Volume Illumination, Contouring

Computer Animation and Visualisation -
Lecture 12
Taku Komura
Institute for Perception, Action \& Behaviour
School of Informatics

Overview

- Volume Illumination
- Contouring
- Problem statement
- Tracking
- Marching squares
- Ambiguity problems
- Marching cubes
- Dividing squares

Light Propagation in Volumes

- Lighting in volume
- Beyond light transmission and emission, objects can also: - reflect light - scatter light into different directions

Volume Illumination

- Why do we want to illuminate volumes?
- illumination helps us to better understand 3D structure
-displays visual cues
surface orientation
_highlight significant gradients within volume

Result : illuminated iso-surface

- Surface normals recovered from depth map of surface

Volume Illumination: Pipeline

- Compute the colour transfer function / Phong illumination
- Compute the opacity using the opacity transfer function and gradient of the voxel values
- Combine the two using the composite method

Phong Illumination Model

- Simple 3 parameter model
- The sum of 3 illumination terms:
- Diffuse : non-shiny illumination and shadows
- Specular : bright, shiny reflections
- Ambient : 'background' illumination

Diffuse (directional)

Specular
(highlights)

Rc

Diffuse Reflection

Infinite point light source
$I=I_{p} k_{d} \cos \theta$
I_{p} : Light Intensity
θ : the angle between the normal vector direction towards the light
$\underbrace{\substack{L_{n} \text { (light) }}}_{V \text { (camera) }}$
k_{d} : diffuse reflectivity

Specular Reflection

-Direct reflections of light source off shiny object
-specular intensity $n=$ shiny reflectance of object
-Result: specular highlight on object

Infinite point light source
$I=I_{p} k_{s}(\cos \alpha)^{n}$
Infinite point
light source

Ambient Lighting

Simple approximation to complex 'real-world' process

Result: globally uniform color for object
I = resulting intensity
$\mathrm{I}_{\mathrm{a}}=$ light intensity
Example: sphere
$k_{a}=$ reflectance

Combining Diffuse and Specular Reflections

Shading Models

How we compute the colour of a mesh

.Flat: Apply same normal and color to the whole polygon.
.Gouraud: Apply same normal to whole polygon, but interpolate the color over the vertices (Vertex Shader).
.Phong: Interpolate normal and color across surface of the polygon (Fragment Shader).

FLAT SHADING

GOURAUD SHADING

PHONG SHADING

Shading Volume

.As we are using an image-order volume rendering, we should go with Phong shading
.Computing the colour at each sample in ray by Phong illumination

Shading an Embedded isosurface

- Classify volume with the transfer function
- For calculating the colour of every voxel, use regular specular/diffuse surface shading
- Remember lighting requires illumination direction
- camera model (position)
- surface orientation

a)
- need to calculate and store surface normal

b)

Estimating the Normal Vector

We can use the gradient of the voxel intensity values as the normal vector

$$
\begin{gathered}
\nabla I=\left(I_{x}, I_{y}, I_{z}\right)=\left(\frac{\delta}{\delta x} I, \frac{\delta}{\delta y} I, \frac{\delta}{\delta z} I\right) \\
\frac{\delta}{\delta x} I=\frac{I(x+1, y, z)-I(x-1, y, z)}{2} \\
N=\nabla I /\|\nabla I\|
\end{gathered}
$$

a)

b)

Computing the Opacity

- We first use the opacity values computed by the lookup table/opacity transfer function
- Based on what we wish to see (setting them low for things we do not want to see, and high for those we wish to see)
- Then scale using the gradient vector

$$
\alpha=\|\nabla I\| \alpha_{v}
$$

α : the final opacity
$\|\nabla f(x)\|$: gradient of the volume data α_{v} : opacity by the transfer function

- This emphasizes the boundary of tissues

Illuminating Opacity (Scalar) Gradient

- Illuminate "scalar gradient" instead of iso-surface
- requirement : estimate and store gradient at every voxel

Composite

Illumination : storing normal vectors

- Visualisation is interactive
- compute normal vectors for surface/gradient once
- store normal
- perform interactive shading calculations
- Storage :
- 256^{3} data set of 1-byte scalars $\sim 16 \mathrm{Mb}$
- normal vector (stored as floating point(4-byte)) ~200Mb!
- Solution : quantise direction \& magnitude as small number of bits

Illumination : storing normal vectors

- Quantize vector direction into one of N directions on a sub-divided sphere

Subdivide an octahedron into a sphere.
Number the vertices.
Encode the direction according to the nearest vertex that the vector passes through.

For infinite light sources, only need to calculate the shading values once and store these in a table.

Volume Illumination: Summary

- Computing the color using the lighting can greatly helps us to understand the 3D structure
- Illumination calculation needs to be done per voxel
- Normals can be computed using the gradient of the intensity
- Opacity scaled by the gradient helps to visualize the boundaries between the tissues

Overview

- Volume Illumination
- Contouring
- Problem statement
- Tracking
- Marching squares
- Ambiguity problems
- Marching cubes
- Dividing squares

Contouring

- Contours explicitly construct the boundary between regions with values
- Boundaries correspond to:
- lines in 2D
- surfaces in 3D (known as isosurfaces)
- of constant scalar value

Example : contours

- lines of constant pressure on a weather map (isobars)
- surfaces of constant density in medical scan (isosurface)
- "iso" roughly means equal / similar / same as

Contouring

- Input: 2D or 3D grid with scalar values at the nodes
- Output : Contours (polylines, polygons) that connect the vertices with the same scalar value

2D Contour

- Input Data: 2D structured grid of scalar values

- Difficult to visualise transitions in data
- use contour at specific scalar value to highlight transition
-What is the contour of 5 ?

