

Tensor Visualisation and Information Visualisation

Computer Animation and Visualisation Lecture 15

> Taku Komura tkomura@ed.ac.uk

Institute for Perception, Action & Behaviour School of Informatics

Overview

- Tensor Visualisation
 - What is tensor
 - Methods of visualization
 - 3D glyphs
 - vector and scalar field
 - hyper-streamlines
 - LIC in 3D volumes
- Information Visualisation
 - Univariate, bivariate, trivariate, multi-variate data
 - Relations visualized by lines, tree visualization
 - Document visualization

Reminder : Attribute Data Types

- Scalar
 - colour mapping, contouring
- Vector

- lines, glyphs, stream {lines | ribbons | surfaces}
- Tensor
 - complex problem
 - today : simple techniques for tensor visualisation

What is a tensor ?

- A tensor is a table of rank k defined in n-dimensional space (IR)
 - generalisation of vectors and matrices in IRⁿ
 - Rank 0 is a scalar
 - Rank 1 is a vector
 - Rank 2 is a matrix
 - Rank 3 is a regular 3D array

- k: rank defines the **topological dimension** of the attribute

- i.e. it can be indexed with k separate indices
- *n* : defines the *geometrical dimension* of the attribute
 - − i.e. k indices each in range $0 \rightarrow (n-1)$

Tensors in R³

- Here we limit discussion to tensors in IR³
 - In IR³ a tensor of rank k requires 3^k numbers
 - A tensor of rank 0 is a scalar $(3^{\circ} = 1)$
 - A tensor of rank 1 is a vector $(3^{7} = 3)$
 - A tensor of rank 2 is a 3x3 matrix (9 numbers)
 - A tensor of rank 3 is a 3x3x3 cube (27 numbers)

$$V = \begin{bmatrix} V_{1} \\ V_{2} \\ V_{3} \end{bmatrix} \qquad T = \begin{bmatrix} T_{11} & T_{21} & T_{31} \\ T_{12} & T_{22} & T_{32} \\ T_{13} & T_{23} & T_{33} \end{bmatrix}$$

• We will only treat rank 2 tensors - i.e. matrices

Where do tensors come from?

- Stress/strain tensors
 - analysis in engineering
- DT-MRI
 - molecular diffusion measurements
- These are represented by 3x3 matrices
 - Or three normalized eigenvectors and three corresponding eigenvalues

Stresses and Strain 1

The stress tensor:

	In the direction of		
	<i>x</i> :	<i>y</i> :	<i>z</i> :
stress on the face normal to x:	σ_{xx}	σ_{xy}	σ_{xz}
stress on the face normal to y:	σ_{yx}	σ_{yy}	σ_{yz}
stress on the face normal to z:	σ_{zx}	σ_{zy}	σ_{zz}

- A 'normal' stress is a stress perpendicular (i.e. normal) to a specified surface
- A shear stress acts tangentially to the surface orientation
- Stress tensor : characterised by **principle axes of tensor**
 - **Eigenvalues** (scale) of normal stress along **eigenvectors** (direction)
 - Form 3D co-ordinate system (locally) with mutually perpendicular axes

MRI : diffusion tensor

- Water molecules have anisotropic diffusion in the body due to the cell shape and membrane properties
 - Neural fibers : long cylindrical cells filled with fluid
 - Water diffusion rate is fastest along the axis
 - Slowest in the two transverse directions
 - brain functional imaging by detecting the anisotropy

Computing Eigenvectors

- 3x3 matrix results in Eigenvalues (scale) of normal stress along eigenvectors (direction)
- form 3D coordinate system (locally) with mutually perpendicular axes
- ordering by eigenvector referred to as major, medium and minor eigenvectors

Tensors : Visualisation Methods

- 2 main techniques : glyphs & vector methods
- Glyphs
 - 3D ellipsoids particularly appropriate (3 modes of variation)

Vector methods

- a symmetric rank 2 tensor can be visualised as 3 orthogonal vector fields (i.e. using eigenvectors)
- hyper-streamline
- Noise filtering algorithms LIC variant

Tensor Glyphs

- Ellipsoids
 - rotated into coordinate
 - system defined by eigenvectors of tensor
 - axes are scaled by the eigenvalues
 - very suitable as 3 modes of variation
- Classes of tensor:
 - (a,b) large major eigenvalue
 - ellipse approximates a line
 - (c,d) large major and medium eigenvalue
 - ellipse approximates a plane
 - (e,f) all similar ellipse approximates a sphere

Diffusion Tensor Visualisation

Baby's brain image R.Sierra)

(source:

Anisotropic tensors indicate nerve pathway in brain:

- Blue shape tensor approximates a line.
- Yellow shape tensor approximates a plane.
- Yellow transparent shape ellipsoids approximates a sphere

Colours needed due to **ambiguity in 3D shape** – a line tensor viewed 'end-on' looks like a sphere.

