Mesh Shape Editing

Computer Animation and Visualisation

Lecture 16
Taku Komura

Today

- As-rigid-as possible shape interpolation
- Laplacian mesh editing
- Generalized Barycentric Coordinates

Interpolating Shapes

－Producing a smooth transition between two given shapes

$$
\begin{aligned}
& \text { 「「\{ | }
\end{aligned}
$$

As-Rigid-As Possible Shape Interpolation [Alexa '00]

- Interpolating the shapes of the two polygons so that each triangle (2D) / tetrahedron (3D) transformation appears as rigid as possible

Interpolating the shapes of triangles

Represent the interpolation of triangles by rotation \& scaling

rotation \& scaling

Background Knowledge: 2x2 matrix

Scaling

Rotation

$$
R_{\alpha}=\left[\begin{array}{cc}
\cos (\alpha) & -\sin (\alpha) \\
\sin (\alpha) & \cos (\alpha)
\end{array}\right]
$$

Transformation by 2×2 Matrix

If the matrix is symmetric, can be decomposed as $A=R \Lambda R^{T}, \quad R$ orthogonal, where Λ scaling matrix

- this is called eigenvector decomposition

The eigenvectors of A are the axes of the ellipse

$$
A=R\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) R^{T}
$$

Geometric analysis of linear transformations

If the matrix is symmetric, can be decomposed as $A=R \Lambda R^{T}, \quad R$ orthogonal, where Λ scaling matrix

- this is called eigenvector decomposition

The eigenvectors of A are the axes of the ellipse

$$
\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right)
$$

General linear transformations: Singular Value Decomposition (SVD)

In general A will also contain rotations, not just scales:

General Transformation : SVD

$\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right)$

$$
A=U \sum V^{T}
$$

SVD operation

The columns of U are the eigenvectors of $A^{\mathrm{T}} A$ The columns of V are the eigenvectors of $A A^{\mathrm{T}}$ The diagnol values of \sum are the square roots of the eigenvalues of $A A^{\mathrm{T}}$ or $A^{\mathrm{T}} A$

$$
\begin{aligned}
A & =U \sum V^{T} \\
A^{\mathrm{T}} A & =V \sum^{T} U^{T} U \sum V^{T}=V \sum^{T} \sum V^{T} \\
A A^{\mathrm{T}} & =U \sum V^{T} V \sum^{T} U^{T}=U \sum \sum^{T} U^{T}
\end{aligned}
$$

Back to ARAP Deformation

Least-Distorting Triangle-to-Triangle Morphing

- Say the three vertices $\mathbf{P}=\left(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{p}_{\mathbf{3}}\right)$ are morphed to $\mathbf{Q}=\left(\mathbf{q}_{1}, \mathbf{q}_{2}, \mathbf{q}_{3}\right)$
We want to compute a transformation that produces $\quad\left[\mathbf{q}_{2}-\mathbf{q}_{1} \mathbf{q}_{3}-\mathbf{q}_{1}\right]=\mathbf{A}\left[\mathbf{p}_{2}-\mathbf{p}_{1} \mathbf{p}_{3}-\mathbf{p}_{1}\right]$
- We can apply SVD to compute the scaling and rotation part.
- $\mathbf{A}=\mathbf{R} \mathbf{S}$

$$
A=U \Sigma V^{\top}=U V^{\top} V \Sigma V^{\top}=R S
$$

Interpolation of the transformation matrix

The intermediate vertices will be computed by
$\mathbf{V}(\mathbf{t})=\mathbf{A}(\mathbf{t}) \mathbf{P}$
A is decomposed into the rotation part $R(t)$ and scaling part and S .

$$
A_{\gamma}(t)=R_{t \gamma}((1-t) I+t S)
$$

Keeping the transformation similar

to $\boldsymbol{A}\{i, j, k\}$

- We cannot just interpolate all the triangles independently
- We need to move the vertices, not the triangles
- A vertex configuration that minimizes the error between A and B is computed

$$
E_{V(t)}=\sum_{\{i, j, k\} \in \mathcal{T}}\left\|A_{\{i, j, k\}}(t)-B_{\{i, j, k\}}(t)\right\|^{2}
$$

Some 2D results

3D objects

- The method is applicable to polyhedra
- Tetrahedralization is applied to polyhedra and the tetrahedra are morphed so that they are as rigid as possible

More results

呙柋柋 1191

Today

- As-rigid-as possible shape interpolation
- Laplacian mesh editing
- Generalized Barycentric Coordinates

