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3D surface data ... where from ? 
 Iso-surfacing from scalar volumes 

− Marching Cubes 

 
 
 3D environment & object captures 

− stereo vision & laser range scanners 
 
 
 
 Today : Algorithms for processing 3D meshes 
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Processing 3D data 

1)  Capture the data (by stereo vision, range scanner)  
2)  Registration (if the data was captured by multiple attempts)  
3)  Adding the topology : converting to mesh data 
4)  Smoothing  
5)  Decimation  
6)  Remeshing  
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Stereo Vision : 3 key stages 
1) Feature Identification 
identify image features in each image 
 

2) Correspondence 
Matching: find a set of consistent feature 

correspondences 
(left image ⇔ right image) 
 
3)  Triangulation 
triangulate from known camera positions 
recover 3D depth information 
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Dense Stereo Matching : Face 

 2 x 6 mega-pixel digital SLR cameras 

 Commercial 3D stereo software  (http://www.di3d.com/) 

− Results : 6 mega-pixel depth map / VRML 3D surface mesh model 
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Dense Stereo Matching 
 Advantages 

− passive technique 
− uses only image cameras : no expensive sensors 

 Limitations 
− accurate prior calibration of cameras required 
− fails on textureless surfaces 
− noise: effects matching, produces errors 

—lighting effects images (e.g. specular highlights) 

− results : often sparse incomplete surfaces 

 Another solution →  Active techniques 
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Microsoft KINECT (old version) 
 Estimating the depth from projected structured infra-red light 
 Practical ranging limit of 1.2–3.5 m (3.9–11 ft) 
 Software fits a skeleton character into the point cloud data 

https://www.youtube.com/watch?v=dTKlNGSH9Po 

https://www.youtube.com/watch?v=dTKlNGSH9Po
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Environment 

3D capture : laser range scanning 
 Active depth sensing using laser beam signal 

− direct, accurate 3D scene information 
− unambiguous measurement (unlike stereo) 
− Limitations  

—hidden surfaces (2½D) 
—dark/shiny objects do not scan well 
—dense 3D models for rendering 

 
 
 

Laser Scanner 
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Great Buddha Project in Japan 
 Capturing took 3 weeks x 2 trips x 10 students/staff 
 http://www.youtube.com/watch?v=OoNr7DV0b-M&feature=channel_page 
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Processing 3D data 

1)  Capture the data (by stereo vision, range scanner)  
2)  Registration (if the data was captured by multiple attempts)  
3)  Adding the topology : converting to mesh data 
4)  Smoothing  
5)  Decimation  
6)  Remeshing 
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3D Registration 
 Producing larger 3D models by combining  

 multiple range scans from different viewpoints 
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Registration – ICP algorithm 
 Example : registration of 3D model parts (toy cow)  

 
 
 
 

 
 
Input: point clouds acquired from non-aligned 

viewpoints       
          (from 3D range scanner) & initial estimation of registration 

Output: Transformation  

A 

B 
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Registration – ICP algorithm 
 Problem : merging of 3D point clouds from different, unaligned 

orientations 
− common in large scale range scanning (e.g. Mosque)  

 Solution : iterative estimation of rigid 3D transform between point 
clouds   [ Iterative Closest Point  (ICP) Besl / Mckay '92] 

 

 ICP algorithm: for point clouds A & B 
− align A & B using initial estimate of 3D transform 

− until distance between matched points < threshold 

—matched points = N closest point pairs between A & B 

—estimate transformation B→A between matched pairs 

—apply transformation to B 
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ICP Criteria 
  
Computing the transformation (rotation, translation) that 

minimzes the following criteria  
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Processing 3D data 

1)  Capture the data (by stereo vision, range scanner)  
2)  Registration (if the data was captured by multiple attempts)  
3)  Adding the topology : converting to mesh data 
4)  Smoothing  
5)  Decimation 
6)  Remeshing  
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Point Clouds → Surface Meshes 
 Input : unstructured 3D points (point cloud)  
 Output : polygonal data set  (surface mesh)  
 
 Multiple techniques available  

− Delaunay Triangulation 
—For surface result: 2½D data sets only 
—The data needs to be projected onto a plane 

− Iso-surface based Techniques 
—define pseudo-implicit functional 3D space f(x,y,z) = c  where c is 

distance to nearest 3D input point 
—use iso-surface technique (Marching Cubes) to build surface 
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Delaunay Triangulation 
Given the point cloud, compute the triangulation such that none 

of the other points come into the circumcircle of each 
triangles  
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Delaunay Condition 
 
 
 

α 

 γ  

  α + γ  <= 180 
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Delaunay Condition (2) 
Looking at two triangles ABD and BCD with the common edge 

BD, if the sum of the angles α and γ is less than or equal to 
180 degrees, the triangles meet the Delaunay condition. 
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Incremental Delaunay 
    Triangulation  

  
 Repeatedly add 

one vertex at a time 
(p) 

 Find the triangle T 
that contains p 

 Split T in three 
 For each edge of T, 

apply the flip 
algorithm. 