Stress Ellipses

- Force applied to dense 3D solid

 resulting stress at 3D position
 in structure
- Ellipsoids visualise the stress tensor
- Tensor Eigenvalues:
 - Large major eigenvalue indicates principle direction of stress
 - 'Temperature' colormap indicates size of major eigenvalue (magnitude of stress)

Tensor Visualisation as Vectors

- Visualise just the major eigenvectors as a vector field
 - alternatively medium or minor eigenvector
 - use any of vector visualisation techniques from lecture 14

Lines, Hedgehogs

- Using hedgehogs to draw the three eigenvectors
 The length is the stress value
- Good for simple cases as above
 - Applying forces to the box
 - Green represents positive, red negative

Streamlines for tensor visualisation

- Often major eigenvector is used, with medium and minor shown by other properties
 - Major vector is relevant in the case of anisotropy - indicates nerve pathways or stress directions.

http://www.cmiv.liu.se/

Streamlines for tensor visualisation

- Each eigenvector defines a vector field
- Using the eigenvector to create the streamline
 - We can use the Major vector, the medium and the minor vector to generate 3 streamlines

Figure 8. Hyperstreamlines for minor, intermediate and major principal stress for a point-load.

Hyper-streamlines [Delmarcelle et al. '93]

 Construct a streamline from vector field of major eigenvector

- Form ellipse together with medium and minor eigenvector
 - both are orthogonal to streamline direction
 - use major eigenvector as surface normal (i.e. orientation)
- Sweep ellipse along streamline
 - Hyper-Streamline (type of stream polygon)

LIC algorithm for tensors

- Linear Integral Convolution LIC
 - 'blurs' a noise pattern with a vector field
 - For tensors
 - can apply 'blur' consecutively for 3 vector field directions (of eigenvectors)
 - using result from previous blur as input to next stage
 - use volume rendering with opacity = image intensity value for display

Scalar field Method for Tensors

• **Scalarfield** : Produce grayscale image intensity in relation to tensor class (or closeness too). *(scalar from tensors)*

Greyscale image shows **how closely the tensor ellipsoids approximate a line.**

Greyscale image shows **how closely the tensor ellipsoids approximate a plane.**

Greyscale image shows how closely the tensor ellipsoids approximate a sphere.

Summary

- Tensor visualisation
 - Visualizing higher dimensional data at every point
 - Here we focused on 3x3 matrix
 - Computing the eigenvectors and visualising the eigenvectors
 - Apply vector field visualisation techniques to the three principal axes

Overview

- Tensor Visualisation
 - What is tensor
 - Methods of visualization
 - 3D glyphs
 - vector and scalar field
 - hyper-streamlines
 - LIC in 3D volumes
- Information Visualisation
 - Univariate, bivariate, trivariate, multi-variate data
 - Relations visualized by lines, tree visualization
 - Document visualization

What is Information Visualisation ?

- Visualising *discrete* data with no spatial information
- Visualisation of important information contained in abstract data types
 - Needs to be intuitive
 - Such that people can easily and quickly understand
- Tools for
 - Extraction of information from the data
 - Discovery of new knowledge

Data types

Univariate Data, Bivariate Data

Can use scatter plots, histograms

Trivariate Data

Scatterplots

Trivariate Data

Scatterplot Matrix : Visualizing the relations of every two variables

Multivariate Data

Parallel Coordinates

Star plots

Scattered plot matrix

Car data :

http://eagereyes.org/techniques/parallel-coordinates

Direct correlation

Inverse Relations

Brushing

Select some data using one of the coordinates Brushing years 1980 to 1982

Brushing

Brushing the years 1970 to 1972

Limitations

Visual clutter

- Many lines cluttered together making it impossible to see anything
- Too many dimensions make things difficult to see

Data types

Document Visualization

Visualizing Relations

Relation: A logical or natural association between two or more things; relevance of one to another; connection

Usually use lines to represent the relations

Tree visualization

Trees have hierarchical structures

No close loops

So many methods : see

http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html

Treemaps

Display hierarchical (tree-structured) data as a set of nested rectangles

- The area of the rectangles representing a scalar attribute
- The leaf nodes are often colored to visualize another attribute data

