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Abstract— An important issue when synthesizing legged loco-
motion plans is the combinatorial complexity that arises from
gait pattern selection. Though it can be defined manually, the
gait pattern plays an important role in the feasibility and
optimality of a motion with respect to a task. Replacing human
intuition with an automatic and efficient approach for gait
pattern selection would allow for more autonomous robots,
responsive to task and environment changes. To this end, we
propose the idea of building a map from task to gait pattern
selection for given environment and performance objective.
Indeed, we show that for a 2D half-cheetah model and a
quadruped robot, a direct mapping between a given task and
an optimal gait pattern can be established. We use supervised
learning to capture the structure of this map in a form of gait
regions. Furthermore, we propose to construct a warm-starting
trajectory for each gait region. We empirically show that these
warm-starting trajectories improve the convergence speed of
trajectory optimization problems up to 60 times when compared
with random initial guesses. Finally, we conduct experimental
trials on the ANYmal robot to validate our method.

I. INTRODUCTION

Motion and contact planning for legged locomotion in
arbitrary environments is an open problem. In particular,
optimizing the gait pattern adds combinatorial complexity
to this high-dimensional problem. This complexity can be
interpreted as a wide range of possible motions for each gait
pattern. However, an appropriate gait pattern selection might
be crucial to find a feasible motion [1], [2]. To avoid this
challenge, most of the traditional approaches require to pre-
specify the gait pattern, e.g. [3], [4], [5], [6], [7], [8], [9],
[10]. However, biological and computational studies have
identified that the choice of gait pattern has large impacts
on the performance of legged locomotion [11], [12], [13],
[14]. These studies show that gait pattern selection highly
depends on the locomotion speed. Furthermore, some of
the gait patterns might not be suitable choices in a given
terrain condition (e.g. climbing [15]), and manually defining
appropriate contact sequence is tedious and difficult.

To enhance autonomous operation of legged robots, our
research aims to build a map from task conditions to optimal
gait patterns. The main idea is to encode this map such that
we can quickly retrieve the optimal gait pattern during online
planning. In this exploratory work, we represent robots using
single rigid body models. The scalability of the approach
towards more complex robot models is discussed in the last
section.

1 Authors are with the School of Informatics, The University of Edin-
burgh, Edinburgh, United Kingdom.

2 Authors are with Artificial Intelligence Programme, The Alan Turing
Institute, London, United Kingdom.

e-mail: jiayi.wang@ed.ac.uk

Fig. 1: Snapshots of an experimental trial on the ANYmal
robot. In this scenario, for a given performance objective,
our proposed framework discovers that the walking-trot gait
is preferred for the locomotion task with a forward speed
of 0.3m/s and cycle duration of 0.8s (Video: https://
youtu.be/BHfPymX6Hhs).

Contributions and method overview

We establish optimal1 gait pattern maps for a 2D half-
cheetah model in a defined task descriptor space given
different environment models and performance objectives.
The maps typically form several contiguous regions for
which a particular gait pattern is optimal. This property
allows us to use supervised learning to capture the structure
of the map efficiently. Also, we observed that the optimal
trajectories within each gait region are qualitatively similar,
which implies that they are in the same basin of attraction.
We empirically find that the mean of these trajectories can
be used to initialise optimization-based planning algorithms.
By utilizing the optimal gait pattern maps along with the
obtained initial seeds, we achieve significant gains in com-
putation time for our trajectory optimization method. We
also present preliminary results on the extension to the 3D
quadruped robot ANYmal [16] (Fig. 1).

To generate the map, we propose a nonlinear optimal
control formulation based on Mixed-Integer Nonlinear Pro-
gramming (MINLP). With our formulation, we compute a
dataset of optimal gait patterns and state trajectories for a
predefined set of tasks and environments offline – where the
task is described by the locomotion speed and cycle duration,
and the environment is defined by its slope angle. Then, we
employ a neural network to learn and encode this map from
the generated dataset.

