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Abstract— Wheeled-legged robots combine the efficiency of
wheeled robots when driving on suitably flat surfaces and
versatility of legged robots when stepping over or around
obstacles. This paper introduces a planning and control frame-
work to realise dynamic locomotion for wheeled biped robots.
We propose the Cart-Linear Inverted Pendulum Model (Cart-
LIPM) as a template model for the rolling motion and the
under-actuated LIPM for contact changes while walking. The
generated motion is then tracked by an inverse dynamic whole-
body controller which coordinates all joints, including the
wheels. The framework has a hierarchical structure and is
implemented in a model predictive control (MPC) fashion. To
validate the proposed approach for hybrid motion generation,
two scenarios involving different types of obstacles are designed
in simulation. To the best of our knowledge, this is the first
time that such online dynamic hybrid locomotion has been
demonstrated on wheeled biped robots.

I. INTRODUCTION

Wheeled robots move faster and more efficiently than
legged robots on flat ground. However, legged robots are
more capable at traversing challenging terrains such as
stairs and narrow trenches. Wheeled-legged robots have the
potential to combine the best of both worlds. In this paper,
we will focus on hybrid locomotion for wheeled biped
robots. Hybrid locomotion refers to simultaneous rolling and
walking motion as shown in Fig. 1. It can help the robot
stepping over or around obstacles. Such motion is difficult
to realise on wheeled biped robots since the robot needs to
balance in both forward and lateral directions simultaneously.
The balancing problem in the forward direction has been
studied extensively on two-wheeled self-balancing robots.
The balancing issue in the lateral direction is similar to
the walking problem where discrete contacts are utilised to
achieve the longer term cyclic balance. We unify the two in
this paper to realise hybrid locomotion.

A. Literature Review

For two-wheeled robots, the control problem mainly fo-
cuses on balancing in the sagittal plane (pitch motion) [1].
The most commonly used template model is the Wheeled
Inverted Pendulum Model (WIPM) [2]. Linearization of this
non-linear model around its upright stable equilibrium con-
figuration is needed to enable linear state feedback control
[3]. Alternatively, a non-linear approach can be directly
applied. In [4] differential dynamic programming (DDP)
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Fig. 1: Wheeled biped robot in hybrid locomotion.

and model predictive control (MPC) are applied to generate
whole body motion for a wheeled humanoid robot. However,
the computation complexity of these approaches are not
discussed. In this paper, we propose the new Cart-LIPM
model for controlling the motion in the saggital plane. It
remains linear in a large range of motion compared to the
WIPM linearized around a fixed point. Due to its linearity,
it enables a much higher MPC update frequency comparing
to the non-linear MPC.

LIPM has been widely used to generate walking motion
for biped robots [5] [6]. An important consideration when us-
ing this model for walking motion generation is the actuation
type associated with the foot. Fully-actuated LIPM assumes
planar feet and ankle torques actuation, as a result, the zero
moment point (ZMP) can be modulated inside the supporting
area. In contrast, the under-actuated LIPM assumes point
feet and therefore it has no insole ZMP modulation capa-
bility at all. If treating the walking motion generation as
a footstep optimization problem, different formulations exist
based on the model that has been used. Considering the fully-
actuated LIPM, automatic footstep placement [7] is proposed
to simultaneously optimize footstep placements and ZMP
trajectories. Formulations considering under-actuated LIPM
are also proposed [8] [9]. In those formulations, only footstep



locations are optimized. These works introduce a similarity
regularization term to penalize the deviation of the optimized
footsteps from the referenced ones. In our previous work
[10], we replaced the absolute similarity minimization term
with a relative one which removes the requirement of the
reference footsteps generation plan and makes the footstep
optimization truly autonomous. In this paper, we adopt the
same formulation for lateral stepping motion generation.

