quality of the data used[9]. It is also interesting to note that many natural learning
systems are not simply passive but make use of at least some form of active learning to examine the problem domain.
By active learning, we mean any form of learning in which the learning program has some control over the inputs
over which it trains.

The problem of “active learning” has been extensively studied in economic theory and statistics [1]. Optimal
data selection within the Bayesian framework for interpolation have been studied by Luttrell[4] and MacKay[5].
It has been shown that a smaller training set gathered by an active learner produces generalization performance
equal to or better than a much larger data set containing redundant examples [7].Plutowski and White [6] assume
that a large amount of data has been collected and work on principles of selecting a subset of that data for efficient
training; the entire data sets (inputs and outputs) is consulted at each iteration to decide which example to add,
an option that is not permitted in this work.

Here, we look at the learning problem from a functional analytic perspective and define an optimization measure
which decides on the usefulness of the training data. Works based on the Shannon entropy and Fisher’s information
criterion [2] already exist. We use the Averaged Projection criterion described in Section 3.1, a criterion which
enforces a trade-off between expanding the approximation space and reducing the noise variance. The training data
selection scheme developed here works in two phases. At first, a batch selection ofm data to optimize generalization
is carried as shown in Section 4.1. Since, selection of the data incorporates additive noise, as a second stage, more
data is added incrementally with a view to reduce the effect of noise by exploiting the apriori information on the
noise correlation matrix as shown in Section 4.2. The effectiveness of this sampling scheme is demonstrated through
a simulation.

2 Functional analytic framework for NN learning

Let us consider a three-layer feedforward neural network whose number of input, hidden, and output units are L, N ,
and 1, respectively. It can be easily shown that the input-output relationship of such a network is equivalent to a real
valued function of L variables. Based on this interpretation, it follows that the learning in Neural Networks(NNs) is
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analogous to obtaining an optimal approximation fm to a desired function f from the set of m training data made
up of the inputs xi ∈ RL and the corresponding outputs yi ∈ R :

{(xi, yi)|yi = f(xi) + ni : i = 1, · · · ,m},
where ni is the additive noise. Let a Hilbert space H , with a reproducing kernel K(x, x′), represent the space of
all functions to be approximated by the NN. Let D be the domain of the functions to be approximated, which is
a subset of the L-dimensional Euclidean space RL. The reproducing kernel K(x, x′) is a bivariate function defined
on D ×D which satisfies the following two conditions:

1. For any fixed x′ in D , K(x, x′) is a function in H .

2. For any function f in H and for any x′ in D, it holds that

(f(x),K(x, x′)) = f(x′), (1)

where the left hand side of eq.(1), represented by the notation (·, ·), denotes the inner product in H .

In the theory of Hilbert space, arguments are developed by regarding a function as a point in that space. Thus,
things such as ’value of a function at a point’ cannot be discussed under the general framework of Hilbert space.
However, if the Hilbert space has a reproducing kernel, then it is possible to deal with the value of a function at a
point. Indeed, if we define functions ψi(x) as

ψi(x) = K(x, xi) : 1 ≤ i ≤ m, (2)

then, the value of f at a sample point xi is expressed in Hilbert space language as the inner product of f and ψi as

f(xi) = (f, ψi). (3)

Let {yi}m
i=1 and {ni}m

i=1 form the elements of the m-dimensional vectors y(m) and n(m), respectively. Once the
training set {xi}m

i=1 is fixed, we can introduce an operator Am such that

y(m) = Amf + n(m). (4)

The operatorAm, called the sampling operator, becomes a linear operator even when we are concerned with nonlinear
neural networks. It is expressed by using the Schatten product as

Am =
m∑

i=1

ei ⊗ ψi, (5)

where {ei}m
i=1 is the so-called natural basis

1 in Rm. The Schatten product denoted by (.⊗ .) is defined by

(ei ⊗ ψi)f = (f, ψi)ei. (6)

Now, the learning problem can be reformulated as an inverse problem (See Fig.1) of obtaining an operator Xm

which provides an optimal approximation fm of the true function f from the noisy sample values y(m):

fm = Xmy(m). (7)

The generalization ability of the NN, which corresponds to the closeness of the original function f and the
approximated function fm, can be measured using various criterion. In this work, we will restrict ourselves to the
Averaged Projection criterion, which will be discussed in the next section. Here, Xm is referred to as the learning
operator. Results on obtaining the optimal Xm for a given sampling scheme, both as a batch as well as incremental
procedure, has been dealt with in our previous work. The results will be reviewed in Section 3.2.