The rest of the paper is organised as follows. Section II
presents the related work. Section III introduces the proposed
method for building the gait pattern map. Our results are
detailed in Section IV, while we discuss our findings and
the possibility of extending the method to more complex
models and tasks in Section V.

1Across the paper we use the term optimal to refer to the locally optimal
solutions enhanced using random restarts.
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II. RELATED WORK

Recent advances in Trajectory Optimization (TO) has
enabled us to explore the modulation of gait patterns through
a continuous optimization processes. These formulations owe
their success to techniques such as: (i) enforcing complemen-
tary conditions [17], [18], (ii) smoothing of discontinuous
contact events [19], [20], [21], (iii) phase-based parameteri-
zation of individual limbs [19], [21], and (iv) resolving sys-
tem dynamics through contacts in the inner loop of a bilevel
optimization framework [22], [23]. Generally speaking, these
methods require to smooth the contact dynamics in order to
numerically compute a search direction2 between different
contact modes. However, Toussaint et al. [24], [25] argue
that the landscape of this optimization problem is highly
non-convex, i.e., different contact sequences imply different
local minima. It renders the exploration of a wide range
of contact sequences impossible, and the optimizer can get
stuck in infeasible local minima and fail to generate valid
motions. This is the reason why many methods avoid this
combinatorial complexity by assuming a given gait and step
timings sequence, e.g. [1], [6], [10].

An alternative for gait pattern optimization would be
Mixed-Integer Programming (MIP). MIP can automatically
explore the entire search space in a systematic manner. This
is done by a Branch and Bound (B&B) algorithm [26]
that performs a tree search for each integer variable which
are used to describe the contact sequences [1], [2], [27].
In comparison to exhaustive search, this method increases
search efficiency because the B&B algorithm keeps pruning
branches with high cost, restricting searches to promising
ones.

To achieve fast computation, Aceituno et al. [2] use (i)
a single binary value for representing the entire foot-swing
phase, (ii) a convex model of the centroidal dynamics, and
(iii) a fixed phase duration. The first assumption cannot
capture unsynchronized breaking of contacts, and thus it
models only symmetrical gaits (e.g. walking and trotting).
The second assumption does not properly encode the typical
changes of the angular momentum needed in highly dynamic
motions (i.e. bounding). The last assumption restricts the
search space of possible trajectories being considered. Our
method follows the same paradigm as in [2] but can consider
both synchronized and unsynchronized gait patterns. Addi-
tionally, the angular momentum is accurately described by
a full nonlinear model and the phase duration is considered
as decision variable. Due to the combinatorial complexity,
MIP are computationally expensive, which prohibits online
usage. Instead, this work explores the possibility to extract
a gait pattern selection policy by solving the MIP offline.
Then machine learning techniques are used to find a direct
map between robot specifications, task objectives and envi-
ronmental models to the optimal gait patterns – with optimal
representative trajectories within the extracted gait pattern
region used to bootstrap local optimisation.

2The search direction is computed locally from the derivatives of the
problem.

III. AUTOMATIC GAIT PATTERN SELECTION

In this section, we first describe the problem of finding the
optimal gait pattern map. Next, we introduce a novel MINLP
optimal control formulation that enables us to simultaneously
compute the optimal motion and gait pattern for a given task
and environment. The MINLP is used to discover the gait
pattern map for a set of task and environment conditions.
Lastly, the extracted optimal gait pattern map is encoded by
a neural network that can be used as a gait selection policy
in an online fashion.

A. Problem description

We model the robot as a single rigid body along with
nl mass-less legs – while this assumption may sound lim-
iting for hardware execution, this is less likely to affect
gait selection decisions. Note that we could still rely on
instantaneous or predictive controllers [28], [29], [30] to
locally adapt the motions while considering the leg inertia.
We define Γ = [r,Θ]T as the base state, where r ∈ R3 is
the Center of Mass (CoM) position and Θ ∈ R3 defines the
yaw, pitch and roll angles, and pl ∈ R3, fl ∈ R3 represent
the foot location and contact forces of leg l expressed in the
world frame, respectively. For simplicity, we stack vectors
P = [p1, · · · ,pnl

]T and F = [f1, · · · ,fnl
]T to collect the

foot location and contact force of each leg.
Let us consider a scenario specification described by S =

[κtask,Ω, J ]T , where κtask denotes the task descriptors, Ω
is a model of the environment, and J is the performance
objective. We consider a periodic locomotion task where the
task descriptor κtask = [v, T ] defines the forward speed v of
the CoM along the tangential direction of the environment
and cycle duration T , while Ω represents slope terrains
whose inclination is defined by γ.

