Information Visualisation

Computer Animation and Visualisation
Lecture 18

Taku Komura
tkomura@ed.ac.uk

Institute for Perception, Action & Behaviour
School of Informatics
Overview

- **Information Visualisation**
 - Univariate, bivariate, trivariate, multi-variate data
 - Relations visualized by lines, tree visualization
 - Document visualization
What is Information Visualisation?

- Visualising *discrete* data with no spatial information

- Visualisation of important information contained in abstract data types
 - Needs to be intuitive
 - Such that people can easily and quickly understand

- *Tools for*
 - *Extraction of information from the data*
 - *Discovery of new knowledge*
Data types

quantitative data

Univariate

bivariate

trivariate

multivariate

Relationship

Graphs

Trees

mapping, figures

Document Visualization
Univariate Data, Bivariate Data

Can use scatter plots, histograms
Trivariate Data

Scatterplots
Scatterplot matrix

Not clear if D is more expensive than B and C
Trivariate Data

Scatterplot Matrix: Visualizing the relations of every two variables
Multivariate Data

Parallel Coordinates
Star plots
Scattered plot matrix
Parallel Coordinates

bedrooms

price

bedrooms

price

bedrooms

price

A

B

A

B
Parallel Coordinates

Car data:
http://eagereyes.org/techniques/parallel-coordinates
Parallel Coordinates

Direct correlation
Parallel Coordinates

Inverse Relations
Brushing

Select some data using one of the coordinates

Brushing years 1980 to 1982
Brushing

Brushing the years 1970 to 1972
Limitations

Visual clutter

- Many lines cluttered together making it impossible to see anything
- Too many dimensions make things difficult to see

http://mbostock.github.io/protovis/ex/cars.html
Solutions

• Clustering the axes
• Re-ordering the axes
• But in general, cannot handle a large number of data
Data types

- Quantitative data
 - Univariate
 - Bivariate
 - Trivariate
 - Multivariate
 - Relationship
 - Graphs
 - Trees
 - Mapping, figures

Document Visualization
Visualizing Relations

Relation: A logical or natural association between two or more things; relevance of one to another; connection

Usually use lines to represent the relations
Tree visualization

Trees have hierarchical structures

No close loops

So many methods : see

http://vcg.informatik.uni-rostock.de/~hs162/treeposter/poster.html
Treemaps

Display hierarchical (tree-structured) data as a set of nested rectangles

The area of the rectangles representing a scalar attribute

The leaf nodes are often colored to visualize another attribute data
Worldmapper

http://sasi.group.shef.ac.uk/worldmapper/

Distorted maps according to numbers: Cartograms
Graph Visualization

Visualizing correlation of different nodes

E.g.

- social networks
- citation networks

https://vimeo.com/19278513
Facebook relations
Facebook relations

“I defined weights for each pair of cities as a function of the Euclidean distance between them and the number of friends between them. Then I plotted lines between the pairs by weight, so that pairs of cities with the most friendships between them were drawn on top of the others. I used a color ramp from black to blue to white, with each line's color depending on its weight. I also transformed some of the lines to wrap around the image, rather than spanning more than halfway around the world.”
Formal Aesthetics Metrics

Minimize node-node / node-edge occlusion
Minimize edge crossings
Minimize edge bends
Maximize symmetry
Maximize the minimum angle between neighbor edges
Maximize edge orthogonality
Maximize node orthogonality
Formal Aesthetics Metrics

Minimize edge crossings

Minimize edge bends
Formal Aesthetics Metrics

Maximizing symmetry

Maximizing the minimum angle between edges leaving a node
Data types

quantitative data Relationship

Univariate Graphs

bivariate Trees

trivariate mapping, figures

multivariate
Document Visualisation

- Motivation:

<table>
<thead>
<tr>
<th>Action</th>
<th>Units of Information transfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typing at 10 bytes per second</td>
<td>1</td>
</tr>
<tr>
<td>Mouse Operations.</td>
<td>2</td>
</tr>
<tr>
<td>Reading</td>
<td>3-40</td>
</tr>
<tr>
<td>Hearing</td>
<td>60</td>
</tr>
<tr>
<td>Visualisation and Pattern Recognition</td>
<td>12,500</td>
</tr>
</tbody>
</table>

- visualisation is considerably faster than hearing / reading!

Source: Silicon Graphics Inc.
Visualisation of Documents

• Motivation: large bandwidth of human visual system
 - 100s millions of documents available on-line
 - information only in textual form

• ‘Visualising the non-visual’
 - searching for scientific papers
 - analysing witness statements
 - awareness of events in news bulletins
Document Visualisation - Stages

- **Representation of results**
 - form high-dimensional vector (one for each word, ~10000+)
 - cluster documents based on vector similarity (e.g. Nearest-Neighbour)

- **Visualisation of clustered results**
 - projection to lower dimensional space
 - 3D “galaxy” / 2D “theme-scape” / 1D “theme-river”

Query

“keywords” from user specification

comparison to sample “reference” document
2D and 3D projections of documents

3D Visualisation of 567,000 cancer literature abstracts.

Articles in a collection of news items (2D).

Pacific Northwest National Laboratory.
1D visualisation of news articles

A ‘Theme River’ shows the relative importance of themes over the course of a year from press articles.

Pacific Northwest National Laboratory.

http://www.nytimes.com/interactive/2008/02/23/movies/20080223_REVENUE_GRAPHIC.html?_r=0
Document Querying

• Keyword search is problematic
 – ambiguity
 – \(\sim 7\%-18\% \) of people describe same concept with same word (Barnard '91)

• Interested in
 – distribution of keywords in the document
 – related articles to the keyword entered

• Tile bar scheme (Hearst 1995)
 – display a list of documents with a tile bar
 – tile bar shows the occurrence of keywords in document
Title Bar Method

- Visualisation - Use of document topology / colour-mapping / interaction

Columns represent paragraphs or pages in a document. Shade indicates relevance shown by word occurrence. Shows length and likely relevance. System allows interactivity by clicking on box.
Example: Title Bar Query / Result

Query terms: DBMS (Database Systems)
Reliability

What roles do they play in retrieved documents?

- Mainly about both DBMS & reliability
- Mainly about DBMS, discusses reliability
- Mainly about, say, banking, with a subtopic discussion on DBMS/Reliability
- Mainly about something different
Wordle

http://www.wordle.net/create

Produces a word cloud from a document
DocuBurst

- A radial, space-filling layout of hyponymy (IS-A relation)
Summary

- Information Visualisation
 - Univariate, bivariate, trivariate, multi-variate data
 - Relations visualized by lines, tree visualization
 - Document visualization
Reading

• Marti A. Hearst *TileBars: Visualization of Term Distribution Information in Full Text Information Access*

• http://faculty.uoit.ca/collins/research/docuburst/index.html