For wheeled-legged systems, kinematic motion planning
has been demonstrated in [11] [12] [13]. These robots use
the legs only as an active suspension system while driving
around. Furthermore, the authors impose a quasi-static as-
sumption which limits the type of motion the robot is able
to achieve. The work presented in [14] and [15] exploits
the full robot dynamics of a wheeled humanoid robot which
allows for generating joint torque commands and to achieve
compliant interaction. However, the large mobile base of the
robot makes it difficult to deal with obstacles or uneven
terrain.

More recent results on the wheeled quadrupedal robot
ANYmal demonstrate robust dynamic hybrid locomotion
capability. The authors of [16] [17] [18] proposed different
trajectory optimization (TO) formulations. These formula-
tions integrate the wheels into the control framework so
that the robot is capable of performing walking and driving
simultaneously.

For wheeled humanoid robots, dynamic balance has been
considered by [4] [19] [20]. The common morphology of
these wheeled humanoid robots is that the two wheels are
directly connected to the same base link. In [21], a humanoid
robot is able to drive an off-the-shelf two wheeled mobile
vehicle without being physically attached to it. Despite the
existence of articulated structure, all these robots only use
the wheels for locomotion. In contrast to this, the Ascento
[22] robot from ETH and the Handle robot [23] from Boston
Dynamics have wheels attached to separated extremities.
This makes it possible to potentially use the wheeled leg
for walking. Jumping motions has been implemented to
overcome obstacles for these two robots. Although effective,
it is not always the most efficient way to jump over obstacles.
For example, when the obstacle only blocks part of the way
of the robot, the robot can step over it instead of jumping
over. This motion essentially requires the robot to be able
to balance while it has only one leg on the ground. In this
paper, we will demonstrate how this can be achieved through
our proposed motion synthesis approach.

B. Contribution

• We propose to combine Cart-LIPM and under-actuated
LIPM to generate hybrid motions for wheeled biped
robots. To the best of our knowledge, we are the first
to apply Cart-LIPM for rolling motion generation.

• We propose a two degree of freedoms ankle joint
(roll-pitch) configuration. This enables the decoupling
of rolling and walking motions. It differentiates this
work from many existing wheeled legged robots with
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Fig. 2: Control Framework.

only one pitch joint in the ankle, such as the wheeled
ANYmal [16], Ascento [22] and Handle [23].

• In the whole-body controller, the dynamic nonholo-
nomic constraints on the wheel are defined with re-
spect to the center of the wheel instead of the contact
point which gets rid of the extra wheel orientation
parametrization as needed in [16].

II. CONTROL FRAMEWORK

Our control framework takes a simple user command as
input and automatically generates the whole-body motion
for the robot, including the wheels. The framework has a
hierarchical structure as shown in Fig. 2. The inputs are the
center of mass (CoM) reference velocity v∗c = [ẋ∗c , ẏ

∗
c , 0]T ,

and the contact sequence generated by the state machine.
The contact sequence consists of multiple contact states
which include LS (Left-Support), RS (Right-Support) and
DS (Double-Support). For rolling motion, we only consider
the DS state. For walking and hybrid motions, the contact
sequence are the same as shown in Fig. 3. Given the
desired CoM velocity and the contact sequence, the motion
planner will generate the CoM and end-effector trajectories
in Cartesian space. A whole-body controller is then used to
track these trajectories by finding the optimal joint torques
while considering a set of constraints. Calculated joint torque
commands are sent to the simulated robot and all sensor
readings are collected to ensure full-state feedback. The state
estimator estimates required robot states based on the raw

Ts Ts Ts Ts

LS RSLSRS

Fig. 3: Walking and hybrid locomotion contact sequence. Ts
is the step duration. The contact sequence is defined for the
lateral walking motion, the rolling motion is not affected.



sensor data and feeds back to the planner and the whole-
body controller for the next loop calculation.

In order to fill the gap between the models used in different
hierarchies (simple model in the motion planner and full
model in the whole-body controller), model predictive con-
trol (MPC) is introduced. Reference trajectory re-planning
is carried out with a defined MPC update frequency in
the motion planner while considering current robot states.
This makes the robot more robust and adaptive to external
disturbances and internal sensor noise.

