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The study of complex motor behaviours has highlighted the
role of modular representations both in the planning and in the
execution of actions. Recent findings suggest the presence of
functional modules within a variety of neural structures.
Computational investigations are now addressing the issue of
how these modules may act concurrently to generate a wide
repertoire of behaviours.
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Introduction
The most exciting advances in the study of motor systems
have been brought about by a shift in attention from sim-
ple to complex behaviours. Indeed, the class of behaviours
that one elects to consider drastically affects the perspec-
tive on neural computation. When the investigations focus
on the rich repertoire of actions in which living organisms
engage, the number of states and of motor commands to be
represented appears to be tremendously large. Then, com-
putational analyses may provide valuable insights on
constraints that must be satisfied by the neural circuits of
the brain. The focus on complex dynamical behaviours has
also been a feature of recent progress in the control of arti-
ficial systems. There too, the attention has moved from
highly constrained manipulations to more complex tasks,
such as controlling a bouncing ball with a paddle [1•], guid-
ing objects by pushing and rolling [2,3] and, more
generally, handling objects without grasping them [4•].
Understanding how this complex yet ordinary motor com-
petence may be represented and implemented in robots is
of great value for the study of biological motor systems.
This review describes some of the advances that have
been recently brought about in neurobiology by dealing
with the complexity of ‘real’ motor behaviours. Among
these advances is the formulation of new hypotheses about
the building blocks, or ‘modules’, that the central nervous
system (CNS) uses to form useful representations for plan-
ning and control of actions [5]. 

The acquisition of complex skills is facilitated
by internal models of limb dynamics
The ability to generate a variety of complex behaviours
cannot be attained by simply storing randomly the control
signals for each action and then recalling these signals
when needed [6,7]. Simple considerations about the geo-
metrical space of motor behaviours are sufficient to
establish that this approach would be inadequate because
the number of possible configurations of the human body

grows exponentially with the number of its degrees of free-
dom [8]. The number of possible movements, like the
number of rice grains on a Chinese checkerboard, is larger
than the number of synapses in the brain. Therefore, one’s
past experience of movement is necessarily confined to a
negligible portion of this space. To achieve its typical com-
petence, the motor system must be capable of generalising
beyond the set of movements that it has experienced in
the past. This operation is possible only through the con-
struction of some internal representation of the dynamics
of the body and of its environment. These representations
allow us to generate new behaviours and to handle situa-
tions that have not yet been encountered. 

A vivid illustration of how internal dynamical models may
facilitate motor learning is offered by Schaal and Atkeson
(see [9,10,11•]), who studied the task of balancing an
inverted pendulum on the hand of a robotic arm. Humans
have no difficulty executing this balancing task.
Therefore, it seemed that the simplest way to teach a robot
arm the same task was to have it copy every movement
made by a human. When Atkeson and Schaal [10] tried this
direct imitation approach, it failed: even if the human hand
movements were carefully copied by the robot, the small-
est amount of uncertainty associated with sensing and
acting did not allow the pendulum to remain balanced. 

This does not mean that imitation of successful behaviour is
not a valid strategy [12–14]. On the contrary, robots can learn
to copy behaviour successfully when the data from the
observed demonstrations are used not to mimic the expert’s
movements but to build an internal representation of the
motor dynamics associated with the task [9,10,11•]. Such a
representation can be constructed using a computational
method called a search procedure. This method involves
starting with an arbitrary initial model that specifies which
action should be taken at every possible state. Then, the
data from trial and error experiences are used to iteratively
update the model parameters until some optimal or at least
satisfactory performance is attained. It turns out that, in
most cases, search procedures are effective only if the start-
ing point — the initial assumptions about the dynamic
model — is not too far from the correct representation.
Therefore, the work of Atkeson and Schaal [10] shows that
imitation is a useful strategy when it provides the learner
with a good starting point for the subsequent development
of an internal model using a search procedure. 

In the study of biological motor behaviour, the term ‘inter-
nal model’ refers to two distinct mathematical
transformations: first, the transformation from a motor com-
mand to the consequent behaviour, and second, the
transformation from a desired behaviour to the correspond-
ing motor command [15–20]. The first type of
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transformation is described by ‘forward models’. These
models provide the control centers in the brain with the
means not only to predict the expected outcome of a com-
mand, but also to estimate the current position and velocity
of the moving limbs in the presence of feedback delays
(delays associated with the neural processing of sensory
information) [21]. A representation of the mapping (or
transformation) from planned actions to motor commands is
called an ‘inverse model’. Wolpert, Kawato and Miall (see
[22••,23]) propose that the neural structures within the
cerebellum perform sensory–motor operations equivalent
to a combination of multiple forward and inverse models. 

