Tensor Visualisation and Information Visualisation

Computer Animation and Visualisation
Lecture 15
Taku Komura
tkomura@ed.ac.uk
Institute for Perception, Action \& Behaviour
School of Informatics

Overview

- Tensor Visualisation
- What is tensor
- Methods of visualization
- 3D glyphs
- vector and scalar field
- hyper-streamlines
- LIC in 3D volumes
- Information Visualisation
- Univariate, bivariate, trivariate, multi-variate data
- Relations visualized by lines, tree visualization
- Document visualization

Reminder : Attribute Data Types

- Scalar
- colour mapping, contouring
- Vector

- lines, glyphs, stream \{lines | ribbons | surfaces\}
- Tensor
- complex problem
- today : simple techniques for tensor visualisation

What is a tensor?

- A tensor is a table of rank k defined in n-dimensional space $\left(\mathbb{R}^{\prime}\right)$
- generalisation of vectors and matrices in \mathbb{R}^{n}
- Rank 0 is a scalar
- Rank 1 is a vector
- Rank 2 is a matrix
- Rank 3 is a regular 3D array
- k : rank defines the topological dimension of the attribute
- i.e. it can be indexed with k separate indices
- n : defines the geometrical dimension of the attribute
- i.e. k indices each in range $0 \rightarrow(n-1)$

Tensors in \mathbb{R}^{3}

- Here we limit discussion to tensors in \mathbb{R}^{3}
- In \mathbb{R}^{3} a tensor of rank k requires 3^{k} numbers
- A tensor of rank 0 is a scalar
($30=1$)
- A tensor of rank 1 is a vector
($3^{1}=3$)
- A tensor of rank 2 is a 3×3 matrix (9 numbers)
- A tensor of rank 3 is a $3 \times 3 \times 3$ cube (27 numbers)

$$
V=\left[\begin{array}{l}
V_{1} \\
V_{2} \\
V_{3}
\end{array}\right] \quad T=\left[\begin{array}{lll}
T_{11} & T_{21} & T_{31} \\
T_{12} & T_{22} & T_{32} \\
T_{13} & T_{23} & T_{33}
\end{array}\right]
$$

- We will only treat rank 2 tensors - i.e. matrices

Where do tensors come from?

- Stress/strain tensors
- analysis in engineering
- DT-MRI
- molecular diffusion measurements
- These are represented by 3×3 matrices
- Or three normalized eigenvectors and three corresponding eigenvalues

Stresses and Strain 1

- The stress tensor:

	In the direction of		
	$x:$	$y:$	$z:$
stress on the face normal to $x:$	$\sigma_{x x}$	$\sigma_{x y}$	$\sigma_{x z}$
stress on the face normal to $y:$	$\sigma_{y x}$	$\sigma_{y y}$	$\sigma_{y z}$
stress on the face normal to $z:$	$\sigma_{z x}$	$\sigma_{z y}$	$\sigma_{z z}$

- A 'normal' stress is a stress perpendicular (i.e. normal) to a specified surface
- A shear stress acts tangentially to the surface orientation
- Stress tensor : characterised by principle axes of tensor
- Eigenvalues (scale) of normal stress along eigenvectors (direction)
- Form 3D co-ordinate system (locally) with mutually perpendicular axes

MRI : diffusion tensor

- Water molecules have anisotropic diffusion in the body due to the cell shape and membrane properties
- Neural fibers : long cylindrical cells filled with fluid
- Water diffusion rate is fastest along the axis
- Slowest in the two transverse directions
- brain functional imaging by detecting the anisotropy

Computing Eigenvectors

- $3 x 3$ matrix results in Eigenvalues (scale) of normal stress along eigenvectors (direction)
- form 3D coordinate system (locally) with mutually perpendicular axes
- ordering by eigenvector referred to as major, medium and minor eigenvectors

Tensors : Visualisation Methods

- 2 main techniques : glyphs \& vector methods
- Glyphs
- 3D ellipsoids particularly appropriate (3 modes of variation)
- Vector methods
- a symmetric rank 2 tensor can be visualised as 3 orthogonal vector fields (i.e. using eigenvectors)
- hyper-streamline
- Noise filtering algorithms - LIC variant

Tensor Glyphs

- Ellipsoids
- rotated into coordinate system defined by eigenvectors of tensor
- axes are scaled by the eigenvalues
- very suitable as 3 modes of variation
- Classes of tensor:
- (a,b) - large major eigenvalue
- ellipse approximates a line
- (c,d) - large major and medium eigenvalue
- ellipse approximates a plane
- (e,f) - all similar - ellipse approximates a sphere

Diffusion Tensor Visualisation

Anisotropic tensors indicate nerve pathway in brain:

- Blue shape - tensor approximates a line.
- Yellow shape - tensor approximates a plane.
- Yellow transparent shape - ellipsoids approximates a sphere
Colours needed due to ambiguity in 3D shape - a line tensor viewed 'end-on' looks like a sphere.