III. MOTION PLANNER

In this section, we will introduce the motion planner. The
input to this block is the linear reference velocity for the
CoM. No steering control has been assumed to simplify the
problem. Before talking about the problem formulation, we
will start with the models.

A. Hybrid Model

Wheeled robots and legged robots are often treated sepa-
rately due to the different nature of contacts for the rolling
and walking motion. Rolling motion assumes continuous
contact with the ground while walking motion relies on
discrete contact changes. These two types of contacts can
happen on the same wheel that is rolling on the ground
with non-holonomic constraints assumed on it. In its forward
rolling direction, the contact position changes along with
the rotation of the wheel. In its lateral direction, the contact
position stays the same.

To simplify the analysis, we assume that the robot does
not steer in the inertial frame and the wheel plane is always
parallel to the x-z plane of the inertial frame. With this
assumption, we can decouple the motion in sagittal plane
and frontal plane. Then we propose to use the Cart-LIPM
model for sagittal plane rolling motion generation and the
under-actuated LIPM for frontal plane walking motion gen-
eration as shown in Fig. 4. These two models are essentially
different variations of the standard LIPM, which makes it
very convenient to compose them. Their dynamics take a
similar form:

ẍc = ω2(xc − xp) (1)

ÿc = ω2(yc − yp) (2)

where xc, yc refers to CoM positions, xp, yp refers to ZMP
positions, w =

√
g/zc is the pendulum frequency with g the

gravitational acceleration and zc the constant CoM height.
The key difference between them is the ZMP property: xp
takes continuous values and yp takes discrete values.

B. Rolling Motion Planning in the Sagittal Plane

The dynamics of Cart-LIPM (1) gives the instantaneous
relationship between CoM and ZMP: the acceleration of
CoM ẍc is proportional to the distance between it and the
ZMP. Therefore, the CoM dynamics can be modulated by
controlling the ZMP position xp. Any higher order derivative
of xp can be chosen as the control input, e.g. ẋp or ẍp
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Fig. 4: Cart-LIPM and Under-actuated LIPM.

depending on the actuation type of the wheel. Here, it is
assumed that all joints of the robot are torque controlled, the
acceleration of the ZMP ẍp has been chosen as the control
input ux and the state space model is:

ẋ = Axx+Bxux (3)


ẋc
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where the state x = [xc, ẋc, xp, ẋp]
T collects the positions

and velocities of CoM and ZMP.
Since the system is linear, we can apply a linear quadratic

regulator (LQR) to stabilize the system. We then compute
an optimal state-feedback control for this continuous-time
system by minimizing the following quadratic cost function:

arg min
ux

∫ ∞
0

xTQx+Ru2
x

s.t.
ẋ = Axx+Bxux

(5)

where Q ∈ R4×4 and R ∈ R1×1 are weight matrices
corresponding to states and inputs. A diagonal weight matrix
Q is chosen and each individual component is selected based
on the importance of the corresponding state. Since we are
more interested in tracking the reference CoM velocity, we
will put higher weight on the CoM velocity state. The input
weight matrix R penalizes the control input ẍp. The wheel
acceleration is actually related to the ZMP acceleration ẍp, so
R is indirectly penalizing the wheel actuation. After having
Q and R determined, the optimal gain matrix K can be
calculated from the associated algebraic Riccati equation
[24]. The feedback law which incorporates the reference
velocity is:

ux = −K(x̂− x∗) (6)

where x̂ is the estimated state provided by the state estimator,
x∗ is the reference state to be tracked. In our case, only the
reference CoM velocity ẋ∗c is included in x∗.

The optimal control problem is solved with LQR but
without considering any hard constraints. Sometimes it is



necessary to incorporate system constraints in the planning,
such as kinematic limits and friction constraints. Although
the template model is very simple, these constraints can be
enforced effectively. Then, the problem can be reformulated
as a quadratic programming (QP) problem.

