Data-Driven Facial Animation (2)

Taku Komura

Deep Fake, Digital Dub

- High interest in animating famous people saying things they don't really say
- Let's look at how this can be done

Overview

- Fitting 3D face models into 2D images (Blanz and Vetter '99)
- Controlling the person in the video by your own face (Thies et al. 2016)
- Further improvement by deep learning (Kim et al. 2018)

Let's first think of fitting 3D models into 2D images (Blanz and Vetter '99)

Given a 2D image, if we can fit a 3D model into it, we can

- change the view direction
- change the lighting condition
- edit the face in 3D

3D Reconstruction

Building a space of faces/heads in 3D

- Using a lot of face data of different people, we can construct a space of different faces/head (using face/head of 200 people)
- These are collected using the Cyberware scanning system
- The correspondence of the faces need to be made using a generic face model (as done in deformation transfer, expression cloning)
- Applying Principal Component Analysis to the data

Morphable Models

- Principal component analysis is applied to the geometry and texture of the face dataset
- The geometry and texture of a new face can be represented as

$$S_{model} = \overline{S} + \sum_{i=1}^{m-1} \alpha_i s_i, \quad T_{model} = \overline{T} + \sum_{i=1}^{m-1} \beta_i t_i$$

where \bar{S} , \bar{T} are average geometry and texture, s_i , t_i are their principal components, and α_i , β_i are coefficients

Different Faces by Adjusting the Coefficients

- Here we show an example where we produce example faces by adjusting the coefficients of the principal components
- The face is segmented into different parts and the components are adjusted for each part separately
- Local control this was also done in Spacetime faces

Computing the Morphable Model From Images

- Using the morphable model, we can fit the model to the image
- Given the camera direction, lighting condition, etc, we can compute the image of the morphable model by computer graphics (Phong illumination)
- Minimize the difference of the computer generated image and the original image

$$E_I = \sum_{x,y} ||\mathbf{I}_{input}(x,y) - \mathbf{I}_{model}(x,y)||^2$$

• We compute $\min_{\alpha,\beta} E_I$ to find the geometry and texture parameters

 First a the model is roughly fitted to the image

 The texture and geometry is optimized to match the photo

 Multiple images can be used to further improve the fit

Automated Matching

Overview

- Fitting 3D face models into 2D images (Blanz and Vetter '99)
- Controlling the person in the video by your own face (Thies et al. 2016)
- Further improvement by deep learning (Kim et al. 2018)

What about doing this with video?

- For video, more things to do
- Expression changing, mouth opening and closing
 - A morphable model that can change the facial expression is needed
- Also, the head is moving around
 - We need to predict the head orientation, translation too

Face2Face (Thies et al. 2016)

Controlling another person in a video with your own face

Extra Basis for Expression

 Another set of basis are computed from different expressions of subjects and added

$$\mathbf{S_{model}} = \overline{\mathbf{S}} + \sum_{i=1}^{m-1} \alpha_i \mathbf{s_i} + \sum_{k=1}^{N} \delta_k \mathbf{b_k^{exp}}$$

where $\mathbf{b_k^{exp}}$, δ_k are the extra basis and coefficients to produce different expressions, computed from people with different expressions

Aligning the Face Model with the Face Image

- We need to further predict the translation and rotation of the face
- Also need to make sure the important feature points (eyes, mouth, nose, chin etc) align well

• Using feature points that are detected by computer vision techniques

is very useful

Lighting with spherical harmonics

- Representing the lights by spherical harmonics representation
- Something like Fourier basis of a function on a sphere domain
- Can represent natural lighting condition with a smaller number of coefficients

Parametric 3D face model

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Parametric 3D face model

$$p=($$
 , , ,) $\in \mathbb{R}^{257}$, Pose Expression Identity Lighting

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Parametric 3D face model

$$p=($$
 , , ,) $\in \mathbb{R}^{257}$, Pose Expression Identity Lighting

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Parametric 3D face model

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Statistical and temporal regularization

Garrido et al., ToG 2016

Parametric 3D face model

$$p=($$
 , , , ,) $\in \mathbb{R}^{257}$ Pose Expression Identity Lighting

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Statistical and temporal regularization

Garrido et al., ToG 2016

Parametric 3D face model

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Eye model

Saragih et al., FG 2011

Expression Transfer

- Now we can fit a 3D model to the source video
- Let's think of changing the contents of the person in the target video
- Changing the head motion, the expression of the person, the mouth movements

Producing the target model

- The previous step is repeated for the target video
- We can then obtain the identity and expression basis for the target

Monocular 3D Face Reconstruction

Parametric 3D face model

$$\min_{p} E(p) = E_{\text{photo}}(p) + E_{\text{land}}(p) + E_{\text{reg}}(p)$$

Statistical and temporal regularization

Garrido et al., ToG 2016

Expression Transfer (2)

- Transferring the expression changes from the source to the target actor is done by deformation transfer
- Assuming source identity α^S and target identity α^T fixed, transfer takes as input the neutral δ_N^S , deformed source δ^S , and the neutral target δ_N^T expressions.
- Output is the transferred facial expression δ^T directly in the reduced sub-space of the parametric prior.

Expression Transfer (3)

- We first compute the source deformation gradients $A_i \in \mathbb{R}^{3\times3}$ that transform the source triangles from neutral to deformed.
- The deformed target $\widehat{\mathbf{V}}$ is then found based by solving a linear least-squares problem

$$E(\boldsymbol{\delta}^T) = \sum_{i=1}^{|\boldsymbol{F}|} \left| \left| \mathbf{A}_i \mathbf{V}_i - \hat{\mathbf{V}}_i \right| \right|_F^2$$

where neutral state V is the neutral state of the triangle

Mouth Retrieval

- For a given transferred facial expression, it is necessary to synthesize a realistic target mouth region.
- To this end, the best matching mouth image from the target actor sequence is retrieved and fitted to the deformed target model

Demo video

Overview

- Fitting 3D face models into 2D images (Blanz and Vetter '99)
- Controlling the person in the video by your own face (Thies et al. 2016)
- Further improvement by deep learning (Kim et al. 2018)

Deep Video Portrait (Kim et al. 2018)

- A further improvement of the Face2Face by making use of deep neural networks
- Allowing the head pose to be edited too (changing the orientation, translation)
- Need to produce realistic background, shadows, hair motion

Rendering-to-Video Translation Network

Rendering-to-Video Translation Network

Interactive Editing

2x Speed

Summary

- Very realistic fake videos can be produced nowadays
- Digital dub are frameworks to convert the input source video to a target person, whose images/videos are available
- PCA models are used to represent the faces the parameters are computed by fitting the face model to the target video. (Face2Face)
- The results are further passed to a generator network that is trained by adversarial training (Deep Video Portrait)

References

- Volker Blanz and Thomas Vetter, A Morphable Model For The Synthesis Of 3D Faces, SIGGRAPH 1999
- Thies et al. Face2Face: Real-time Face Capture and Reenactment of RGB Videos, CVPR 2016
- Kim et al. Deep Video Portrait, SIGGRAPH 2018