 Repeat 
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Processing 3D data 

1)  Capture the data (by stereo vision, range scanner)  
2)  Registration (if the data was captured by multiple attempts)  
3)  Adding the topology : converting to mesh data 
4)  Smoothing  
5)  Decimation   
6)  Remeshing  
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Mesh Smoothing - 1 
 Surface Noise : surfaces from stereo vision and (large 

scale) laser scanning often contain noise 
− Smoothing removes noise, improves uniform 

     surface curvature → helps decimation 

 
 
 Solution: Laplacian mesh smoothing 

− modifies geometry of mesh 
− topology unchanged 
− reduces surface curvature and removes noise 
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Mesh Smoothing - 2 
 Iterative smoothing approach 

− At each iteration i move each vertex Vi,j towards mean position 
of neighbouring vertices, N(Vi,j), by λ 

Vi+1,j = Vi,j + λN(Vi,j)  

Vi 

N(V)i 
λ 

λ = 0.01 

50 iterations 100 iterations 
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Mesh Smoothing - 3 
 Reduces high-frequency mesh information 

− removes noise 
 but also mesh detail! 
 
 
 
 
 Limitations : loss of detail, mesh shrinkage 

− enhancements : feature-preserving smoothing & 
  non-shrinking iterative smoothing 

− feature points can be “anchored” to prevent movement in mesh 
smoothing (detail preservation)  

Iterations = 100; λ = 0.1 

Decimate.tcl 
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Handling Large Polygonal Datasets 
 Large Surface Meshes 

− Marching Cubes : voxel dataset of 5123 produces a typical 
iso-surface of 1-3 million triangles 

− Laser Scanning : datasets in 10s millions of triangles 
 Problem : lots to render! 
 Solution : polygon reduction 

− sub-sampling : simple sub-sampling is bad! 
− decimation : intelligent sub-sampling by optimising mesh 
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Basic Sub-sampling 
 Basic uniform sub-sampling  (take every nth sample)  

− loss of detail / holes / poor surface quality  
− Marching Cubes surface example 

:        

sub-sampling level = 3 sub-sampling level = 5 
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Mesh Decimation 

 Mesh Decimation : intelligent mesh pruning 
− remove redundancy in surface mesh representation 

Triangles  
= 340997 

Triangles  
=252717 Triangles  

= 3303 
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Decimation of a skeleton 
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Decimation : removing redundancy 

 Original triangulation of point cloud – very dense 

 Many triangles approximate same planar area – merge co-planar triangles  
− Triangles in areas of high-curvature maintained 

Original terrain data of crater 
(point cloud)  

90% Decimated 
mesh 



Taku Komura 3D Surfaces  30 

CAV : Lecture 13 

Decimation : Schroeder's Method 
 Operates on triangular meshes 

− 3D grid of regular triangular topology 
− triangles are simplex: reduce other topologies to 

triangular → simplex = triangle, tetrahedron, ... 
 
Schroeder's Decimation Algorithm:  [Schroeder et al . '92] 
until stopping criteria reached        

for each mesh vertex      

classify vertex  

if classification suitable for decimation 
 estimate error resulting from removal 
 if error < threshold  
   remove vertex 

    triangulate over resulting mesh hole 
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Schroeder's Method : vertex classification 

 Vertex classified into 5 categories: 
 
 
 
 
 Simple : surrounded by complete cycle of triangles, each 

edge used by exactly 2 triangles. 
 Complex : if edges not used by only 2 triangles in cycle 
 Boundary : lying on mesh boundary(i.e. external surface edge)  

Simple Complex Boundary 
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Schroeder's Method : vertex classification 
 simple vertices are further classified 

− {simple | interior edge | corner} vertex 
− based on local mesh geometry 
− feature edge : where surface normal between adjacent 

triangles is greater than specified feature angle 
 
 
 interior edge : a simple vertex used by 2 feature edges  
 corner point : vertex used by 1, 3 or more feature edges 

