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Today’s Topics

m Distributed definitions of task/domains, and different
problem settings that arise.

m A flexible approach to task/domain transfer
m Generalizes existing approaches
m Generalizes multiple problem settings

m Covers shallow and deep models



Why Transfer Learning?
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But.... Humans seem to generalize across tasks
E.g., Crawl => Walk => Run => Scooter =>
Bike => Motorbike => Driving.
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Taxonomy of Research Issues

Sharing Setting Labeling assumption

m Sequential / One-way m Supervised
m Multi-task m Unsupervised

m Life-long learning

Sharing Approach

m Model-based
m Instance-based

= Feature-based Feature/Label Space
Balancing Challenge = Homogeneous

m Heterogeneous

Transfer Across:

m Task Transfer
®m Domain Transfer

m Positive Transfer Strength
m Negative Transfer Robustness
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Overview

m A review of some classic methods
m A general framework

m Example problems and settings

m Going deeper

m Open questions




Some Classic Methods - 1
Model Adaptation

An example of simple sequential transfer:

m Learn a source task: y=f(x,w,) HJ}“E Vi WX |+ AW, W,
m Learn a target new task: y=f,(x,w) ngvinz‘yi —WTX,-‘+7L(W—WS)T(W—WS)
m Regularize new task toward old task
m (...rather than toward zero)
Wy w,
%% ) : £./‘: ®e
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E.g.,Yang, ACM MM, 2007



Some Classic Methods - 1
Model Adaptation

An example of simple sequential transfer:

. T
m Learn a target new task: Y=/ (XW) min Y|y, - w'x,[+ A(W-w,) (W-w,)

m Limitations:
x Assumes relatedness of source task
x Only sequential, one-way transfer

E.g.,Yang, ACM MM, 2007



Some Classic Methods - 2
Regularized Multi-Task

An example of simple multi-task transfer:

m Learn a set of tasks: {Xi,t’yi,t} [ {y = ft(X,Wt)}

+ AW, —w, )T (W, —wW,)

. T
min E‘Yi,t - W, Xi,t
Wo W, &
t=1T l’t

m Regularize each task towards mean of all tasks:

o
g
1
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°
® 3\’/7 ‘\05\' ° E.g., Evgeniou & Pontil, KDD’04
W, E.g., Salakhutdinov, CVPR’11

E.g.,Khosla, ECCV’12



Some Classic Methods - 2
Regularized Multi-Task

An example of simple multi-task transfer:

m Learn a set of tasks: {Xi,t’yi,t} [ {y = ft(X,Wt)}

+ AW, —w, )T (W, —wW,)

. T
mlnz‘%,t - W, Xi,t
Wq, W, &
t=1T l’t

. T
Or min E ‘yi,t - (W, +W,) X,
B Summary: T it

v Now multi-task
x Tasks and their mean are inter-dependent: jointly optimise

x Still assumes all tasks are (equally) related . ®e )
1




Some Classic Methods — 3
Task Clustering

Relaxing relatedness assumption through task clustering

m Learn a set of tasks: {Xi,t’yi,t} [ {y = ft(X,Wt)}

m Assume tasks form K similar groups:

m Regularize task towards nearest group

. T
+n}€1'n)L(w, -w,) (W,-w,_)

: T
min E ‘yu -W,X,,
Wi W, ;

k=1..K t=1..T Lt

*
o
° 3\’/’7 \ogﬁ'o ® E.qg., Evgeniou et al, JMLR, 2005

E.g.,Kang et al, ICML, 2011



Some Classic Methods — 3
Task Clustering

Multi-task transfer without assuming relatedness

m Assume tasks form similar groups:

T
. T .
min E‘ym ~W,X;,|+min Aw, -w,) (W, -w,)

Wi W, 5
k=1..Kt=1..T it

B Summary:
v Doesn’t require all tasks related => More robust to negative transfer
v Benefits from “more specific” transfer
x What about task specific/task independent knowledge?
x How to determine number of clusters K? e X
x What if tasks share at the level of “parts”?
X

° *
Optimization is hard Y Lo °
plimizatl Wl .‘Il .f{ \.}..
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Some Classic Methods — 4

Task Factoring

m Learn a set of tasks {xi,t,yi,t} [ {y = ]C,(X,W,;)}

m Assume related by a factor analysis / latent task structure.