In the active learning problem, we have the task of selecting the optimal training data, which is analogous to
deciding on the optimal sampling operator Am under this framework.

1The vector ei is the m-dimensional vector consisting of zero elements except the element i equal to 1.
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Figure 1: NN learning as an inverse problem

3 Optimization criterion for
training data selection

As a measure of deciding the usefulness of the training data as well as for obtaining an optimal approximation using
the selected training data, we make use of the Averaged Projection criterion, described in the next subsection.

3.1 Averaged Projection criterion

The Averaged Projection optimization corresponds to finding an optimal sampling operator Am and learning oper-
ator Xm such that it minimizes the functional

min
Am

J
(0)
AP [Am], (8)

where

J
(0)
AP [Am] = min

Xm

J
(2)
AP [Xm] under the constraint

min
Xm

J
(1)
AP [Xm], (9)

J
(1)
AP [Xm] = Ef‖XmAmf − f‖2, (10)

J
(2)
AP [Xm] = En‖Xmn(m)‖2. (11)

J
(1)
AP in the functional corresponds to optimizing the generalization ability of the approximated function while J

(2)
AP

corresponds to reducing the effect of noise by reducing the noise variance.

3.2 Optimal learning operator for given sampling scheme

Methods of obtaining the optimal learning operators Xm for a given sampling scheme, i.e. for fixed Am, have
already been obtained based on [3]. This corresponds to minimizing J

(2)
AP under the constraint of minimizing J

(1)
AP .

Here, we provide both the batch and incremental versions of this solution, a result which we will use in optimization
of the functional of eq.(8).

3.2.1 Batch solution

Let R represent the correlation operator of the function ensemble, i.e., R = Ef (f ⊗ f) and Qm represent the
correlation matrix of the noise vectors, i.e., Qm = En(n(m) ⊗ n(m)). These are apriori information about the
learning problem that we assume to possess.

Lemma 3.1 [3] A learning operator X(AP )
m which satisfies the Averaged Projection criterion is given as

X(AP )
m = R

1
2 V †

mR
1
2A∗

mU †
m + Ym(Im − UmU †

m), (12)



where Ym is an arbitrary operator from Rm to H, and

Um = AmRA∗
m +Qm, (13)

Vm = R
1
2A∗

mU †
mAmR

1
2 . (14)

Here, † refers to the Moore-Penrose generalized inverse.

3.2.2 Incremental solution

The batch solution provided in the previous section can be computed in an incremental manner using the learning
results of the previous stage and the newly added training data. The batch and the incremental solutions result
in exactly the same optimal learning operator Xm after the m iterations. We define a few notations used for this
purpose here.

Tm = AmR
1
2 (15)

Γm =
∑m

n=1
(e(m+1)

n ⊗ e
(m)
n ) (16)

φm+1 = R
1
2 ψm+1 (17)

φ̃m+1 = PN (Tm)φm+1 (18)

ξm+1 = φm+1 − T ∗
mU †

msm+1 (19)

qm+1 = En(nm+1n
(m)) (20)

sm+1 = Tmφm+1 + qm+1 (21)
τm+1 = En(n2

m+1) (22)

αm+1 = ‖φm+1‖2 + τm+1 − (U †
msm+1, sm+1) (23)

Lemma 3.2 By using a prior learning operator and new training data, a posterior learning operator satisfying
Averaged Projection criterion can be obtained as follows.

X
(AP )
m+1 =

�
X(AP )

m −ζm+1⊗U†
msm+1+U†

mTmV †
mξm+1

�
Γ∗

m

+ ζm+1 ⊗ e
(m+1)
m+1 , (24)

where ζm+1 is defined as follows.

(a) When αm+1 > 0 and φm+1 �∈ R(T ∗
m), then

ζm+1 =
R

1
2 φ̃m+1

‖φ̃m+1‖2
. (25)

(b) When αm+1 > 0 and φm+1 ∈ R(T ∗
m), then

ζm+1 =
R

1
2V †

mξm+1

αm+1 + (ξm+1, V
†
mξm+1)

. (26)

For the remaining conditions, it can be shown that the new training data is redundant from the learning problem
perspective and hence, need not be used for training.