Editing shapes

- For animating rigid/articulated objects, we can use previous techniques like skinning
- Let's think of animating cloths, clay, rubber, soft tissues, dolls, etc

Editing shapes

- Usually, it is easier to edit a given shape rather than modeling it from scratch
- What is important when editing shapes?
- Keeping the local information unchanged
- Deforming as if the object is like rubber
- See the image below

Surface Editing

- Must
- Be fast (interactive rate)
- Preserving the details
-> Differential coordinates - Laplacian coordinates
- Linear, invariant to scale, rotation [Sorkine '04]
- As-rigid-as-possible

Laplacian coordinates

- Assuming all polygons are split into triangles
- Every vertex $\mathbf{v} i$ is surrounded by a group of vertices $\mathbf{N} i$
- Coordinate i will be represented by the difference between $\mathrm{v} i$ and the average of its neighbors

The transformation between the Laplacian coordinates and the original vertices is linear

$$
\mathscr{L}\left(\mathbf{v}_{i}\right)=\mathbf{v}_{i}-\frac{1}{d_{i}} \sum_{j \in \mathscr{N}_{i}} \mathbf{v}_{j}
$$

Laplacian coordinates (2)

- Suppose the new position of the vertices are $\mathbf{v}^{\prime}{ }_{i}$
- We want to keep the Laplacian coordinates the same after the deformation

$$
\begin{aligned}
& \mathcal{O}_{i}=\mathscr{L}\left(\mathbf{v}_{i}\right) \\
& E\left(V^{\prime}\right)=\sum_{i=1}^{n}\left\|T_{i}\left(V^{\prime}\right) \delta_{i}-\mathscr{L}\left(\mathbf{v}_{i}^{\prime}\right)\right\|^{2}
\end{aligned}
$$

- T is a homogeneous transformation of scaling, rotation, and translation

Laplacian coordinates (3)

- We also want to constrain the position of some points (keeping vi' close to $\mathbf{u}_{\mathbf{i}}$)
- After all, we need to minimize the following function

$$
E\left(V^{\prime}\right)=\sum_{i=1}^{n}\left\|T_{i}\left(V^{\prime}\right) \delta_{i}-\mathscr{L}\left(\mathbf{v}_{i}^{\prime}\right)\right\|^{2}+\sum_{i=m}^{n}\left\|\mathbf{v}_{i}^{\prime}-\mathbf{u}_{i}\right\|^{2}
$$

- This becomes a simple quadratic optimization problem

Solving a quadratic problem

Rewriting this problem, it becomes like

$$
\min _{\mathbf{x}}\|\mathbf{c}-\mathbf{A} \mathbf{x}\|^{2}
$$

The optimal x can be computed by solving
$\mathbf{A}^{\mathrm{T}} \mathbf{A} \mathbf{x}=\mathbf{A c}^{\mathrm{T}}$

Editing Surfaces by Keeping the Details

- The user specifies the region of interest (ROI) (the area to be edited)
- The user directly moves some of the vertices
- The rest of ROI is decided by minimizing the error function

(a)

(b)

(c)

Some more ...

http://www.youtube.com/watch?v=Yn3P4EK8sYE\&feature=channel page

(a)

(b)

(c)

It is possible to add more constraints

- Sometimes the shape might shrink as we allow scaling for the transformation
- It might be better to keep the volume the same

Creating a Volumetric Graph

Figure 5: Volumetric graph construction.

- Add internal vertices and edges
- Compute and preserve the details for the internal structure

Some Results

(a) Laplacian surface

(b) Poisson mesh

(o) VGL
Figure 2: Large wist deformation.

Today

- As-rigid-as possible shape interpolation
- Laplacian mesh editing
- Generalized Barycentric Coordinates

Barycentric Coordinates

Given a polygon with N vertices, the barycentric coordinates is a N dimensional vector

$$
\left(\lambda_{1}, \ldots, \lambda_{N}\right)
$$

We can use them to represent a position in the space with respect to the N points of the polygon

We can also use them to interpolate attribute values defined at the N vertices of the polygon

Interpolation

Geometric interpolation - derive the global coordinates for a position in parametric cell space

$$
v=\sum_{i} \lambda_{i} p_{i}
$$

Attribute interpolation - derive the attribute value for a position defined in parametric cell space

$$
f[v]=\sum_{i} \lambda_{i} f_{i}
$$

Barycentric Coordinates

Requirements
$-\lambda_{i}=1$ and $\lambda_{j}=0$ when $p=p_{i}$ and $i \neq j$

- The values must be bounded as follows:
- $\quad \sum_{i} \lambda_{i}=1,0 \leq \lambda_{i} \leq 1$

How to compute the barycentric coordinates for each point?