Given a scenario specification S, we aim to compute a
motion plan

π(t) = [Γ(t),P (t),F (t)], (1)

for a finite time horizon t ∈ [0, T ].
The swing trajectories P (t) and contact force profiles

F (t) are discontinuous at the instant of contact transition
and they exhibit an underlying structure determined by the
gait pattern Λ. The motion can be described through binary
values Λi, used in each phase, along with continuous motions
π(t) as depicted in Fig. 2. Below we describe how to com-
pute and extract a direct mapping from task descriptor space
κtask to the optimal gait pattern for a given environment Ω
and performance objective J , i.e. Λ∗

Ω,J = gΩ,J(κtask).

B. MINLP optimal control formulation

Our formulation computes the optimal gait pattern Λ∗ by
searching for an optimal N -phase motion plan. The gait
pattern matrix Λ is included as a decision variable, along
with the base trajectory Γ(t), feet trajectories P (t), contact
force profiles F (t), and the phase-time vector t̃. Note that
t̃i ∈ R denotes the terminal time of the i-th phase (Fig. 2).



We formulate the hybrid optimal control problem as

min
π,Λ,t̃

N∑
i=1

∫ t̃i

t̃i−1

J(π,Λ) dt (2a)

s.t. h(π0,πT ,κtask) ≤ 0, (task) (2b)

0 = t̃0 ≤ t̃1 ≤ · · · ≤ t̃N = T, (timings) (2c)

Γ̈ = fd(Γ,P ,F ), (dynamics) (2d)

P ∈ B(Γ), (kinematics) (2e)

F ∈ fµ(P ,Ω), (friction) (2f)

For t ∈ [t̃i−1, t̃i]:

hΛi(F ,P ,Ω) ≤ 0, (contacts) (2g)

where, for simplicity, we do not explicitly write the time
dependency for the decision variables. To ensure the motion
plan is physically consistent, we define different constraints
in (2b)-(2g). They describe the desired task, phase tim-
ings, system dynamics, friction cone, and contact condition.
Specifically, we can instantiate these terms as follows.

1) Task: We impose the periodic task constraints defined
by κtask as:

rT = r0 + vT, (3a)
ΘT = Θ0, (3b)
PT = P0. (3c)

2) Timings: We ensure that the switching times t̃i increase
monotonically in (2c). Additionally, we impose a final cycle
duration defined by T .

3) Dynamics: In (2d), we describe the dynamics using the
Newton-Euler equations for a single rigid body,

mr̈ = mg +

Nl∑
l=1

fl

Iω̇ + ω × (Iω) =

Nl∑
l=1

fl × (r − pl),
(4)

where m is the total mass, I is the inertia tensor of the
robot base, ω is the angular velocity, g is the gravitational
acceleration.

4) Kinematics: In (2e), we constrain each leg to stay
inside a box with length 2b as the single rigid body model
does not consider the limbs’ configuration. The box origin
is placed at the default foot position p̄l, i.e.

|R (pl − r)− p̄l| ≤ b, (5)

where R is the rotation matrix from the world frame to the
base frame.

5) Friction: (2f) approximates the friction cone using a
pyramid:

− µf n̂l ≤ f
t̂1,t̂2
l ≤ µf n̂l (6)

where µ is the friction coefficient, f n̂l is the normal com-
ponent of the contact force, and f t̂1l , f t̂2l are its tangential
components.