4 Active learning

Active learning involves using the apriori information available about the learning problem and devising a sampling
scheme to achieve good learning results with limited training data. We will look at the active learning problem
from two separate but interrelated objectives. We will first devise a scheme for selecting m training data (batch
operation) which will concentrate on improving the generalization ability of the NN by selecting data which extends
our projection approximation space in the direction with higher function ensemble probability. Then, in addition
to using these m data, we incrementally select the next set of data so as to reduce the noise variance. The second
stage of operations is proved to maintain the generalization capability while reducing the effect of additive noise,
resulting in a net improvement in the approximation results. Details of each of the stages are provided in the next
sections.



4.1 Training data selection for optimal generalization

In this section, we propose a training data selection scheme which selects m data points in a batch operation to
optimize the generalization ability, i.e., minimizes the functional

min
Am

J10[Am] = min
Am

Ef‖X(AP )
m Amf − f‖2. (27)

This corresponds to a modified version of the functional of eq.(8) without including the noise variance minimization
criterion. Here, X(AP )

m is the optimal learning operator for a given sampling scheme derived in Section 3.2.1. Solving
the functional of eq.(27),

J10[Am] = E
f
‖X(AP )

m Amf − f‖2

= E
f

tr{(X(AP )
m Am − I)(f ⊗ f)(X(AP )

m Am − I)∗}

= tr{(X(AP )
m Am − I)R(X(AP )

m Am − I)∗}
= tr(X(AP )

m AmRA∗
mX(AP )∗

m − X(AP )
m AmR

−RA∗
mX(AP )∗

m + R). (28)

For a learning operator X
(AP )
m satisfying the Averaged Projection criterion, it can be shown that the following

relation holds.

X(AP )
m AmRA∗

m = RA∗
m. (29)

Using the relation of eq.(29) in eq.(28), we have

J10[Am] = {tr(R)− tr(X(AP )
m AmR)}. (30)

Since, R is a fixed apriori information, we can now consider optimizing an equivalent optimization criterion J11.

min
Am

J10[Am] = max
Am

J11[Am], (31)

where

J11[Am] = tr(X(AP )
m AmR). (32)

Based on [3], it is known that2

X(AP )
m AmR

1
2 = R

1
2 PR(R

1
2 A∗

m)
= R

1
2PR(T∗

m). (33)

Using this relation in eq.(32),

J11[Am] = tr(R
1
2 PR(T∗

m)R
1
2 ) = (PR(T∗

m), R). (34)

From now on, we will represent the orthogonal projection onto R(T ∗
m) as P without referring to the subspace of

projection. LetK = dim(R(T ∗
m)) denote the dimension of the projection space. Using the property of the projection

operator P , namely, PP ∗ = P and tr(PP ∗) = K, we can convert the variational maximization problem of eq.(34)
to a Lagrange maximization problem without constraints :

J11[P ] = (PR, P ) + 2Re(C, P ∗P − P ) + λ[tr(P ∗P )− K], (35)

where C and λ are the Lagrange multiplier operator and multiplier, respectively. The maximization of the above
functional can be done based on the following lemmas.

Lemma 4.1 [8] The functional represented by eq.(35) is maximized only if

PR = RP. (36)

2PS refers to the orthogonal projection onto a subspace S.



Lemma 4.2 [8]

PR = RP

if and only if

RR(R 1
2A∗

m) ⊆ R(R 1
2A∗

m). (37)

Lemma 4.3 [8]

RR(R 1
2 A∗

m) ⊆ R(R 1
2A∗

m)

if and only if R(R 1
2A∗

m) is a Karhunen-Loéve subspace of the kernel R.

Lemmas 4.1, 4.2 and 4.3 mean that when the relation PR = RP holds, the subspace R(R 1
2 A∗

m+1) is spanned by
the eigenfunctions of R. Let λn be the n-th eigenvalue of the correlation operator R arranged in decreasing order
and ϕn be the corresponding eigenfunction, i.e.,

Rϕn = λnϕn (λ1 ≥ λ2 ≥ ...). (38)

Then, P can be represented, due to Lemma 4.3, as

P =
K∑

n=1

(ϕmn ⊗ ϕmn). (39)

where {mn : 1 ≤ n ≤ K} is a set of indices. Hence, our problem has been reduced to that of obtaining a set of
eigenfunctions {ϕmn : 1 ≤ n ≤ K} which maximizes eq.(34). Since the functional being maximized, J11[P ], is given
as

J11[P ] = (P,R), (40)

from eq.(39), we have,

J11[P ] = (R,P ) =
K∑

n=1

(Rϕmn , ϕmn) =
K∑

n=1

λmn . (41)

Since λn are arranged in decreasing order, eq.(34) is maximized if and only if we take

{λmn : 1 ≤ n ≤ K} = {λn : 1 ≤ n ≤ K}. (42)

Based on the above analysis, we can write a theorem summarizing the necessary and sufficient condition for selecting
the optimal training set, which is analogous to choosing the sampling operator Am.