Extensive experimental evidence for the biological and
behavioral relevance of internal models has been provided
by numerous recent studies [16,24–27,28•,29]. Some stud-
ies examined the adaptation of arm movements to a
perturbing force field generated by an instrumented
manipulandum. The major findings of these studies are
briefly summarized here. First, when exposed to a com-
plex but deterministic field of velocity-dependent forces,
arm movements are first distorted but, after repeated prac-
tice, the initial kinematics are recovered [16]. Second, if
the force field is suddenly removed following adaptation,
after-effects are clearly visible as mirror images of the ini-
tial perturbations [16,24]. Third, the CNS achieves
adaptation by forming a local map that associates the states
(i.e. positions and velocities) visited during the training
period with the corresponding forces [30,31••]. Finally,
after adaptation, this map (i.e. the internal model of the
field) undergoes a process of consolidation [25]. 

In order to generate the appropriate command for a desired
movement of the arm, an inverse model must take into
account that multi-joint inertia depends on limb position
and velocity. Therefore, an inverse model must be
informed about the current state of motion of the limb.
This information may come in one of two ways: first, from
the input to the inverse model that specifies where the
limb should be or, second, from a prediction of the current
state based on delayed sensory feedback and on the past
history of motor commands. Bhushan and Shadmehr [32••]
have found compelling evidence for the second way. Their
experimental results are consistent with the hypothesis
that we learn to compensate for changes in limb dynamics
through a process that involves the combined adaptation of
a forward and of an inverse model of the limb. 

What are internal models made of? The
concept of motor receptive fields
Once established that the motor system creates internal
representations of complex multi-joint dynamics, it
remains to determine how these representations may come
about. As pointed out by Marr [33], any mathematical
transformation may be carried out in different ways
depending on which elementary building blocks or ‘prim-
itives’ are employed. To identify a set of possible
primitives, one can use one of two approaches: a top-down

approach, which is based on the nature of the problem to
be solved, or a bottom-up approach, which is based on the
properties of the motor output. As detailed below, these
approaches can lead to opposite conclusions about an
important feature of motor primitives.

The goal of a control system is to define a policy [34] — that
is, a function that assigns to every possible state of the system,
and its relevant environment, a specific action, such as the
force to be produced by the limb muscles. Schaal and
Atkeson [35••] demonstrated that complex policies can be
learned by tuning the parameters of local controllers. Their
approach to motor learning falls within the broad mathemati-
cal framework of function approximation [36]. The
construction of an optimal (or, simply, of a ‘good’) policy from
experience is equivalent to the reconstruction of an unknown
function from a set of sampled data — in this case, the com-
bination of states and actions experienced during training.
These data are used for tuning the parameters of predeter-
mined basis functions — such as local linear controllers in
[35••], radial basis function in [37] or Gaussian fields in [38].
A local controller operates only over a limited region of state
space, which is called a receptive field in analogy with visual
and somatosensory receptive fields. The computational
analysis of Schaal and Atkeson [35••] shows that on-line learn-
ing of complex behaviours is successful only when the
receptive fields are sufficiently small. If each local controller
had a large region of influence, the tuning of its parameters
might interfere disruptively with neighbouring regions. 

In contrast to top–down analysis, bottom–up analysis has
revealed that the likely building blocks used by the central
nervous system for the generation of motor behaviours
have large domains of influence. I call such building blocks
‘motor primitives’. Like primitives in natural and comput-
er languages, motor primitives may be combined by the
central nervous system to generate a grammar of more
complex constructs that is, in this case, of more complex
motor behaviours. Some important properties of biological
motor primitives have emerged from the results of two
electrophysiological studies. These studies, which
involved the stimulation of muscles and of the spinal cord
in spinalized frogs [39,40] presented three main findings:
first, that the focal stimulation of a site in the lumbar spinal
cord results in the activation of multiple muscles acting on
the ipsilateral leg; second, that synergistic muscle recruit-
ment generates a field of viscoelastic forces over a broad
region of the leg workspace; and third, that the simultane-
ous activation of multiple spinal sites leads to the vectorial
summation of the corresponding force fields. A computa-
tional analysis of electromyographic (EMG) activities
induced in frogs by cutaneous stimulation of the leg has
provided additional support to the hypothesis that the
spinal cord organises a small set of motor primitives that
are expressed by fixed synergies of leg muscles. [41••].