Mean Value Coordinates

A good and smooth barycentric coordinates that can smoothly interpolate the boundary values
Also works well for concave polygons
There is also a 3D version

$$
\lambda_{i}=\frac{w_{i}}{\sum_{j=1}^{k} w_{j}},
$$

$$
w_{i}=\frac{\tan \left(\alpha_{i-1} / 2\right)+\tan \left(\alpha_{i} / 2\right)}{\left\|v_{i}-v_{0}\right\|}
$$

Previous Work

Input

Interpolation/extrapolation by Mean Value Coordinates

Previous Work

Input

Interpolation/extrapolation by Mean Value Coordinates

3D Mean Value Coordinates

For barycentric coordinates, we wish to compute weights wi that satisfies

$$
\begin{aligned}
& v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}} \longrightarrow \sum_{i} w_{i}\left(p_{i}-v\right)=0 \\
& \lambda_{i}=\frac{w_{i}}{\sum_{j} w_{j}}
\end{aligned}
$$

3D Mean Value Coordinates

For barycentric coordinates, we wish to compute weights wi that satisfies

$$
v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}} \quad \longrightarrow \sum_{i} w_{i}\left(p_{i}-v\right)=0
$$

Projecting the surface of the mesh onto a unit sphere whose center is at v

3D Mean Value Coordinates

For barycentric coordinates, we wish to compute weights wi that satisfies

$$
v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}} \quad \longrightarrow \sum_{i} w_{i}\left(p_{i}-v\right)=0
$$

Projecting the surface of the mesh onto a unit sphere whose center is at v

3D Mean Value Coordinates

For barycentric coordinates, we wish to compute weights wi that satisfies

$$
v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}} \quad \longrightarrow \sum_{i} w_{i}\left(p_{i}-v\right)=0
$$

Mean vector m (integral of unit normal over spherical triangle)

3D Mean Value Coordinates

For barycentric coordinates, we wish to compute weights wi that satisfies

$$
v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}} \quad \longrightarrow \sum_{i} w_{i}\left(p_{i}-v\right)=0
$$

Mean vector m (integral of unit normal over spherical triangle)

$$
m=\sum_{k=1}^{3} u_{k}\left(p_{k}-v\right)
$$

3D Mean Value Coordinates

For barycentric coordinates, we wish to compute weights wi that satisfies

$$
v=\frac{\sum_{i} w_{i} p_{i}}{\sum_{i} w_{i}} \longrightarrow \sum_{i} w_{i}\left(p_{i}-v\right)=0
$$

Mean vector m (integral of unit normal over spherical triangle)

$$
m=\sum_{k=1}^{3} u_{k}\left(p_{k}-v\right)
$$

Stoke's theorem : $\sum_{j} m_{j}=0$

$$
\sum_{j} \sum_{k} u_{k}^{j}\left(p_{k}-v\right)=0
$$

Computing the Mean Value Vector

Given the spherical triangle, compute the mean value vector m (integral of a unit normal)

Computing the Mean Value Vector

Given the spherical triangle, compute the mean value vector m (integral of a unit normal)

Computing the Mean Value Vector

Given the spherical triangle, compute the mean value vector m (integral of a unit normal)

Build wedge with face normal n_{k}
Apply Stoke's theorem to the wedges and the spherical

Process of computing Mean Value Coordinates

Compute mean vector by solving for m

$$
\sum_{k=1}^{3} \frac{1}{2} \theta_{k} n_{k}+m=0
$$

Calculate weights by solving for u_{k} in

$$
m=\sum_{k=1}^{3} u_{k}\left(p_{k}-v\right)
$$

Sum over all triangles to compute what you want

$$
f[v]=\frac{\sum_{j} \sum_{k=1}^{3} u_{k}^{j} f_{k}^{j}}{\sum_{j} \sum_{k=1}^{3} u_{k}^{j}}
$$

Application:

Surface Deformation

Application:
 Surface Deformation

Application: Surface Deformation

Application:
 Surface Deformation

Applications
 Surface Deformation

Control Mesh
216 triangles

Surface
30,000 triangles

Computing Weights
1.9 seconds

Deformation
0.03 seconds

Applications Surface Deformation

Control Mesh
98 triangles

Surface
96,966 triangles

Computing Weights
3.3 seconds

Deformation
0.09 seconds

Applications

Boundary Value Problems

Applications
 Volume Textures

Interpolating the texture coordinates
Extend texture to interior

Interpolation : problem polygon

Problem: This vertex has too strong an influence in the red region
http://www.youtube.com/watch?v=egf4m6zVHUI
Shows the problem of mean value coordinates at 1:54

- ill-formed polygon
- poor interpolation results based on point distance due to narrow concavity

Harmonic Coordinates

The problem with Mean Value Coordinates is that their values are affected by the Euclidean distance but not the distance that needs to be travelled
Affected by geometrically close points

Harmonic Scalar Field

- The value depends on the distance travelled inside the polygon
Not affected by the Euclidean distance but the geodesic distance

Harmonic Coordinates: Procedure

- For each vertex i of the cage, set the potential value of v_{i} to 1 , and the rest to 0
- Compute the potential for all the points inside the the polygon (p_{i}) by solving a Laplace equation (as taught in Lecture 12)
- Normalize $p_{i}: \rho_{i}=\frac{p_{i}}{\sum_{j} p_{j}}$
- $\left(\rho_{1}, \ldots, \rho_{n}\right)$ are the harmonic coordinates
- The global position of the point can be expressed in the form
$\mathbf{P}=\rho_{1} \mathbf{v}_{1}+\rho_{2} \mathbf{v}_{2}+\ldots+\rho_{n} \mathbf{v}_{\mathbf{n}}$

Harmonic Coordinates: comparison

Before editing

Edited by MVC

Edited by HC

Barycentric Coordinates Summary

Mean value coordinates
Can handle concave objects well to some extent
Values affected by geometrically close control points
Defined outside the polygon too
Harmonic Coordinates
Can handle concave objects
well Only defined inside the polygon

Summary

- As-rigid-as-possible interpolation
- Introducing the idea of changing shapes while preserving the rigidity of objects
- Laplacian coordinates
- a linear shape editing scheme that is fast and preserves local details
- Generalized barycentric coordinates
- Allow users to edit shapes using the lattice

Readings

- Alexa et al. "As-rigid-as-possible shape interpolation SIGGRAPH '00
- Deformation Transfer for Triangle Mesh, Sumner et al. SIGGRAPH 2004
- Igarashi et al. "As-rigid-as-possible shape manipulation", SIGGRAPH ‘05
- O. Sorkine, D. Cohen-Or, Y. Lipman, M. Alexa, C. Rössl and H.-P. Seidel, "Laplacian Surface Editing", Eurographics Symposium on Geometry Processing (2004)
- Large Mesh Deformation Using the Volumetric Graph Laplacian Kun Zhou, Jin Huang, John Snyder, Xinguo Liu, Hujun Bao, Baining Guo, Heung-Yeung Shum. ACM SIGGRAPH 2005, 496-503.
- Harmoinc Coordinates for Character Articulation: Joshi et al. SIGGRAPH 2007
- Mean Value Coordinates for Closed Triangular Meshes, Ju et al. SIGGRAPH 2005

SVD operation

The columns of U are the eigenvectors of $A^{\mathrm{T}} A$ The columns of V are the eigenvectors of $A A^{\mathrm{T}}$ The diagnol values of \sum are the square roots of the eigenvalues of $A A^{\mathrm{T}}$ or $A^{\mathrm{T}} A$

$$
\begin{aligned}
A & =U \sum V^{T} \\
A^{\mathrm{T}} A & =V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T} \\
A^{\mathrm{T}} & =U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma \Sigma^{T} U^{T}
\end{aligned}
$$

Mean Value Interpolation

Assuming P is a close form surface in R^{3}, let $\mathrm{p}[\mathrm{x}]$ be a paremeterization of P, x are the parameters to define p and $f[x]$ be a function defined over P.

We project $\mathrm{p}[\mathrm{x}]$ onto a unit sphere Sv centered at v .
The mean value interpolant is defined as

$$
\hat{f}(v)=\frac{\int_{x} w[x, v] f[x] d S_{v}}{\int_{x} w[x, v] d S_{v}}
$$

where $w[x, y]=\frac{1}{|p[x]-v|}$

Mean Value Interpolation

Mean value interpolant satisfies all the requirements for barycentric coordinates but is continuous (not defined per vertex).

We compute the weights per triangle
This will be