Baby's brain image
R.Sierra)
(source:

Stress Ellipses

- Force applied to dense 3D solid - resulting stress at 3D position in structure
- Ellipsoids visualise the stress tensor
- Tensor Eigenvalues:
- Large major eigenvalue indicates principle direction of stress
- 'Temperature' colormap indicates size of major eigenvalue (magnitude of stress)

Tensor Visualisation as Vectors

- Visualise just the major eigenvectors as a vector field
- alternatively medium or minor eigenvector
- use any of vector visualisation techniques from lecture 14

Lines, Hedgehogs

- Using hedgehogs to draw the three eigenvectors

The length is the stress value

- Good for simple cases as above
- Applying forces to the box
- Green represents positive, red negative

Streamlines for tensor visualisation

- Often major eigenvector is used, with medium and minor shown by other properties
- Major vector is relevant in the case of anisotropy - indicates nerve pathways or stress directions.

http://www.cmiv.liu.se/

Streamlines for tensor visualisation

- Each eigenvector defines a vector field
- Using the eigenvector to create the streamline
- We can use the Major vector, the medium and the minor vector to generate 3 streamlines

(b)

Figure 8. Hyperstreamlines for minor, intermediate and major principal stress for a point-load.

Hy Permstreanninnes [Delmarcelle et al. '93]

- Construct a streamline from vector field of major eigenvector
 orthogonal eigenvectors
- Form ellipse together with medium and minor eigenvector
- both are orthogonal to streamline direction
- use major eigenvector as surface normal (i.e. orientation)
- Sweep ellipse along streamline
- Hyper-Streamline (type of stream polygon)

LIC algorithm for tensors

- Linear Integral Convolution - LIC
- 'blurs' a noise pattern with a vector field
- For tensors
- can apply 'blur' consecutively for 3 vector field directions (of eigenvectors)
- using result from previous blur as input to next stage
- use volume rendering with opacity = image intensity value for display

(a)

(b)

(c)

- Scalarfield : Produce grayscale image intensity in relation to tensor class (or closeness too). (scalar from tensors)

Greyscale image shows how closely the tensor ellipsoids approximate a line.

Greyscale image shows how closely the tensor ellipsoids approximate a plane.

Greyscale image shows how closely the tensor ellipsoids approximate a sphere.

Summary

- Tensor visualisation
- Visualizing higher dimensional data at every point
- Here we focused on 3×3 matrix
- Computing the eigenvectors and visualising the eigenvectors
- Apply vector field visualisation techniques to the three principal axes

(a)

(b)

(c)

Overview

- Tensor Visualisation
- What is tensor
- Methods of visualization
- 3D glyphs
- vector and scalar field
- hyper-streamlines
- LIC in 3D volumes
- Information Visualisation
- Univariate, bivariate, trivariate, multi-variate data
- Relations visualized by lines, tree visualization
- Document visualization

What is Information Visualisation ?

- Visualising discrete data with no spatial information
- Visualisation of important information contained in abstract data types
- Needs to be intuitive
- Such that people can easily and quickly understand
- Tools for
- Extraction of information from the data
- Discovery of new knowledge

Data types

Univariate Data, Bivariate Data

Can use scatter plots, histograms

Trivariate Data

Scatterplots

Not clear if D is more expensive Than B and C

Trivariate Data

Scatterplot Matrix : Visualizing the relations of every two variables

Bedrooms

Bedrooms

Multivariate Data

Parallel Coordinates
Star plots
Scattered plot matrix

Parallel Coordinates

Parallel Coordinates

Car data :
http://eagereyes.org/techniques/parallel-coordinates

Parallel Coordinates

Direct correlation

Parallel Coordinates

Inverse Relations

Brushing

Select some data using one of the coordinates
Brushing years 1980 to 1982

Brushing

Brushing the years 1970 to 1972

Limitations

Visual clutter

- Many lines cluttered together making it impossible to see anything
- Too many dimensions make things difficult to see

Data types

Visualizing Relations

Relation: A logical or natural association between two or more things; relevance of one to another; connection

Usually use lines to represent the relations

Tree visualization

Trees have hierarchical structures

No close loops
So many methods : see
http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html

Treemaps

Display hierarchical (tree-structured) data as a set of nested rectangles
The area of the rectangles representing a scalar attribute