Fig. 2: Continuous and binary decision variables in our
optimal control formulation. Γ(t), P (t) and F (t) refer to the
CoM trajectory, feet trajectories, and contact force profiles,
respectively. For illustration purposes, we use scalars to
represent these vectors. The motion is described using N
phases. Each phase has an associated contact configuration
Λi and switching time t̃i. Here we show an example gait
pattern where 0 and 1 represents active and inactive contact,
respectively. Different gait patterns can be represented by
toggling the binary values of Λi. The time t is discretized
using a variable time-step parameterization [32], where each
phase has the same number of integration nodes (blue and
purple dots) that scale proportionally with respect to the
switching time t̃i.

6) Contacts: The contact dynamics constraint (2g) is
defined as follows:

fl,n ≥ 0, (unilaterality) (7a)
φ(pl) ≥ 0, (non-penetration) (7b)

Λi,l = 0⇒ fl = 0, (inactive contact) (7c)
Λi,l = 1⇒ φ(pl) = 0, ṗl = 0, (active contact) (7d)

where φ(pl) is the signed distance between the foot and
the environment, and Λi,l denotes the contact configuration
of a leg l at phase i. These set of constraints enforce
(i) unilateral forces since the robot can only push against
the environment (7a), (ii) the foot cannot penetrate the
ground (7b), (iii) the contact force or velocity are zero if
the contact state is 0 or 1, respectively, (7c), (7d). Note that
the latter constraints describe the complementary condition
of contacts through an integer representation, and we use the
standard big-M formulation to model them [31].

To solve the presented optimal control problem numeri-
cally, we transcribe it into a Mixed-Integer Nonlinear Pro-
gramming (MINLP) problem by using the variable time-step
parameterization presented in [32]. As Fig. 2 illustrates, each
phase has same number of uniformly distributed knots whose
time interval scales proportionally to the change of switching
time t̃. The integrals (i.e. system dynamics and cost function)
are approximated by a forward Euler integration scheme.
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Fig. 3: Procedure to extract the optimal gait pattern map. We
firstly uniformly sample the task descriptor space. We then
use our MINLP approach to discover optimal gait patterns for
these samples. Eventually, we use the pairs of task samples
and discovered optimal gait patterns as a training set to
classify the regions using a neural network.

C. Discovery and encoding of the gait pattern regions

Given an environment model Ω and a performance objec-
tive J , we first pick D tasks {κtask,d = [vd, Td]

T } that are
uniformly sampled in the task descriptor space as illustrated
in Fig. 3. Then, we compute the optimal gait patterns Λ∗

d

of these selected task samples κtask,d from the MINLP
formulation. We can only guarantee local optimality because
our problem is nonlinear. Thus, we run the optimization
between 15 to 50 times for each sampled task κtask,d with
randomized initial seeds to increase the chances of finding
the global minimum. We use the pairs of task samples and
optimal gaits {κtask,d,Λ∗

d} as a training set for a neural
network classifier. Our neural network has 3 hidden layers
with a total number of 230 neurons. The hyper-parameter
of the neural network can be decided by the standard cross-
validation process [33].

IV. RESULTS & DISCUSSION

We present next the optimal gait pattern maps for different
terrains and performance objectives, while highlighting their
properties and how they can be integrated in existing TO
frameworks to gain performance improvements. A video
is available at https://youtu.be/BHfPymX6Hhs, that
shows different computed gait patterns and an experimental
validation on the ANYmal robot. In all cases, we model
the optimization problems using MATLAB, while using the
interior-point direct algorithm by KNITRO as the solver [34].
Furthermore, we compute the gradient and Hessian using
the automatic differentiation framework CasADi [35]. The
dataset for training the neural network is computed by the
cluster Eddie provided by the Edinburgh Compute and Data
Facility (ECDF). For online evaluations, we use a computer
with an Intel Xeon E3-1535M v6 (Maximum 4.20 GHz) and
32 GB memory.