Theorem 4.1 (Optimal selection of training data) The necessary and sufficient condition for the optimiza-
tion of the functional for optimal training data selection, represented by eq.(34) is that R(R 1

2 A∗
m) is the subspace

spanned by L{ϕn}K
n=1 where K = dim(R(R 1

2A∗
m)) and ϕn are the eigenfuctions corresponding to the K largest

eigenvalues λn of the correlation operator R.

4.2 Training data selection for noise variance reduction

In this section, we focus on building upon the results of the previous section and devising a scheme for incrementally
finding what training data to add to minimize noise variance of learned function. The criterion to be minimized
incrementally for reducing the noise variance at each data selection stage can be written as

min
xm+1

J20[xm+1], (43)

where

J20 = En‖X(AP )
m+1 n(m+1)‖2 − En‖X(AP )

m n(m)‖2. (44)

By using the incremental solution for X
(AP )
m+1 from Lemma 3.2, J20 can be evaluated as follows.



Table 1: Learning conditions and results : sampling for optimal generalization
(1)

Eigenvalue Eigenfunction3

λ
(R)
1 = 9 ϕ

(R)
1 = (1 0 0)T

λ
(R)
2 = 4 ϕ

(R)
2 = (0 1 0)T

λ
(R)
3 = 1 ϕ

(R)
3 = (0 0 1)T

(2) Sampling scheme (a) and (b)
Optimal scheme (a) Non-optimal scheme (b)

x
(a)
1 = π

5 , ψ
(a)
1 =(−0.59 0 0)T x

(b)
1 = π

2 , ψ
(b)
1 =(0 0 − 1)T

x
(a)
2 = π

3 , ψ
(a)
2 =(0 − 0.87 0)T x

(b)
2 = π

8 , ψ
(b)
2 =(0.71 − 0.71 − 0.38)T

‖f − f
(a)
2 ‖2 = 3.91 ‖f − f

(b)
2 ‖2 = 60.74

Table 2: Learning conditions and results : sampling for noise variance reduction
(1)

Eigenvalue Eigenvector

λ
(B)
1 = 2.89 ϕ

(B)
1 = (−1 0)T

λ
(B)
2 = 1.33 ϕ

(B)
2 = (0 − 1)T

(2) Sampling scheme (c) and (d)
Optimal scheme (c) Non-optimal scheme (d)

x
(c)
3 = π

5 , u
(c)
3 =(1 0)T x

(d)
3 = π

3 , u
(d)
3 =(0 1)T

ψ
(c)
3 =(−0.59 0 0)T ψ

(d)
3 =(0 − 0.87 0)T

noise variance reduction= −2.89 noise variance reduction= −1.33

(a) When αm+1 > 0 and φm+1 �∈ R(T ∗
m), then

J20 = En

�
nm+1− (n(m), U†

mTmV †
mξm+1)

�2‖R 1
2 φ̃m+1‖2

‖φ̃m+1‖4

≥ 0. (45)

(b) When αm+1 > 0 and φm+1 ∈ R(T ∗
m), then

J20 = − ‖R 1
2 V †

mξm+1‖2

αm+1 + (ξm+1, V
†
mξm+1)

≤ 0. (46)

Since the case (a) always results in an increase of the noise variance (as is evident from the sign of eq.(45)), the
training data which minimizes eq.(46) is the one which should be chosen for noise variance reduction.