C. Walking Motion Planning in the Frontal Plane

In the previous section, we addressed how the Cart-LIPM
can be used to generate the rolling motion. In this section,
we will give details about how the lateral direction walking
motion can be achieved. The under-actuated LIPM is used as
the template model since the contact between the wheel and
the ground is ideally a point. Its dynamics given in equation
(2) can be solved analytically:

y(t) = Ay(t)y0 +By(t)yp (7)

where A(t) and B(t) are time dependent matrices:

Ay(t) =

[
cosh(ωt) ω−1sinh(ωt)
ω sinh(ωt) cosh(ωt)

]
By(t) =

[
1− cosh(ωt)
−ω sinh(ωt)

] (8)

It is also the natural dynamics of the model, i.e., the CoM
state y(t) = [yc(t) ẏc(t)]

T evaluates as a function of time for
a given initial state y0 = [yc(0) ẏc(0)]T and a fixed support
foot placement yp.

Due to the under-actuation of this model, the walking
motion planning problem becomes a foot placement opti-
mization problem. Once future steps have been decided, the
CoM motion is fixed accordingly. Specifically, given current
estimation of the CoM state ŷ0 and support foot placement
ŷp,0, the touchdown moment CoM state can be calculated
as:

y1 = Ay(T0)ŷ0 +By(T0)ŷp,0 (9)

where T0 is the remaining duration of the current step. The
state y1 can not be modified due to fixed ŷp,0. Without
double support, the robot switches support instantaneously
and the final state of the current step becomes the initial
state of the next step. After one more step, the CoM state
becomes:

y2 = Ay(Ts)y1 +By(Ts)yp,1 (10)

where Ts is the fixed step duration, the state y2 is only related
to foot placement yp,1. This process can be repeated:

y3 = Ay(Ts)y2 +By(Ts)yp,2

...

yN+1 = Ay(Ts)yN +By(Ts)yp,N

(11)

where N is the number of steps to be optimized. It can be
concluded that all the future CoM states are a function of
future steps. In order to optimize future CoM states, we could
collect all future step locations as the optimization variable
yp = [yp,1 yp,2 ... yp,N ]T . The primary goal in our case is
to track the reference CoM velocity v∗y . The other important
task is the previously proposed relative distance similarity

regularization [10], which keeps the feet away from each
other to avoid self-collision. The overall cost is defined as:

arg min
yp

N∑
i=1

Q(ẏc,i+1 − v∗y)2 +R(∆yp,i −∆y∗p,i)
2 (12)

where ∆yp,i = yp,i − yp,i−1 is the step length between two
adjacent steps, ∆y∗p,i is the desired step length defined as
∆y∗p,i = s·(−1)id, where d is the desired inter-feet clearance,
and s indicates the current support phase (1 for left support
and -1 for right support). The step length similarity cost
term only encourages the feet stay away from each other. In
extreme scenarios such as when the robot has been heavily
disturbed in the lateral direction, hard constraints on the step
length are necessary to prevent feet self-collision or leg over
stretching: dmin < s · (−1)i∆py,i < dmax (i = 1, ..., N).

It is worth mentioning that only the first optimal step
position y∗p,1 will be used to adapt the swing foot trajectory
based on the MPC implementation. The CoM trajectory can
be calculated from (7). The updated CoM trajectory and
swing foot trajectory are sent to the whole-body controller
to track.

IV. WHOLE-BODY CONTROLLER

The whole-body controller is used to track trajectories
given from the motion planner while satisfying specified
constraints. In the case of hybrid locomotion, the targets
which need to be tracked are CoM, support wheel center
position and swing wheel center position. The wheels need to
be coordinated with all other joints to achieve these tracking
tasks. The full dynamic model of the multi-rigid-body system
is thus considered. The equation of motion is:

M(q)q̈ + h(q, q̇) = ST τ + JC(q)
T
λ (13)

where M(q) ∈ R(n+6)×(n+6), h(q, q̇) ∈ Rn+6 are the
mass matrix and nonlinear term, q ∈ SE(3)×Rn represents
the configuration of the system which includes the pose of
the base link and joint positions of n actuated joints, and
q̇ ∈ Rn+6 and q̈ ∈ Rn+6 are the generalized velocity and
acceleration. The selection matrix S = [0n×6 In×n] selects
the actuated joints. τ ∈ Rn is the actuated joint torques.
JC ∈ R(3nc)×(n+6) is a concatenated contact Jacobian
JC = [JT1 JT2 ... JTnc

]T and nc is the number of contacts.
λ ∈ R3nc is the concatenated contact forces corresponding
to the contact Jacobian.