A. Gait Pattern Discovery for a 2D Half-Cheetah Model

First, we consider a 2D half-cheetah model. We compare
the results for different terrain inclinations γ and perfor-
mance objectives J . For all cases, we set the number of
phases to 4, with 10 knots per phase. Even though we use a
simplified model and a small number of phases, there are a
total of 44 = 256 combinations for the optimizer to consider.
To avoid undesirably fast phases, we constrain each phase
duration to at least 10% of the cycle duration T .

1) Contact forces minimization: We start by considering
a flat terrain (γ = 0) and a performance objective of
minimizing contact forces,

J1 =

∫ T

0

Nl∑
l=1

f2
l dt. (8)

This cost can be interpreted as the minimum effort to achieve
the desired task.

The optimized gait patterns are summarized in Fig. 4a,
while all discovered gait patterns are described in Fig. 5.
At very low speeds (up until 0.3m/s approximately), the
model favors a walking gait. If we slightly increase the
speed (0.5 to 0.7m/s), the model switches to a gallop-walk
gait. If we further increase the speed (0.9m/s and onward),
galloping is preferred. For large cycle durations (1.2 to 1.6s)
and speeds near the maximum (1.7 to 2.3m/s), bounding
is preferred over galloping. Finally, pronking and gallop-
bounding gaits cover two small regions only, the former
during the transition from gallop-walk to gallop, while the
latter during the transition from galloping to bounding.

2) Trunk vibration minimization: We switch the perfor-
mance objective to

J2 =

∫ T

0

((vt − v)2 + v2
n + (θ − γ)2 + θ̇2) dt, (9)

where vt and vn are the tangential and normal CoM veloci-
ties with respect to the terrain, and θ is the pitch angle. This
cost encourages to minimize robot base vibration. This is
a common requirement during inspection missions, i.e. the
camera on the robot needs to remain fixed on a point of
interest. Since the terms in (9) can be infinitesimally small
(approach 0), we scale all of them by 106 times to increase
the numerical stability.

The optimized gait patterns are shown in Fig. 4b. We
observe that some regions of optimal gaits remain the same.
However, there are some salient changes worth discussing.
For medium velocities and across the entire cycle duration
range, the bounding gait is preferred over the galloping one.
This leads also to an increase of the gallop-bound transient
gait at the borders of the two regions. Additionally, the
gallop-walk gait becomes prevalent at the low speed regime.

3) Trunk vibration minimization on a 20° slope: We set
the terrain slope to 20° and use the performance objective
J2. Fig. 4c summarizes the results for this case. We observe
that bounding gaits are replaced by galloping gaits for low
cycle duration in the medium velocity regime. Furthermore,
pronking gaits become more prominent on the boundary
between these two gaits.

4) Discussion: Depending on the optimized objective and
environment characteristic, optimal gait pattern selection can
have sufficient differences. As a result, it is unreasonable
to expect that a human operator will have the intuition to
select proper gait patterns online during motion planning.
Our approach provides a precise and systematic way to
capture these differences, making automatic gait selection
possible without needing to compute gaits every time from
scratch – albeit for a particular robot dynamics.

https://youtu.be/BHfPymX6Hhs


(a) Flat terrain with performance objective J1.

(b) Flat terrain with performance objective J2.

(c) 20◦ sloped terrain with performance objective J2.

Fig. 4: Optimal gait patterns for a 2D half-cheetah model
under different performance objectives and terrain inclina-
tions. The results are sufficiently distinct, demonstrating that
heuristic selection can be tedious. Note that most of the
regions can be clustered according to the computed gait
patterns.

Another important observation is that optimal gait patterns
exhibit structural properties; for example, distinctive gait
patterns tend to occupy similar regions, as shown on the
maps in Fig. 4. This observation motivates the use of ma-
chine learning techniques to capture the relationships among
similar task descriptors, without having to resort to dense
indexing. A simple strategy to obtain the optimal gait patterns
using a neural network was described in Section III-C.

B. Fast Computation of Locomotion Plans

Based on the last observation, we address the following
question: are there substantial differences between state tra-
jectories within similarly clustered task descriptor samples?