Taken together, these studies indicate that motor com-
mands are not directed at controlling the forces of
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individual muscles or single joint torques. Instead, it
appears that the descending commands that are directed at
spinal interneurons modulate the viscoelastic force fields
produced by specific sets of muscles [42]. These force
fields influence broad regions of the limb state space as
each active muscle within a synergy contributes a signifi-
cant force over a large range of positions and velocities.
Simulation studies have shown that broadly tuned nonlin-
ear force fields similar to those elicited by stimulation of
the spinal cord can generate — by linear combination —

the kinematic and dynamic repertoire of reaching
movements [38]. However, as shown by Schaal and
Atkeson [35••], broadly tuned force fields would lead to
negative interference if their parameters were modified so
as to optimize locally one movement at a time. In this
respect, it is worth pointing out that human subjects dis-
play a significant degree of negative interference when
adapting to a novel force field [16]: after adaptation is com-
pleted in a region of workspace, after-effects are clearly
observable in different regions.

The trade-off between learning and stability
As pointed out by Hogan [43], another critical issue in
defining the properties of motor primitives is the issue of
stability (see also [44]). A controlled behaviour is stable
when errors induced either by inaccuracies in planning or
by unexpected perturbations are automatically corrected so
that the behaviour is rapidly restored. A number of experi-
mental and theoretical studies provide support for the
equilibrium point hypothesis, according to which reaching
movements, as well as other behaviours, are generated by
the CNS shifting the static equilibrium of a limb along a
continuous trajectory [45]. From a mechanical standpoint,
this theory emphasizes stability: movements are construct-
ed and represented as smooth transitions among stable
postures. In this respect, the hypothesis that the CNS com-
bines spinal force fields to generate stable behaviours is an
extension of the equilibrium point hypothesis. 

Lohmiller and Slotine [46••] have used an elegant para-
digm from nonlinear fluid dynamics to show that in the
control of a nonlinear system, such as a multijoint arm, the
linear combination of stable dynamical primitives leads to
stable behaviours. They found that the force fields gener-
ated by muscle synergies are indeed stable primitives
within regions that correspond to the receptive fields
defined above: these are regions within which external
perturbations are compensated for by elastic forces. From
this analysis it follows that stable behaviours are enforced
over broad domains of a limb’s state space by combining
stable synergies with large receptive fields.

Higher-order primitives
While the internal representation of limb dynamics is vital
for the execution of complex tasks, movements are
planned in ways that may be independent from the details
of movement execution. Indeed, the computational mod-
ules that are needed for movement planning may have

features that are distinct from the modules for movement
control. In early groundbreaking work, Georgopoulos et al.
[47] investigated the activities of motor cortical neurons in
relation to the direction of hand movements. They found
that the firing rates of individual neurons are broadly tuned
to preferred hand directions and that the linear combina-
tions of preferred directions weighted by the cells’
activities provide a good estimate of movement direction.
The importance of Georgopoulos’ approach lies in the
attempt to establish a direct relation between neural activ-
ities and kinematic variables related to movement
planning (see [48,49]). These findings, however, were con-
troversial as they may be consistent both with coding of
variables related to movement execution, such as muscle
activities, and with coding of variables related to move-
ment planning, such as hand kinematics [50,51]. Whereas
some recent studies suggest a strict relation of motor corti-
cal activity with the action of muscles [52–54], others have
shown dissociation between cortical activity and move-
ment execution [55,56••,57••]. 

The presence of separate neural representations for move-
ment planning and movement execution raises interesting
questions regarding the relationship between these repre-
sentations. Rizzolatti and Fadiga [58] suggest that the
representation of action supported by ‘mirror neurons’ in
area F5 is a representation of action goals rather than of
motor outputs. If these neurons form the basis for a ‘vocab-
ulary’ of actions [59••] — that is, if they support planning
modules — then it is of great importance to understand
how the words of this vocabulary may be combined with
each other by the brain to span a repertoire of purposeful
behaviours. At present, we know that force fields imple-
menting the execution of motor commands are combined
by vectorial superposition. However, the rules that govern
the combination of goals appear to be more complex. If
there is a system of higher order primitives that codes for
goals, then it remains to be established how these goals
may be translated into movements so that their concurrent
activation leads to meaningful actions.

Conclusions
The latest progress in the study of the motor system has
been characterized by an increased focus on the complex
dynamics of natural tasks in conjunction with the develop-
ment of new experimental paradigms for the investigation
of motor learning. There is a convergence of theoretical
and experimental studies on the concept that complex
control problems may be solved by a combination of inde-
pendent modules. From a functional perspective, these
modules implement control policies by associating an
action to each state (position and velocity) visited during
past limb movements. From a neurophysiological perspec-
tive, these modules organize specific synergies of muscles.
Finally, from a mechanical perspective, these modules
generate force fields upon the controlled limbs. The range
of action of a module has been defined as a receptive field.
There is a significant trade-off between the demands for
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stability and the mechanics of muscles, both of which lead
to broad receptive fields, and the demands of learning,
which suggests narrow receptive fields in the interest of
reducing unwanted interference across the state space.
This trade-off defines an important area for future investi-
gations into the interactions between higher and lower
centers of the motor system.
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