Interior 
Edge 

Corne
r 

θ 

Simple 
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Schroeder's Method : decimation criterion 
 Remove : simple vertices that are not corner points 

− i.e. leave important or complex mesh features 
 
 Simple vertex 

− mesh considered locally “flat” if no feature edges 
− estimate error from removing this vertex 

—error = distance d of vertex to average plane through neighbours 

Average plane through surrounding vertices. 

d 
Represents the error that removal of the 
vertex would introduce into the mesh. 
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Schroeder's Method : decimation criterion 
When the vertex is close to the edge 

− vertex point considered to lie on edge 
—error = distance d from vertex to edge resulting from removal 

 
 
 
 
 

 Decimation Criterion : vertex removal 

− if error d < threshold then remove 
—vertex & all associated triangles removed ⇒ hole 

d 
d 

Boundary Interior 



Taku Komura 3D Surfaces  35 

CAV : Lecture 13 

Schroeder's Method: re-triangulation 
 Hole must be re-triangulated 

− use less triangles 
− resulting boundary is in 3D space ⇒ 3D triangulation 

 
− Recursive Division Triangulation Strategy 

—choose a split plane (in 3D), split into two sub-loops 
—check it is valid – all points in each sub-loop lie     

 on opposite sides of the plane. 
—If failure, do not remove the vertex 

—choose new split plane and recursively until      
 all sub-loops contain 3 points 

—This is helpful for dividing concave polygons 
—form triangles 

Form triangle 

1st 
plane 

2nd  plane 
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Decimation : stopping criteria 
 Option 1 : maximum error  

− max. error that can be suffered in mesh due to removal 
—measure of maintaining mesh quality         

 (as a representation of original surface form)  

 Option 2 : target number of triangles 
− number of triangles required in resulting decimation 

—explicitly specifying the representational complexity of the resulting 
mesh 

 Combination : combine 1 & 2  
− stop when either is reached  

—aims for target reduction in triangles but keeps a bound on loss of 
quality 
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Decimation Discussion 
 Improve Efficiency of Representation 

− remove redundancy within some measure of error 
Decimation : Mesh Compression / Polygon Reduction 

− generate smaller mesh representation 
− information is permanently removed 

—lossy compression 

 
 

− same concept as lossy image compression (e.g. JPEG)  
 Advantages : less to store & less to render 
 Dis-advantages : less detail  
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Remeshing & Simplification  

• After the decimation, the triangle shapes can be very skewed.  
• We may prefer a more uniform point distribution  
• Also sometimes we prefer quadmeshes → simulation  
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Harmonic Scalar Fields  

Laplace equation              boundary conditions 
A u that satisfies this equation is called harmonic 

function  
u produces a smooth transition between ui s.   

When heat diffuses over some material, it follows the Laplace 
equation  

∆𝑢𝑢 = 0  s. t.   𝑢𝑢𝑖𝑖 = 𝑐𝑐𝑖𝑖 
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Using Harmonic fields for 
computer graphics  

• By defining a harmonic function over the surface of a 3D 
object, we can produce a scalar field  

• This can be used for various purposes, such as  
– Re-meshing 
– Simplification  
– Matching different shapes  
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Laplace Equation on a Triangle 
Mesh  

At each vertex, the Laplacian of the parameter u can be 
written as 

 
 
where the weights are computed by 
 
 
 
Solve for                                        
      subject to Dirichlet boundary constraints                        
 
 
   
 
 
  

= 0 

ui 

uj 
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Remeshing & Simplification by 
Harmonic Scalar Field  

• Using the harmonic scalar field and the isoparametric lines, we 
can re-mesh the object  

• Sampling on the surface uniformly with the u.   
• By reducing the sampling rate, we can conduct simplification  
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More results  
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Summary 
 Modelling Algorithms for 3D surface data 

− Triangulation : Delaunay & iso-surfacing 
− Decimation : Schroeder's Method 
− Registration : Iterative Closest Point (ICP)  
− Smoothing : Laplacian mesh smoothing 
− Remeshing :  Using the Laplace equation 

Readings 
 Hoppe et al.  “Progressive Mesh”, SIGGRAPH ’96 
 Shroeder et al.  “Decimation of Triangle Meshes”, 

SIGGRAPH ’92 
 Rusinkiewicz, Levoy, “Efficient variants of the ICP algorithm” 
 Miller, “Efficient algorithms for local and global accessibility 

shading”, SIGGRAPH ‘94 
 Harmonic functions for quadrilateral remeshing of arbitrary 

manifolds Dong et al. '2004 
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