Fig. 5: Discovered gait patterns for the 2D half-cheetah
model. F refers to front and H to hind leg, 0 to inactive
and 1 to active contacts.

(a) Gallop gait.

(b) Gallop-walk gait.

Fig. 6: Sampled state-space trajectories in a connected region
for two distinct optimal gait patterns.

And if not, how can we exploit this property? In our findings
we encounter that the trajectories do not exhibit large differ-
ences. In Fig. 6, we plot the state-space trajectories for the
CoM height z and body orientation θ for two different gait
patterns. The resulting trajectories look qualitative similar. It
seems that each gait region has its own basin of attraction.
Using this, we can build simple strategies to warm-start TO
problem with predefined gait patterns. Concretely, we use
a neural network to classify the optimal gait pattern. Then,
we estimate a nominal initial trajectory, e.g. the mean of the
sampled trajectories, based on the gait pattern region that the
task descriptor falls in.

Using this strategy, we perform a comparison between two
TO frameworks with pre-specified gait patterns. For both
methods, we use the neural network to select the appropriate
gait pattern given the task descriptor. For the first method,



TABLE I: Differences between two TO methods with pre-
specified optimal gait pattern, with and without nominal
state, for the 2D half-cheetah model.

Method Computation
time (s)

Successful
runs Consistency

MINLP 93.66±53.7 30 N/A
TO: Gait pattern only 3.05±3.26 25 13

TO: Gait pattern & state 0.115±0.02 30 30

we randomly initialize the state variables. For the second
method, we identify the region where the gait pattern belongs
to, and use the nominal solution as initial seed. We solve the
resulting TO problems for 10 random task descriptors for all
3 cases described earlier. Thus, we run each method 30 times.
For both MINLP and TO we set 40 knots, which results in
1779 constraints for both methods. There are 742 variables
for the MINLP, while TO has 734.

We summarize in Table I the results of this comparison.
First, we report the results for the MINLP approach. We
use them as a baseline to compute the consistency of the
compared methods. Consistency is defined as the number of
cases the optimizer converged to the same solution as in the
MINLP case. Additionally, we report the successful runs,
which correspond to the number of cases that the optimizer
was able to output a valid locally optimal solution. There
are two reasons why the optimizer might fail: either by
exceeding the maximum number of iterations or by failing
to output a feasible solution.

By using the nominal state information to warm-start the
optimizer, we obtained approximately a 30× computation
time decrease with respect to the one using only the optimal
gait pattern. Furthermore, using the nominal state provides
additional improvements: the number of times the optimizer
is successful increases, while being able to discover more
consistent local minima with respect to MINLP results.

C. Optimal Gait Pattern Discovery for the 3D Quadrupedal
Robot ANYmal

We repeat the previous analysis for the 3D quadruped
robot ANYmal. Our aim here is to demonstrate scalability to
more complex models, and investigate empirically whether
the previous conclusions can be extended to a 3D case. To
demonstrate a wide range of motions, we allow large contact
forces (max. 500N ) and foot velocity (max. 2.5m/s).

The problem is described as follows: we select flat terrain
and a performance objective that penalizes simultaneously
contact forces, trunk vibration, and lateral feet displacements
with respect to the nominal position:

J3 =

∫ T

0

(
w1F

2 + w2(vt − v)2 + w2v
2
n

+w2Θ
2 + w2Θ̇

2 + w2(Py − P̄y)2
)
dt, (10)

where Py is the lateral feet displacements, P̄y is the nominal
feet displacements, w1 = 10−2 and w2 = 106. Additionally,
we define the lower bound on each phase duration as 20%
of the cycle duration T .

Fig. 7: Optimal gait pattern map for the 3D quadruped.

Fig. 8: Discovered gait patterns for the 3D quadruped with
four phases.