: : Binary task indicator vector
m Notation: Input now triples: {X,-,y,--Zi]- &« y

m STL, weight stacking notation:y = f, (x W)= W(t N (WZ)T X

H%VmZ‘yi -
1

y = (WZ)T X = (PQZ)T X
m1nE‘y (POz,) ‘+)L|P|+a)|Q|

Wz, )T X[+ )L|W|z

m Factor Analysis-MTL:

E.g., Kumar, ICML’12
E.g.,Passos, ICML’'12
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Some Classic Methods — 4
Task Factoring

m Learn a set of tasks {X,-,y,-,zi} ﬁ y= f,(X,W)

m Assume related by a factor analysis / latent task structure.
T T T
m Factor Analysis-MTL: y=wX= (WZ) X= (P QZ) X

m What does it mean? mlnz‘% (PQz, ) I.‘+)L|P|+a)|Q|

m W:DxK matrix of all task parameters
m P: DxK matrix of basis/latent tasks
m Q:KxT matrix of low-dimensional task models

m => Each task is a low-dimensional linear combination of basis tasks.
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Some Classic Methods — 4
Task Factoring

m Learn a set of tasks {X,-,y,-,zi} ﬁ y= f,(X,W)

m Assume related by a factor analysis / latent task structure.

T T T
m What does it mean? y=WwX= (WZ) X= (PQZ) X
m z: (1-hot binary) Activates a column of Q
m P: DxK matrix of basis/latent tasks mlnz‘yl PQZ ) i‘+A|P|+w|Q|

m Q:KxT matrix of task models

m => Tasks lie on a low-dimensional manifold

m => Knowledge sharing by jointly learning manifold

m P: Specify the manifold
m Q:Each task’s position on the manifold
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Some Classic Methods — 4

Task Factoring

m Summary:
m Tasks lie on a low-dimensional manifold

m Each task is a low-dimensional linear combination of basis tasks.

v Can flexibly share or not share: y= thX — (WZ)T X = (PQZ)T X
m Two Q cols (tasks) similarity.
v Can share piecewise: mlnz‘y PQZ i‘ + )L|P| + CU|Q|

m Two Q cols (tasks) similar in some rows only

v Can represent globally shared knowledge: W,

m Uniform row in Q => all tasks activate same basis of P
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MTL Transfer as a Neural Network

m Consider a two sided neural network:
m Left: Data input x.
m Right: Task indicator z.

= Output unit y: Inner product of representations

m Equivalent to: Task Regularization [Evgeniou KDD’04], if:
m Q =W: (trainable) FC layer. P: (fixed) identity matrix.
m z: l-hot task encoding plus a bias bit => The shared knowledge
m Linear activation

@ min
W, W,

t=1T lat

T
yi,t _(Wt +WO) Xi,t

//‘C) //<> y=(W,+W,) X

[ Yang & Hospedales, ICLR’15 ]




MTL Transfer as a Neural Network

m Consider a two sided neural network:
m Left: Data input x.
m Right: Task indicator z.

m Output unit y: Inner product of representation on each side.

m Equivalent to: Task Factor Analysis [ Kumar, ICML’'12, GO-MTL ] if:

® Train FC layers P&Q meters:
m z: 1-hot task encodin ' ‘.‘Onlpaxa pro S
o g Sk deSC‘ﬂpTL /MD‘_\ ap
m Linear activation 1nind =" st
Cconst@ ™ Tgy cl@ ,
& ErcomP® y=(Wz)' x

= = min Sy (P0)
//() %<> 0 .Q i




MTL Transfer as a Neural Network:
Interesting things

m Interesting things:
m Generalizes many existing frameworks...
m Can do regression & classification (activation on y).
m Can do multi-task and multi-domain.

m As neural network, left side X can be any CNN and train end-to-end

Y

P_| KX e Q y=(Wz) x

x: Data z: Task/Domain-ID PO



MTL Transfer as a Neural Network:
Interesting things

Interesting things:

m Non-linear activation on hidden layers:
m Have representation learning on both task and data.

m Exploit a non-linear task subspace.
m CF GO-MTL’s linear task subspace.

m Final classifier can be non-linear in feature space.