The leaf nodes are often colored to visualize another attribute data

Worldmapper

http://sasi.group.shef.ac.uk/worldmapper/

Distorted maps according to numbers: Cartograms

Graph Visualization

Visualizing correlation of different nodes

E.g.
social networks
citation networks

vizster

Facebook relations

cebook

Facebook relations

"I defined weights for each pair of cities as a function of the Euclidean distance between them and the number of friends between them. Then I plotted lines between the pairs by weight, so that pairs of cities with the most friendships between them were drawn on top of the others. I used a color ramp from black to blue to white, with each line's color depending on its weight. I also transformed some of the lines to wrap around the image, rather than spanning more than halfway around the world "

Formal Aesthetics Metrics

Minimize node-node / node-edge occlusion
Minimize edge crossings
Minimize edge bends
Maximize symmetry
Maximize the minimum angle between neighbor edges
Maximize edge orthogonality
Maximize node orthogolnality

Formal Aesthetics Metrics

Minimize edge crossings

Minimize edge bends

Formal Aesthetics Metrics

Maximizing symmetry

Maximizing the minimum angle between edges leaving a node

Data types

Document Visualization

Document Visualisation

- Motivation:

Action	Units of Information transfer
Typing at 10 bytes per second	1
Mouse Operations.	2
Reading	$3-40$
Hearing	60
Visualisation and Pattern Recognition	12,500

- visualisation is considerably faster than hearing / reading!

Visualisation of Documents

- Motivation : large bandwidth of human visual system
- 100s millions of documents available on-line
- information only in textual form
- 'Visualising the non-visual'
- searching for scientific papers
- analysing witness statements
- awareness of events in news bulletins

Document Visualisation - Stages

- Representation of results
- form high-dimensional vector (one for each word, ~10000+)
- cluster documents based on vector similarity (e.g. Nearest-Neighbour)
- Visualisation of clustered results
- projection to lower dimensional space
- 3D "galaxy" / 2D "theme-scape" / 1D "theme-river"

Query
"keywords" from user specification
comparison to sample "reference" document

2D and 3D projections of documents

3D Visualisation of 567,000 cancer literature abstracts.

Articles in a collection of news items (2D).

Pacific Northwest National Laboratory.

1D visualisation of news articles

A 'Theme River' shows the relative importance of themes over the course of a year from press articles.

Document Querying

- Keyword search is problematic
- ambiguity
- ~7-18\% of people describe same concept with same word (Barnard '91)
- Interested in
- distribution of keywords in the document
- related articles to the keyword entered
- Tile bar scheme (Hearst 1995)
- display a list of documents with a tile bar
- tile bar shows the occurrence of keywords in document

Title Bar Method

Columns represent paragraphs or pages in a document. Shade indicates relevance shown by word occurrence. Shows length and likely relevance. System allows interactivity by clicking on box.

- Visualisation - Use of document topology / colour-mapping / interaction

Example : Title Bar Query / Result

Query terms:
DBMS (Database Systems)
Reliability

What roles do they play in retrieved documents?

Mainly about both DBMS
\& reliability

Mainly about DBMS, discusses reliability

Mainly about, say, banking, with
a subtopic discussion on DBMS/Reliability

Mainly about
something different

Wordle

http://www.wordle.net/create
Produces a word cloud from a document

DocuBurst

- A radial, space-filling layout of hyponymy (IS-A relation)

Captain magician
Crusoe Alice timidly
Maine Cap'n Bill Tro
Shilling Alice Anko food
France kaing Clia princess
Alice indignantly
Prince queen King queen
flash Davy Jones officer
Aquareine Merla UN Court
fish oil Caterpillar aged sailor
Sea Serpent United Kingdom
Andthe Gryphon
Alice timidly.'Would

Summary

- Tensor Visualisation
- challenging
- for common rank 2 tensors in \mathbb{R}^{β}
- common sources stress / strain / MRI data
- a number of methods exist via eigenanalysis decomposition of tensors
- 3D glyphs - specifically ellipsoids
- vector and scalar field methods
- hyper-streamlines
- LIC in 3D volumes
- Information Visualisation
- Univariate, bivariate, trivariate, multi-variate data
- Relations visualized by lines, tree visualization
- Document visualization

Reading

- Processing and Visualization of Diffusion Tensor MRI [
- Tensor field visualisation using adaptive filtering of noise fields combined with glyph rendering [
- Marti A. Hearst TileBars: Visualization of Term Distribution Information in Full Text Information Access
- Collins, Christopher; Carpendale, Sheelagh; and Penn, Gerald. DocuBurst: Visualizing Document Content using Language Structure. Computer Graphics Forum (Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization (EuroVis '09)), 28(3): pp. 1039-1046, June, 2009
- Westin et al. '02, "Processing and visualization for diffusion tensor MRI"
- http://faculty.uoit.ca/collins/research/docuburst/index.html