Worldmapper

http://sasi.group.shef.ac.uk/worldmapper/

Distorted maps according to numbers: Cartograms

Graph Visualization

Visualizing correlation of different nodes

Facebook relations

Facebook relations

"I defined weights for each pair of cities as a function of the Euclidean distance between them and the number of friends between them. Then I plotted lines between the pairs by weight, so that pairs of cities with the most friendships between them were drawn on top of the others. I used a color ramp from black to blue to white, with each line's color depending on its weight. I also transformed some of the lines to wrap around the image, rather than spanning more than halfway around the world "

Formal Aesthetics Metrics

- Minimize node-node / node-edge occlusion
- Minimize edge crossings
- Minimize edge bends
- Maximize symmetry
- Maximize the minimum angle between neighbor edges
- Maximize edge orthogonality
- Maximize node orthogolnality

Formal Aesthetics Metrics

Minimize edge crossings

Minimize edge bends

Formal Aesthetics Metrics

Maximizing symmetry

Maximizing the minimum angle between edges leaving a node

CAV : Lecture 18

CAV : Lecture 18

Document Visualisation

Motivation: •

Action	Units of Information transfer	
Typing at 10 bytes per second	1	
Mouse Operations.	2	
Reading	3-40	
Hearing	60	
Visualisation and Pattern Recognition	12,500	Source : Silicon (

phics Inc.

- visualisation is considerably faster than hearing / reading!

Visualisation of Documents

- Motivation : large bandwidth of human visual system
 - 100s millions of documents available on-line
 - information only in textual form
- 'Visualising the non-visual'
 - searching for scientific papers
 - analysing witness statements
 - awareness of events in news bulletins

Document Visualisation - Stages

Representation of results

- form high-dimensional vector (one for each word, ~10000+)
- cluster documents based on vector similarity (e.g. Nearest-Neighbour)
- Visualisation of clustered results
 - projection to lower dimensional space
 - 3D "galaxy" / 2D "theme-scape" / 1D "theme-river"

Query

"keywords" from user specification

comparison to sample "reference" document

2D and 3D projections of documents

Pacific Northwest National Laboratory.

1D visualisation of news articles

A 'Theme River' shows the relative importance of themes over the course of a year from press articles.

Pacific Northwest

Document Querying

- Keyword search is problematic
 - ambiguity
 - ~7-18% of people describe same concept with same word (Barnard '91)
- Interested in
 - distribution of keywords in the document
 - related articles to the keyword entered
- Tile bar scheme (Hearst 1995)
 - display a list of documents with a tile bar
 - tile bar shows the occurrence of keywords in document

Title Bar Method

Columns **represent** paragraphs or pages in a document. **Shade** indicates relevance shown by word occurrence. Shows length and likely relevance. System allows **interactivity** by clicking on box.

• Visualisation - Use of document topology / colour-mapping / interaction

Example : Title Bar Query / Result

Mainly about both DBMS & reliability

Mainly about DBMS, discusses reliability

Mainly about, say, banking, with a subtopic discussion on DBMS/Reliability

Mainly about something different

Wordle

http://www.wordle.net/create

Produces a word cloud from a document

DocuBurst

A radial, space-filling layout of hyponymy (IS-A relation)

Summary

- Tensor Visualisation
 - challenging
 - for common rank 2 tensors in IR
 - common sources stress / strain / MRI data
 - a number of methods exist via eigenanalysis decomposition of tensors
 - 3D glyphs specifically ellipsoids
 - vector and scalar field methods
 - hyper-streamlines
 - LIC in 3D volumes
- Information Visualisation
 - Univariate, bivariate, trivariate, multi-variate data
 - Relations visualized by lines, tree visualization
 - Document visualization

Reading

- Processing and Visualization of Diffusion Tensor MRI [Westin et al. '02]
- Tensor field visualisation using adaptive filtering of noise fields combined with glyph rendering [Sigfridsson et al. '02]
- Marti A. Hearst TileBars: Visualization of Term Distribution Information in Full Text Information Access
- Collins, Christopher; Carpendale, Sheelagh; and Penn, Gerald. DocuBurst: Visualizing Document Content using Language Structure. Computer Graphics Forum (Proceedings of Eurographics/IEEE-VGTC Symposium on Visualization (EuroVis '09)), 28(3): pp. 1039-1046, June, 2009
- Westin et al. '02, "Processing and visualization for diffusion tensor MRI"
- http://faculty.uoit.ca/collins/research/docuburst/index.html
- http://searchuserinterfaces.com/book/sui_ch11_text_an alysis_visualization.html