Method 1: Tracking

- Procedure

- find contour intersection with an edge
- track it through the cell boundaries
- if it enters a cell then it must exit via one of the boundaries
- track until it connects back onto itself or exits dataset boundary
- If it is known to be only one contour, stop
- otherwise
- Check every edge

- Procedure
- find contour intersection with an edge
- track it through the cell boundaries
- if it enters a cell then it must exit via one of the boundaries
- track until it connects back onto itself or exits dataset boundary
- If it is known to be only one contour,

- otherwise
- Check every edge

Issues: A sequential process
-> hard to parallelize

Method 2: Marching Squares (Cube) Algorithm

- Focus : intersection of contour and cell edges
- how the contour passes through the cell
- Assumption: a contour can pass through a cell in only a finite number of ways
- A vertex is inside contour if scalar value > contour outside contour if scalar value < contour
- 4 vertices, 2 states (in or out)

Marching Squares

- $2^{4}=16$ possible cases for each square
- small number so just treat each one separately

MS Algorithm Overview

- Main algorithm

1. Select a cell

2. Calculate inside/outside state for each vertex
3. Look up topological state of cell in state table
determine which edge must be intersected (i.e. which of the 16 cases)
4. Calculate contour location for each intersected edge
5. Move (or march) onto next cell
. until all cells are visited GOTO 2

MS Algorithm - notes

- Intersections for each cell must be merged to form a complete contour
- cells processed independently
- further "merging" computation required
- disadvantage over tracking (continuous tracked contour)
- Easy to implement (also to extend to 3D)
- Easy to parallelise

MS : Dealing with ambiguity ?

Split

Join

- Choice independent of other choices
- either valid : both give continuous and closed contour

Example : Contour Line Generation

- 3 main steps for each cell
- here using simplified summary model of cases

Step 1 : classify vertices

- Decide whether each vertex is inside or outside contour

Step 2 : identify cases

- Classify each cell as one of the cases

Step 3 : interpolate contour intersections

- Determine the edges that are intersected
- compute contour intersection with each of these edges

Ambiguous contour

- Finally : resolve any ambiguity
- here choosing "join" (example only)

MS : Dealing with ambiguity ? One solution

- Calculate the value at the middle of the square by interpolation
- Check if it is under or above the threshold value
- Choose the pattern that matches

Ambiguous contour

Step 3 : interpolate contour intersections

2D : Example contour

A slice through the head

(with colour mapping added)

A Quadric function.

3D surfaces : marching cubes

- Extension of Marching Squares to 3D
- data: 3D regular grid of scalar values
- result : 3D surface boundary instead of 2D line boundary
- 3D cube has 8 vertices $\rightarrow 2^{8}=256$ cases to consider
- use symmetry, reflection, rotation to reduce to 15
- Problem : ambiguous cases
- cannot simply choose arbitrarily as choice is determined by neighbours
- poor choice may leave hole artefact in surface

Marching Cubes - cases

Figure 4. Cube Numbering.

- Ambiguous cases
- 3,6,10,12,13 - split or join?

Figure 3. Triangulated Cubes.

Example of bad choices

- The dark dots are the interior
- There are edges which are not shared by both cubes
- Need to make sure there is no contradiction with the neighbors

Cracks eliminated

Other two possible triangulations

- Need to decide how the faces are intersected by the contours

Adding more patterns

- Adding more patterns for 3,6,10,12,13 [Nielson '91]
- Compute the values at the middle of the faces and the cubes
- Selecting the pattern that matches

Marching Cubes by CUDA

- http://www.youtube.com/watch?v=Y5URxpX8q8U

Dividing Cubes Algorithm

- Marching cubes : Problem
- often produces more polygons than pixels for given rendering scale
- Problem : causes high rendering overhead
- Solution : Dividing Cubes Algorithm
- Colouring pixels instead of rendering polygons(faster rendering)
- Need 1: efficient method to find which pixels to colour

2: method to shade points

Example : 2D divided squares for 2D lines

Find pixels that intersect contour

- Subdivide them

2D "divided squares" for lines

Find pixels that intersect line Subdivide them (usually in 2x2)
Repeat recursively

2D "divided squares" for lines

Find pixels that intersect line . Subdivide them
. Repeat recursively until screen resolution reached . Fill in the pixel with the color of the line

Extension to 3D

- Find voxels which intersect surface
- Recursively subdivide the voxels that intersect the contour
- Until the voxel fits within a pixel
- Calculate mid-points of voxels
- Calculate the color of the pixel by shading

Dividing Cubes : Example

50,000 points
when sampling less than screen resolution structure of surface can be seen

Summary

- Contouring Theory
- 2D: Marching Squares Algorithm
- 3D : Marching Cubes Algorithm [Lorensen '87]
- marching tetrahedra, ambiguity resolution
- limited to regular structured grids
- 3D Rendering: Dividing Cubes Algorithm [Cline '88]

Readings

- G.M. Nielson, B Hamann, "The Asymptotic Decider: Resolving the Ambiguity in Marching Cubes"
- W.E. Lorensen, H.E. Cline, "Marching Cubes: A high resolution 3D surface construction algorithm"
- H.E. Cline, W.E. Lorensen and S. Ludke, ""wo algorithms for the threedimensional reconstruction of tomograms"