In the case where the noise variance of the new training data is always constant and the noise on the new training
data is not correlated with the noise on all training data sampled so far, that is, τm+1 is a constant and qm+1 = 0,
eq.(46) can be reduced to a simple form as

J20[xm+1] = − (Bmum+1, um+1)
(um+1, um+1) + τm+1

, (47)

where

Bm = Q
1
2
mX(AP )∗

m X(AP )
m Q

1
2
m, (48)

um+1 = Q
1
2
mX(AP )∗

m ψm+1. (49)

By using the condition τm+1 ≥ 0, we have

J20[xm+1] ≥ − (Bmum+1, um+1)
(um+1, um+1)

. (50)

This form is known as Rayleigh’s quotient. The minimum value of eq.(50) is −λ1, where λ1 is the maximum
eigenvalue of Bm. Eq.(50) is minimized if um+1 = c ϕ1, where ϕ1 is the eigenvector corresponding to λ1 and c is
an non-zero scalar. Thus, when τm+1 = 0, eq.(47) is minimized if ψm+1 satisfies the condition

um+1 = Q
1
2
mX(AP )∗

m ψm+1 = c ϕ1. (51)

In this case, the minimum value of eq.(47) is −λ1.
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Figure 2: Learning results under two different sampling schemes : Optimal (dashed) and non-optimal (dotted)

5 Empirical evaluations

In this section, we demonstrate the effectiveness of the sampling scheme designed here using an artificial example.
Let us consider learning in a Hilbert space H spanned by the functions {sin 6x, sin 10x, sin 15x}. Let the correlation
operator R and the noise correlation matrix Q2 be given as

R =

( 9 0 0
0 4 0
0 0 1

)
, Q2 =

(
1 0
0 1

)
. (52)

The function to be learned, f = 9 sin 6x+ 4 sin 10x+ sin 15x, is shown by a solid line in Fig.2. At first we consider
selecting two training data from the optimal generalization perspective. For comparison, we look at two sampling
schemes (a) and (b) as shown in Table 1-(2). The eigenvalues and eigenfunctions of R in vector representation3

are given in Table 1-(1). In Fig.2, the learning result due to sampling scheme (a) is shown by a dashed line (f (a)
2 )

while the result due to sampling scheme (b) is represented by a dotted line (f (b)
2 ). The comparison of the normed

generalization error is shown in the bottom half of Table 1-(2). The space spanned by the sampling functions
of scheme (a), i.e., L(ψ(a)

1 , ψ
(a)
2 ) forms a K-L subspace of R and it is equivalent to the space spanned by the

eigenfunctions corresponding to the two largest eigenvalues of R. On the other hand, the space spanned by the
sampling functions of scheme (b), i.e., L(ψ(b)

1 , ψ
(b)
2 ), does not form a K-L subspace of R. Based on Theorem 4.1, we

predict that sampling scheme (a) will provide a better generalization result, a fact that is supported by the results
of the simulation (refer Fig.2 and Table 1-(2)).

We assume that we have completed training with the two training data (x(a)
1 , y

(a)
1 ) and (x(a)

2 , y
(a)
2 ) based on

sampling scheme (a). Now, we consider the problem of selecting an additional training data with the view of
reducing noise variance. We can compute B

(a)
2 corresponding to eq.(48) for the sampling scheme (a) as

B
(a)
2 = Q

1
2
2 X

(a)∗
2 X

(a)
2 Q

1
2
2 =

(
2.89 0
0 1.33

)
. (53)

We assume that q3 and τ3, corresponding to eqs.(20) and (22) are both zero and independent of sampling location.
The eigenvalues and eigenvectors of B

(a)
2 are shown in Table 2-(1). As a candidate for the next training data

x3, we consider two locations corresponding to schemes (c) and (d), as shown in Table 2-(2). The value of u3

corresponding to eq.(49) computed for each sampling scheme is shown alongside. Based on our results from Section
4.2, the sampling scheme (c) should provide a greater noise variance reduction since the vector u

(c)
3 is a scalar

multiple of the eigenvector corresponding to the largest eigenvalue of B(a)
2 (refer eq.(51)), while scheme (d) does not

satisfy this condition. The noise variance reduction results shown in the bottom half of Table. 2-(2) substantiate
this prediction.

3A vector (a b c)T denotes a function a sin 6x + b sin 10x + c sin 15x.



6 Conclusion

The generalization ability of a learning system in a noisy environment is a delicate balance on how well it can
select data to enlarge the approximation space and at the same time, reduce noise variance by redundant sam-
pling. The framework provided here provides an effective mechanism of incorporating apriori information about the
function ensemble and the noise correlation matrix to select training data in accordance with the goals of optimal
generalization and noise variance reduction.
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