9

XK XA XK X

v &

x: Data z: Task/Domain-ID P.0
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m A general framework

m Example problems and settings

m Going deeper
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From Indexes to Task and Domain
Descriptors

m Classic Task & Domain transfer:

m [Index atomic tasks/domains. (z is 1-of-T encoding)

m In many cases have task/domain metadata.
m Let z be a more general task descriptor.
m Distributed representation z : provides a “prior” for how to share latent tasks
m E.g., Object recognition: Task = object category

m Improve MTL learning with descriptor: z = attribute bit-string, wordvector

9

//OQ

x:Data z: Task P.Q



MTL: Informative Tasks

MTL: Atomic Tasks

ﬁ “Tiger”

Task: Furry, Carnivore

black, brown: |[1,1,0,1,0,0] black,white:|1,0,1,1,0,1}

ﬁ “Tiger”

Task:ID=[0,1]

+
MTL With Informative Tasks
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Task:ID= [1 0] [ Yang & Hospedales, ICLR’15 ]
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Neural Net Zero-Shot Learning
Task-Description MTL gets ZSL for free

m Conventional MTL:
m y = {(x,2): 1/0 for 1-v-all. x:data. z: category index

m MTL with task description
m v =1{(x,2z): 1/0 for 1-v-all. x:data. z: category description (e.qg., attributes).

m From descriptor driven MTL to ZSL:
m With this framework you don’t have to have seen a task to recognise it.

m ZSL Pipeline:
m Train: 1-v-all to accept matched data & descriptors, reject mismatched.
m Test: Compare novel task descriptors z’ with data x @

m Pick z* =argmax,, {(x,2’) | |
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Task-Description MTL gets ZSL for free
(Just describe new task)

8
@ “Tiger” ﬁ “Panda”
] ,:\» . : E'&!'J'-I ’“2 ?‘ 2?
E :— 7 | .’VT‘*:X« %
fd e
- I
E
Task: Furry, Carnivore Task:Furry, Vegetarian % %
black, brown:[1,1,0,1,0,0] black,white:[1,0,1,1,0;
ss
B % %
Or wordvec, Task: Furry, Carnivore, v O

etc — —— Black:[1,1,0,1,0,0]



From Indexes to Task and Domain
Descriptors

m Classic Task & Domain transfer:

m Index tasks/domains. (z is 1-hot encoding)

m In many cases have task/domain metadata.
m Let z be a more general domain descriptor.
m Distributed representation z : provides a prior for sharing the latent domains
m Gait-based identification: z = camera view angle, distance, floor type

m Audio-recognition: z=microphone type, room type, background noise type.

9

y = O’(PX)O’(QZ)T

XK X

e = . e Q minz‘yi—a(Pxi)G(in)T

x:Data z: Domain



Multi-Domain Learning with
Descriptors: Example

HWY 89 AT HWY 28 & HUY 89 AT Huv 281 L

HWY 83 ATwHUWY. 28 L
.’?"\K' Y ‘L’

Surveillance dataset
Hoffman CVPR’14

Domain =1 Domain = 2 Domain = 3 Conventional DA/MDL

Temporal Domain Evolution

Time = 1 Time= 3 Time =17 (Lampert CVPR’15,
Hoffman CVPR’14)

Degree of Similarity vs Type of Similarity

Evening, Summer Night, Summer Day, Winter Richer Domain
6PM, Weekday 1AM, Weekend 6PM, Weekend Descriptions

\

[ Yang & Hospedales, ICLR’15, CVPR’16, arXiv ‘16 ]



Zero-Shot Domain Adaptation:
A New Problem!

m Zero-Shot Domain Adaptation:

m Analogy of ZSL but solve a novel domain rather than task.