A. Optimization Formulation

The goal of the optimization is to track a set of tasks.
When there is not enough solution space to realise all tasks
at the same time, a mechanism is needed to resolve the
conflicts between tasks. There are two choices: a weighted
approach or a strict hierarchy approach. In fact, the two
can be combined in a general formulation which imposes
strict priorities between different hierarchies while allowing
soft compromises among tasks within the same hierarchy. In
particular, the whole-body control problem is formulated as
a cascade of quadratic programming (QP) problems which
are solved in a strict prioritized order [25]. The optimization



variable is ξ = [q̈T λT ]T . A task with priority p is defined
as:

Tp :

{
Weq,p (Apξ − bp) = 0
Wineq,p

(
Cpξ − dp

)
≤ 0

(14)

where Ap and bp defines the equality constraints and Cp
and dp defines the inequality constraints – they are concate-
nated from all tasks with the same priority p. Weq,p and
Wineq,p are diagonal weight matrices that weigh tasks in
this hierarchy.

B. Tasks

The previous section gives the general optimization for-
mulation (14). In this section, we will highlight tasks that
are important for the hybrid locomotion.

1) Dynamic constraints and torque limits: The system
dynamics equation (13) can be rewritten in two parts [26]:

Mλq̈ + hλ = JTC,λλ (15a)

Mτ q̈ + hτ = τ + JTC,τλ (15b)

where the upper six rows corresponds to the floating base
and are used as system dynamic constraints. The lower
actuated part can be used to calculate joint torques from joint
acceleration and contact forces: τ = Mτ q̈ + hτ − JTC,τλ.
Additionally, torque limit constraints τ ∈ [τ−, τ+] can be
defined with it.

2) Friction constraints and unilateral constraints: The
friction cone is approximated with a friction pyramid and
then enforced on the contact forces λ. In the local frame
of each contact force fi, the constraints can be written as:
|fi,x| ≤ µfi,z , |fi,y| ≤ µfi,z (µ: friction coefficient). The
unilateral constraints requires the z component of the contact
force to be positive fi,z > 0.

3) Nonholonomic constraints: Nonholonomic constraints
ensure pure rolling for the wheel which is in contact with the
ground (no slipping in wheel radial direction and no sliding
in wheel axial direction). Fig. 5 shows our two DoF ankle
joint configuration. Both roll joint and pitch joint are actively
controlled. The roll joint moves in a limited range while the
pitch joint can rotate continuously without limits.

Instead of developing the nonholonomic constraints on the
contact point C, we derive it with respect to the center of
the wheel W . In the inertia frame I, the velocity of point C
can be related to the velocity of the point W through:

vC = vW + ωW × rWC (16)

where vW = JW q̇ is linear velocity of the center of the
wheel (it is not related to the wheel rotation since W locates
on its rotation axis). ωW is the rotational velocity of the
wheel and it can be expressed as ωW = ω̂W · ||ωW || = ŷW ·
q̇W , where ω̂W and ||ωW || refers to the unit vector and norm
of ωW , q̇W refers to the joint velocity of the wheel. rWC is
the vector pointing from W to C. Kinematic nonholonomic
constraints require the velocity of the contact point C to be
equal to zero with respect to the ground, vC = 0. Combining
this with (16), the constraint becomes:

vW + ωW × rWC = 0 (17)
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ĥW
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Fig. 5: The two DoF ankle joints consists of a roll joint and
a pitch joint. I is the origin of the inertia frame I. W stands
for the center of the wheel and it is also the origin of the
wheel link frame W . C is the contact point between the
wheel and the ground. ĥW indicates the heading direction
of the wheel and it is defined from the wheel rotation axis
and the ground norm axis ĥW = ŷW × ẑI . r is the radius
of the wheel.

