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Today

– As-rigid-as possible shape interpolation

– Laplacian mesh editing

– Generalized Barycentric Coordinates



Interpolating Shapes

– Producing a smooth transition between two 
given shapes 



As-Rigid-As Possible Shape  
Interpolation [Alexa ’00]

• Interpolating the shapes of the two polygons
so that each triangle (2D) / tetrahedron (3D)
transformation appears as rigid as possible



Interpolating the shapes of triangles

Represent the interpolation of triangles by  
rotation & scaling

• linear interpolation

• rotation & scaling
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Background Knowledge:  
2x2 matrix

Scaling

Rotation

A

A
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Transformation by 2x2 Matrix

If the matrix is symmetric, can be decomposed as

A = R  RT, R orthogonal, where  scaling matrix  

- this is called eigenvector decomposition 

The eigenvectors of A are the axes of the ellipse

A



21

Geometric analysis of linear transformations

RRT



If the matrix is symmetric, can be decomposed as

A = R  RT, R orthogonal, where  scaling matrix  

- this is called eigenvector decomposition 

The eigenvectors of A are the axes of the ellipse
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General linear transformations:  
Singular Value Decomposition (SVD)

In general A will also contain rotations, not just scales:

A

1 1
2

1

A = U VT
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General Transformation : SVD

UVT



A = U VT
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SVD operation 

The columns of U are the eigenvectors of 𝐴T𝐴

The columns of V are the eigenvectors of 𝐴 𝐴T

The diagnol values of  are the square roots of     

the eigenvalues of 𝐴 𝐴T or 𝐴T𝐴



Back to ARAP Deformation

Least-Distorting Triangle-to-Triangle Morphing

• Say the three vertices P=(p1,p2,p3) are  

morphed to Q=(q1,q2,q3)

We want to compute a transformation that  

produces [q2-q1 q3-q1] =A [p2-p1 p3-p1]

• We can apply SVD to compute the scaling and  
rotation part.

• A = R S

rotation
scaling

SR



Interpolation of the transformation matrix

The intermediate vertices will be computed by

V(t)=A(t) P

A is decomposed into the rotation part R(t) and  
scaling part and S.



Keeping the transformation similar  

to A{i,j,k}

• We cannot just interpolate all the triangles  
independently

• We need to move the vertices, not the triangles

• A vertex configuration that minimizes the error  
between A and B is computed



Some 2D results



3D objects

• The method is applicable to polyhedra

• Tetrahedralization is applied to polyhedra and  
the tetrahedra are morphed so that they are as  
rigid as possible



More results



Today

– As-rigid-as possible shape interpolation

– Laplacian mesh editing

– Generalized Barycentric Coordinates



Editing shapes

• For animating rigid/articulated objects, we can  
use previous techniques like skinning

• Let’s think of animating cloths, clay, rubber, soft  
tissues, dolls, etc



Editing shapes

• Usually, it is easier to edit a given shape rather  
than modeling it from scratch

• What is important when editing shapes?

• Keeping the local information unchanged

• Deforming as if the object is like rubber

• See the image below



Surface Editing

• Must

– Be fast (interactive rate)

– Preserving the details

– > Differential coordinates – Laplacian coordinates

– Linear, invariant to scale, rotation [Sorkine

’04]

– As-rigid-as-possible 



Laplacian coordinates

•

• Assuming all polygons are  
split into triangles

• Every vertex vi is surrounded  
by a group of vertices Ni

Coordinate i will be  
represented by the difference  
between vi and the average of  
its neighbors

• The transformation between  
the Laplacian coordinates and  
the original vertices is linear



Laplacian coordinates (2)

• Suppose the new position of the vertices are v'i

• We want to keep the Laplacian coordinates the same after the  

deformation

• T is a homogeneous transformation of scaling, rotation,

and  translation



Laplacian coordinates (3)

• We also want to constrain the position of some  

points (keeping vi’ close to ui)

• After all, we need to minimize the following  
function

• This becomes a simple quadratic optimization  
problem
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Solving a quadratic problem

Rewriting this problem, it becomes like

min || c - A x ||
2

x

The optimal x can be computed by solving

T T

AA x = Ac



Editing Surfaces by Keeping the Details

• The user specifies the region of interest (ROI)  
(the area to be edited)

• The user directly moves some of the vertices

• The rest of ROI is decided by minimizing the  
error function



Some more …
http://www.youtube.com/watch?v=Yn3P4EK8sYE&feature=channel_page

http://www.youtube.com/watch?v=Yn3P4EK8sYE&feature=channel_page


It is possible to add more constraints

• Sometimes the shape might shrink as we allow  
scaling for the transformation

• It might be better to keep the volume the same



Creating a Volumetric Graph

• Add internal vertices and edges

• Compute and preserve the details for the internal structure



Some Results
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Barycentric Coordinates

Given a polygon with N vertices, the barycentric  
coordinates is a N dimensional vector