m Pipeline:
m Train: A few domains with descriptors.
m Test:
m “Calibrate” a new domain by input descriptor

m => Immediate high accuracy recognition.

| |

P | XKEI XKE]

Iesisioanefeisiodne)

x: Data z: Domain
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Zero-Shot Domain Adaptation:

Car Type Recognition

Domain Factor 2: Decade

Test

Train

Domain Factor 1:View Angle




Zero-Shot Domain Adaptation:
A New Problem!

m Zero-Shot Domain Adaptation:

m Analogy of ZSL but solve a novel domain rather than task.

m ZSDA Contrast: Domain Adaptation
m ZSDA has no target domain data, either Labeled/Unlabeled

m ZSDA has a target domain description

m ZSDA Contrast: Domain Generalization
m ZSDA Should outperform DG

m ...due to leverage target domain description

|

P | XOKXS XK XS
Isicioanellcisiozne)
x: Data z: Domain
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From Indexes to Task and Domain

Descriptors

m Interesting Things:
m Can we unify Task/Domain sharing for synergistic MTL+MDL?
m E.g.,Digit Recognition
m Task: Digits 0...9.
m Domain: MNIST/USPS/SVHN.

m => Simultaneous MTL + MDL?

9

i et 2| y=o(Px)o(0z)

x: Data 2: Task+Domain PO



Multi-Task Multi-Domain: Digits |I

Tasks

Simple Way: Concatenate task + domain index: 2-hot task+domain descriptor.
Better ways with tensors....
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Related Problem Settings:

Summary e

Performance
\ |
|

|
Multi-Task ‘ Multi-Task # Zeroshot Recognition

1-hot, Atomic Distributed Generalisation
domains/tasks domains/tasks Across task/domain descriptions

Multi-Domain ‘ Multi-Domain # Zeroshot Domain Adaptation

New Settings

\

Simultaneously Transfer
Across Tasks + Domains

9

MT-MDL | | l

' » XK R :

I
Pertormance [ O O * "0 O
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Going Deeper

Outstanding Questions:

m Introduced a NN interpretation of (shallow) MTL.

m [s there a deep generalisation?

m Looked at MTL/MDL single-output regression/binary classification.

m What if we want MTL/MDL with multi-output classification/regression?

[ Yang & Hospedales, arXiv ’16 ]
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Multi-Task Multi-Output

Can share in shallow model

MNIST: Character Recognition: !l
Tasks: 10x 1-v-all binary tasks?

6 Tasks: One 10-way multi-class task? ﬁ
e

-
3
9

al

OO0 G &

!
S
S
b

W%y~

No knowledge sharing in shallow softmax models.
( But outperforms 1-v-Alll ®)
( Can share early layers in Deep model )

OMNIGLOT: Multi-task Multilingual T Y TR Y X g> D : :v; g p
Character Recognition:

Tasks: 50 languages = 50 tasks.

=> Each task is a multi-class problem

amuaaﬁuqﬁmmaummmmm
94390 5©5d0sbo 0dogds
A0 5°CE ADRKN™Y®>C o M oa M o /LSb®e oN!
Ideally to share both:

Across classes/chars within each task/language.
Across tasks/languages.

[ Yang & Hospedales, arXiv ’16 ]
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Multi-Output Multi-Task/Domain

9

l |

P | XOKXS XKES Q

Isisioanoflcisioanel

Single-output:
Synthesize a single model weight vector

y=(w(2)) x =zPQx

Multi-output:
Synthesize a single model weight matrix

y=W'(z)x

Weight generating functions

Multiclass Outputs

a,b,c,d,e, f

[ JseL,

Z Ase,

A0 oCE ADBKNY®>C M ga




+
Deep Multi-Task Representation
Learning

&

P [ XOKXS XK XS Q
Shallow:

Synthesize a single model weight vector

y=(w(z)) x =zPQx

Deep:

Synthesize multiple model weight — Task/Domain
matrix/tensor: ; l Descriptor

T
y=W (2)x [ Yang & Hospedales, arXiv ’16 ]
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Deep Multi-Task Representation
Learning

m E.g., One layer of one task needs a 2D matrix:
m Same layer for all tasks is a 3D tensor.

m Apply tensor “factorization”
m Recall: Classic MTL as weight matrix factorization
T T T
y=wx=(Wz) x=(PQz) x

m “Discriminatively trained” weight tensor
factorization

W= eV e U@ e y®

m Similarly for conv layers: Higher order tensors

m Can train end-to-end with backprop. Inputs Task/Domain
i l Descriptor

[ Yang & Hospedales, arXiv ’16 ]
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Deep Multi-Task Representation
Learning

m Classic MTL as weight matrix factorisation

All Task —W=PO

Weights DxT / \

Shared Task-Specific
Representation  KxT
DxK

m Now, weight tensor factorisation

All I.IIaSk W S U(l) ° U(2) ° U(3)

Welghts
DxTxC
- Task/Domain
Shared Task Spec1f1c Descriptor
KxT [

KxKxK Representation Class-Specific
KxD KxC [ Yang & Hospedales, arXiv ’16 ]
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Contrast “Deep multi-task”

m In deep learning community, “multi-task” often interpreted as:

Age  Expression Gender g Byt this is implicitly:

- Completely Independent

J\

— Fully Shared

m i.e., a manually defined sharing
structure

E.g.,Ranjan, Hyperface, arXiv’16
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Contrast “Deep multi-task™

.. But ideal sharing structure is unknown.
m Depends on (non-uniform) task relatedness.

m E.g., this may be better:
A: Learning the tensor sharing
structure at every layer sidesteps

explicit architecture search.

11

Q

Q:Which layers should be
task-specific, and which layers
should be shared? (And
shared between which tasks?)

Inputs Task/Domain
Descriptor
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Deep Multi-(Task/Class) Multi-
Domain: Digits

Tasks
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Deep Multi-(Task/Class) Multi-
Domain: Digits

Tasks

—

Amazon

Webcam “

Domains
A

[ Yang & Hospedales, arXiv’16 |



Deep Multi-Task-Multi-Class:
Omniglot

Classes

( \

LY TREN L FL P 1 Ry
ﬂ%‘MﬂﬂﬁM?O@NMQﬁ@W@QNMQ@
4390 50530560 0d50dd

— AobCE ADBHh™IBDC Mo o/Lsb®oNe

Tasks
\

As a byproduct learn how related different
languages are (visually) related to each other.

[ Yang & Hospedales, arXiv’16 ]



Deep Multi-Task Representation

Learning: Summary

m Generalised the best task subspace-
based sharing to deep networks

m Can do both 1-hot and informative
tasks/ domains

m Can now solve multi-class/multi-task
problems (omniglot) multi-task/multi-
domain (office)

m No architecture search
Iv:"f":? W?»j« °€%352>=> : 3;2??

94390 0;9080050 obog)g?)o

A0 5°CE ADHK™J®>C @ Mo o /LSbse oNe

\ Descriptor
|

[ Yang & Hospedales, arXiv ’16 ]
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Open Questions

m Continuous/structured rather than atomic tasks/domains.

m MDL + ZSDA under-studied compared to MTL + ZSL
m Killer Apps of Zero-Shot Domains?

m Multi-Task/Domain learning with hidden/noisily observed descriptors.
m Infer descriptors from data => a MTL extension of mixture of experts?
m Infer current task/domain from reward => Non IID setting.

m Richer abstractions/modularisations for transferring knowledge.

m Life-long learning setting
m See tasks in sequence. Don’t store all the data.

m Speculation: Supervised more interesting than Unsupervised
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Thanks For Listening!
Any Questions?

m Distributed definitions of task/domains, and different problem
settings that arise.

m MTL => ZSL
m MDL => ZSDA

m A flexible approach to task/domain transfer
m Generalizes many existing approaches
m Covers atomic and distributed task/domain setting, ZSL and ZSDA.
m Deep extension of shallow MTL/MDL.

m Sidesteps “Deep-MTL” architecture search
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