Differentiating with respect to time gives the acceleration
level nonholonomic constraints:

v̇W + ω̇W × rWC + ωW × (ωW × rWC) = 0 (18)

where v̇W = JW q̈ + J̇W q̇ is the linear acceleration of W ,
ω̇W is the rotational acceleration of the wheel and is related
to the wheel joint acceleration q̈W through ω̇W = ŷW · q̈W .
Substituting these relations into equation (18):

JW q̈ + J̇W q̇ + [ŷW ]×rWC q̈W + [ŷW ]2×rWC q̇
2
W = 0 (19)

where [ ]× is the skew-symmetric cross product operator.
A wheel selection matrix SW can be defined to select out
the wheel joint velocity and acceleration from the general
coordinates: q̇W = SW q̇, q̈W = SW q̈. Finally, equation
(19) becomes:

(JW + [ŷW ]×rWCSW )q̈ = −J̇W q̇ − [ŷW ]2×rWC(SW q̇)2

(20)
which gives the dynamic nonholonomic constraints for the
wheel rolling on the ground.

Although the non-holonomic constraints are defined with
respect to the point W , the location of the contact point C is
needed since rWC has been used in previous derivation. The
contact point is on the edge of the wheel, so the distance from
W to C is a known constant r. Since rWC = r̂WC r, we still
need to find out its unit direction vector r̂WC . The heading
direction of the wheel is defined from the wheel axis ŷW and
the ground norm ẑI : ĥW = ŷW × ẑI . Then, the direction
vector r̂WC can be calculated as r̂WC = ŷW × ĥW =
ŷW × (ŷW × ẑI).

4) Cartesian space motion tracking: The outputs of the
motion planner are Cartesian space trajectories generated



Fig. 6: Rolling motion on flat ground (top row) and uneven terrain (bottom row).

based on the reduced order template models. The whole-
body controller needs to track them as closely as possible.
The commanded acceleration is defined based on the desired
trajectories:

Ẍc = KPE(X ∗,X ) +KD(Ẋ ∗ − Ẋ ) + Ẍ ∗ (21)

where X ∗, Ẋ ∗, Ẍ ∗ are the desired pose, velocity and
acceleration. X , Ẋ are the current pose and velocity of the
controlled frame. E(X ∗,X ) gives the error between two
poses in SE(3) and the logarithm map has been used to
calculate the error [27].KP ,KD are feedback gain matrices.
The commanded task space acceleration is related to the joint
space acceleration:

Ẍc = JT q̈ + J̇T q̇ (22)

where JT refers to the task jacobian matrix. For the cen-
troidal task, it is the centroidal momentum matrix. For the
swing foot tracking, it becomes the swing foot jacobian
matrix.
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ẋc
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Fig. 7: CoM velocity trajectory of the rolling motion (blue
solid). The green dashed line stands for the desired velocity
that has been given to the planner.

V. SIMULATION

Given the motion planner and whole-body control, we
are ready to generate motions for the wheeled biped robot.
Rolling and walking are first generated separately based
on their respective template models. Hybrid locomotion is
then performed to validate the composition of the two. Two
scenarios have been designed to show the usefulness of
the hybrid locomotion mode. The simulation is conducted
in PyBullet [28], a Python module that extends the Bullet
physics engine. The robot used here is the lower-body of the
humanoid robot COMAN+ [29] with attached wheels.

A. Rolling

Rolling is the most basic locomotion mode of the wheeled
biped robot involving rolling on its wheels. Both wheels stay
on the ground throughout the whole motion. In other words,
the robot only has a double support phase. The obvious
benefit of not having single support is that the robot does
not need to handle lateral balancing. The drawback is that
the robot can only navigate over relatively regular terrain.
When encountering significant obstacles, the robot has to re-
plan its route and drive around.