(𝜆1, … , 𝜆𝑁)

We can use them to represent a position in the space with  
respect to the N points of the polygon

We can also use them to interpolate attribute values defined  
at the N vertices of the polygon



Interpolation
Geometric interpolation – derive the global  

coordinates for a position in parametric cell
space

Demo

p1 p4
p5  

v

f4

Attribute interpolation – derive the attribute 
value for a position defined in parametric  
cell space

f1

f5

f2 f3

http://www.lidberg.se/math/shapetransforms/barycentric.html

p2 p3

F[v]

𝑣 =

𝑖

𝜆𝑖𝑝𝑖

𝑓[𝑣] =

𝑖

𝜆𝑖𝑓𝑖

http://www.lidberg.se/math/shapetransforms/barycentric.html


Barycentric Coordinates

Requirements
– 𝜆𝑖 = 1 𝑎𝑛𝑑 𝜆𝑗 = 0 𝑤ℎ𝑒𝑛 𝑝 = 𝑝𝑖 𝑎𝑛𝑑 𝑖 ≠ 𝑗

- The values must be bounded as follows:

- σ𝑖 𝜆𝑖 = 1, 0 ≤ 𝜆𝑖 ≤ 1



How to compute the barycentric  
coordinates for each point?

x

p0

p1

p2

p3

4

p5

p r

s



Mean Value Coordinates

A good and smooth barycentric coordinates  
that can smoothly interpolate the boundary  
values

Also works well for concave polygons  

There is also a 3D version



Previous Work

Interpolation/extrapolation 

by Mean Value Coordinates

Input 



Previous Work

Interpolation/extrapolation 

by Mean Value Coordinates

Input 



3D Mean Value Coordinates

For barycentric coordinates, we wish to 

compute weights wi that satisfies

𝑣 =
σ𝑖𝑤𝑖𝑝𝑖
σ𝑖𝑤𝑖



𝑖

𝑤𝑖(𝑝𝑖−𝑣) = 0

𝜆𝑖 =
𝑤𝑖

σ𝑗𝑤𝑗



3D Mean Value Coordinates

For barycentric coordinates, we wish to 

compute weights wi that satisfies

Projecting the surface of the

mesh onto a unit sphere whose

center is at v

𝑣 =
σ𝑖𝑤𝑖𝑝𝑖
σ𝑖𝑤𝑖



𝑖

𝑤𝑖(𝑝𝑖−𝑣) = 0



3D Mean Value Coordinates

For barycentric coordinates, we wish to 

compute weights wi that satisfies

Projecting the surface of the

mesh onto a unit sphere whose

center is at v

𝑣 =
σ𝑖𝑤𝑖𝑝𝑖
σ𝑖𝑤𝑖



𝑖

𝑤𝑖(𝑝𝑖−𝑣) = 0



3D Mean Value Coordinates

For barycentric coordinates, we wish to 

compute weights wi that satisfies

Mean vector m (integral of unit 

normal over spherical triangle)

𝑣 =
σ𝑖𝑤𝑖𝑝𝑖
σ𝑖𝑤𝑖



𝑖

𝑤𝑖(𝑝𝑖−𝑣) = 0



3D Mean Value Coordinates

For barycentric coordinates, we wish to 

compute weights wi that satisfies

Mean vector m (integral of unit 

normal over spherical triangle)

𝑣 =
σ𝑖𝑤𝑖𝑝𝑖
σ𝑖𝑤𝑖



𝑖

𝑤𝑖(𝑝𝑖−𝑣) = 0

𝑚 = 

𝑘=1

3

𝑢𝑘(𝑝𝑘−𝑣)



3D Mean Value Coordinates

For barycentric coordinates, we wish to 

compute weights wi that satisfies

Mean vector m (integral of unit 

normal over spherical triangle)

Stoke’s theorem : σ𝑗𝑚𝑗 = 0



𝑗



𝑘

𝑢𝑘
𝑗
(𝑝𝑘 − 𝑣) = 0

𝑣 =
σ𝑖𝑤𝑖𝑝𝑖
σ𝑖𝑤𝑖



𝑖

𝑤𝑖(𝑝𝑖−𝑣) = 0

𝑚 = 

𝑘=1

3

𝑢𝑘(𝑝𝑘−𝑣)



Computing the Mean Value 

Vector 

Given the spherical triangle,  compute the 

mean value vector m (integral of a unit normal)



Computing the Mean Value 

Vector 

Given the spherical triangle,  compute the 

mean value vector m (integral of a unit normal)



Computing the Mean Value 

Vector 

Given the spherical triangle,  compute the 

mean value vector m (integral of a unit normal)