To model all possible gait pattern combinations, we would
need 8 phases. This makes the problem challenging for
the MINLP in the current form, since there are 168 =
4 294 967 296 possible combinations. One way to handle this
is by introducing convex relaxations as in [1], [2], which
would allow us to use mixed integer convex optimization.
This would remove the need to solve MINLP with multiple
randomized initial seeds; albeit increasing the problem size
due to the introduction of auxilary integer variables [1],
[2] needed to select convex pieces of nonlinear functions,
but saving up time in large dimensions. Alternatively, we
select the same number of phases as in the 2D case, which
corresponds to 164 = 65 536 possible combinations. This
restricts the number of possible gait patterns but still allows
us to examine whether the 2D conclusions also occur for the
3D case.

The result is illustrated in Fig. 7, and some example
motions are shown in Fig. 9. We observe a structured gait
pattern map here too. For low speeds, the model favors a
series of gait patterns that avoid flying phases (gaits 1 to
5 as shown in Fig. 8). In higher speed regimes, the model
transits to gait patterns with noticeable flying phases such as



Fig. 9: Snapshots of different computed gaits: three-beat walking, walking trot, four-beat walking and running trot. Red
arrows represent contact force vectors.

Fig. 10: Sampled state space trajectory for Gait 6 (Running-
Trot).

running trot and pace (gaits 6 and 7). Note that the number of
gait patterns we obtained is even larger now, demonstrating
further the need to automate the gait pattern selection aspect.

Next, we focus on the properties of state trajectories within
individual gait pattern regions. We noticed that the shape
remains the same and only the scale of the solutions change,
as in the 2D case. For example, state space trajectories of
the running-trot gait are shown in Fig. 10, for the same
state variables shown in Fig. 6. To test the effectiveness
of the warm-staring strategy in 3D, we randomly pick 10
task descriptors and compare them with the same two TO
methods: one with pre-specified gait pattern only and one
with both pattern and nominal state initialization.

We report the results of the comparison in Table II. The
optimization problems now have 1948 decision variables and
5008 constraints, and become significantly more challenging
to solve. Still, pre-specifying gait pattern and initializing
with nominal state trajectories lead to a large computational
improvements, without sacrificing the number of successful

TABLE II: Differences between two TO methods for com-
puting 3D quadruped locomotion plans with optimal gait
pattern initialization, with and without nominal state.

Method Computation
time

Successful
runs Consistency

MINLP 5+ hours 10 N/A
TO: Gait pattern only 19.136±10.23 7 5

TO: Gait pattern & state 0.3159±0.05 10 10

runs and the consistency.
Further, to validate our method, we adapt the limits of

contact force and foot velocity to be close to the capabilities
of the ANYmal robot, and we successfully demonstrate a
real-world trial (Fig. 1) of a motion computed by our MINLP
approach. We use the controller developed in [28] to track
the motion.

V. CONCLUSION & FUTURE WORK

We presented a framework that automates gait pattern
selection for legged robots. It enables us to systemati-
cally select gait patterns according to task and environment
specifications, without requiring heuristics or input from a
human operator. Another important aspect is that it can be
directly interfaced with existing TO methods that require gait
initialization, providing them with an informed initial seed
regarding both the gait pattern and the state trajectory.

Future extensions of our work will improve two aspects.
First, we will focus on addressing the scalability on high-
dimensional models (i.e. multi-rigid body system), large
number of phases, and complex environments. These prob-
lems stem from either the large number of variables that
increase the complexity or from the non-convexity of the



dynamics model. The number of variables can be reduced
by improving the accuracy of our integration scheme, e.g.
by using a collocation method as in [36]. The non-convexity
of the model can be addressed by using convex relaxations
of the model’s dynamics, for example as in [1].

Second, a more systematic study is required regarding the
structural pattern of the optimal gait pattern map, as well
as the trajectory properties within the regions of the map.
In this work, we exploited the structure of the map and
similarity of state trajectories to warm-start TO methods. We
believe these findings can be generalized for different tasks
(i.e. acceleration and deceleration), performance objectives,
and environments. The computational improvements that
we enjoy using these properties can allow us to achieve
online motion re-planning in real-world scenarios; the human
operator will specify speed, while the gait pattern and state
initialization will be automatically selected to bootstrap the
computation.
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