The simulated motion is demonstrated in the top of the
Fig. 6. The snapshots shows a generated rolling motion that
starts from zero velocity and accelerates to a given desired
velocity 1.0m/s. Here, the weights Q = diag([1 104 1 103])
and R = 10 have been tuned to make the robot perform
more aggressively. This can be seen from the third picture
of the top row in which the robot almost fully extend its legs
to maximize the CoM acceleration. A detailed plot of CoM
velocities in forward direction is given in Fig. 7.



Fig. 8: Wheeled biped robot goes over obstacle. The size of the obstacle is 0.5×0.5×0.08m and the radius of the wheel is
0.08m. The current speed of the robot is around 4.5m/s.

Fig. 9: Wheeled biped robot goes around barrier without steering.

To further test the robustness of the control system, we
repeated the same motion with uneven terrain added to the
scene as shown in the bottom of the Fig. 6. The terrain is
generated with Perlin noise with the maximum height of
0.08m. The robot has no knowledge of the terrain but is
still able to traverse.

B. Walking

Fig. 10: Walking motion.

Walking mode is another basic locomotion mode of the
robot. The walking mode described here is a mode in which
both wheels of the robot are locked and treated as point feet.
Besides that, only single support has been considered for
walking as suggested in section III-C. The walking motion is
shown in Fig. 10. Despite the fact that we are demonstrating
motion in the lateral direction only, we do need to take care
of balance in the forward direction since the robot can only
get point support from the wheel. To achieve 3D walking
motion, we have composed two under-actuated LIPMs in
both directions, more details can be found in our previous
work [10]. For walking in place, the desired velocities in
both directions are simply set to zero.

C. Hybrid Locomotion
Hybrid locomotion mode combines rolling and walking.

The contact sequence for hybrid locomotion is the same

as walking as shown in Fig. 3. The wheel in contact with
ground rolls in the forward direction while pushing the robot
in lateral direction. The wheel in the air tracks a trajectory
defined for its center, while its rotation is subject to a
minimum torque task. Two scenarios have been designed to
show the usefulness of this mode.

In the first scenario, an obstacle is presented in front of
the robot and blocks half of the robot, but the robot is able to
step over it while the other wheel on the ground still keeps
rolling. The process of going over the obstacle is plotted in
Fig. 8. The height of the obstacle is the same as the radius
of the wheel and the width and length are both 0.5m. It is
very challenging either to roll over (due to the height) or to
walk over (due to the length). However it can be achieved
through the enabled hybrid locomotion; what is more, the
“step length” in hybrid mode is proportional to the speed of
the robot.

In the second scenario, a much higher barrier is placed in
front of the robot. Instead of steering away to move around it,
with the hybrid mode, the robot can step aside while rolling
forward. This movement is shown in Fig. 9.

The above simulations show that the hybrid locomotion
mode indeed provides the robot more options to traverse
cluttered environments. To summarise, the hybrid locomotion
mode makes the wheeled biped robots much more versatile
and able to deal with scenarios arising in real world, unstruc-
tured environments. The recorded simulations can be found
here: https://youtu.be/AbWz0OjNxpU.

VI. CONCLUSION AND FUTURE DIRECTION

In this paper, we have demonstrated how different types
of motion such as rolling, walking and hybrid motions can



be generated from the composition of decoupled rolling
and walking motion. The Cart-LIPM and the under-actuated
LIPM are proposed to model these scenarios. Due to the
model linearity, the motion planning can be executed in
real time which enables fast online MPC implementation,
significantly increasing the robustness of the motion as
illustrated by the examples.

However, the proposed composition method has limita-
tions introduced by the template models such as the require-
ment of constant CoM height. This prohibits more dynamic
motion, such as jumping, which could be very effective in
certain circumstances. The motion composition necessarily
decouples the rolling and discrete stepping motion along
different directions. In future, we will integrate this, for e.g.,
by combining rolling and walking in the forward direction.
Another issue that has not been mentioned in the paper is
the steering control which could be potentially explored,
especially in the hybrid locomotion scenario.
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