Build wedge with face normal 𝑛𝑘

Apply Stoke’s theorem to the

wedges and the spherical 

triangle 


𝑘=1

3
1

2
𝜃𝑘𝑛𝑘 +𝑚 = 0



Process of computing 

Mean Value Coordinates 

Compute mean vector by solving for m

Calculate weights by solving for uk in 

Sum over all triangles to compute what you 

want



𝑘=1

3
1

2
𝜃𝑘𝑛𝑘 +𝑚 = 0

𝑚 = 

𝑘=1

3

𝑢𝑘(𝑝𝑘−𝑣)

𝑓[𝑣] =
σ𝑗σ𝑘=1

3 𝑢𝑘
𝑗
𝑓𝑘
𝑗

σ𝑗σ𝑘=1
3 𝑢𝑘

𝑗



Application:  
Surface Deformation

pi
v



Application:  
Surface Deformation

pi
v



Application:  
Surface Deformation

̂pipi
v

v̂



Application:  
Surface Deformation

v pi

v̂

̂pi



Applications  
Surface Deformation

Control Mesh Surface Computing Weights Deformation

216 triangles 30,000 triangles 1.9 seconds 0.03 seconds



Applications  
Surface Deformation

Control Mesh Surface Computing Weights Deformation

98 triangles 96,966 triangles 3.3 seconds 0.09 seconds



Applications  
Boundary Value Problems



Applications  
Volume Textures

Interpolating the texture coordinates  

Extend texture to interior



Interpolation : problem polygon

http://www.youtube.com/watch?v=egf4m6zVHUI

http://www.youtube.com/watch?v=egf4m6zVHUI


Harmonic Coordinates

The problem with Mean Value Coordinates is that  
their values are affected by the Euclidean  
distance but not the distance that needs to be  
travelled

Affected by geometrically close points

Harmonic Scalar Field

– The value depends on the distance travelled  
inside the polygon

Not affected by the Euclidean distance but the  
geodesic distance



Harmonic Coordinates :  
Procedure

- For each vertex i of the cage, set the potential  

value of vi to 1, and the rest to 0

- Compute the potential for all the points inside  

the the polygon (pi) by solving a Laplace  

equation (as taught in Lecture 12)

- Normalize pi : 𝜌𝑖 =
𝑝𝑖

σ𝑗 𝑝𝑗

- (𝜌1, … , 𝜌𝑛) are the harmonic coordinates

- The global position of the point can be

expressed  in the form

P = 𝜌1 v1 + 𝜌2 v2 + … + 𝜌𝑛 vn



Harmonic Coordinates:  
comparison



Barycentric Coordinates  
Summary

Mean value coordinates
Can handle concave objects well to some extent  

Values affected by geometrically close control points  

Defined outside the polygon too

Harmonic Coordinates
Can handle concave objects

well  Only defined inside the

polygon



Summary

• As-rigid-as-possible interpolation

• Introducing the idea of changing shapes 

while preserving the rigidity of objects 

• Laplacian coordinates 

• a linear shape editing scheme that is fast 

and preserves local details

• Generalized barycentric coordinates

• Allow users to edit shapes using the 

lattice



Readings
• Alexa et al. “As-rigid-as-possible shape interpolation SIGGRAPH ’00

• Deformation Transfer for Triangle Mesh, Sumner et al. SIGGRAPH 2004

• Igarashi et al. “As-rigid-as-possible shape manipulation”, SIGGRAPH ‘05

• O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl and H.-P. Seidel,  
“Laplacian Surface Editing”, Eurographics Symposium on Geometry  
Processing (2004)

• Large Mesh Deformation Using the Volumetric Graph Laplacian

Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo,  
Heung-Yeung Shum. ACM SIGGRAPH 2005, 496-503.

• Harmoinc Coordinates for Character Articulation: Joshi et al. SIGGRAPH  
2007

• Mean Value Coordinates for Closed Triangular Meshes, Ju et al. SIGGRAPH  
2005
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SVD operation 

A = U VT

The columns of U are the eigenvectors of 𝐴T𝐴

The columns of V are the eigenvectors of 𝐴 𝐴T

The diagnol values of  are the square roots of     

the eigenvalues of 𝐴 𝐴T or 𝐴T𝐴

𝐴T𝐴 = VT𝑈T𝑈VT= VTVT

𝐴𝐴T = 𝑈VT VT𝑈T = 𝑈 T𝑈T



Mean Value Interpolation 

Assuming P is a close form surface in 𝑅3, let p[x] be 

a paremeterization of P, x are the parameters to 

define p and f[x] be a function defined over P. 

We project p[x] onto a unit sphere Sv centered at v.

The mean value interpolant is defined as

መ𝑓(𝑣) =
𝑥 𝑤 𝑥, 𝑣 𝑓 𝑥 𝑑𝑆𝑣

𝑥 𝑤 𝑥, 𝑣 𝑑𝑆𝑣

where  𝑤 𝑥, 𝑦 =
1

|𝑝 𝑥 −𝑣|



Mean Value Interpolation 

Mean value interpolant satisfies all the requirements 

for barycentric coordinates but is continuous (not 

defined per vertex).  

We compute the weights per triangle

This will be 


