
Computer Animation

Lecture 2.

Basics of Character Animation

Taku Komura

Overview
 Character Animation
 Posture representation
 Hierarchical structure of the body
 Joint types
Translational, hinge, universal, gimbal, free

 Euler angles
Gimbal lock

 Quaternions
 Coordinate Transformations

 Creating the animation (Keyframe animation)
 Interpolation
 Inverse Kinematics
 Analytical
 CCD
 Pseudo Inverse

Characters include

Human models
Virtual characters
Animal models

Controlling the Skeleton

 We control the skeleton
of the character

→ skeletal motion

 The skin follows the
 movement of the
 skeleton

 → skinning deformation

Representation of Postures

The body has a hierarchical structure
Many & different types of joints

Hierarchical structure of the body

The first joint is typically called
the “root” of the character

The position of the joints lower
in the hierarchy are affected by
those above it

Each joints can have 1 to 6
degrees of freedom (DOF)

For rotational joints, usually it
is 1, 2, or 3

The root of the body has 6 DOF
in total (3 DOF for translation,
3DOF for rotation)

Joints

 The Degrees of Freedom (DOF) is defined
for various joints

 There are several kinds of joints
 Translational joint (1,2,3 DOF)
 Hinge joints (1 DOF)
 Universal joint (2 DOF)
 Gimbal joint (3 DOF)
 Free joint (3 DOF)

Translational joint

 A sliding joint
 Can be 1,2 or 3 DOF

Hinge Joint

 A 1 DOF rotational joint
 Can be defined by the

axis of rotation
 Knee, elbow

Universal Joint

 2DOF
 Rotation around 2 axes

perpendicular to each
other

 Wrist joint

3DOF rotational joints

 Shoulder, hip, neck
 Two ways to represent the rotations
 Gimbal joint (Euler Angles)
 Free joint (Quaternions)

Gimbal joint: Euler Angles

 3DOF joints
 Comes from Robotics
 3DOF joints in robots were designed by

connecting three motors pointing different
axes

Gimbal joint: Euler Angles
 Rotation defined by the three axes and the

angle of rotation around them
 the rotation order has to be specified such as
 X-Y-Z, Z-X-Y, Y-Z-X, etc
The one below is Z-X

Problem: Gimbal Lock

 Two rotational axis of an object pointing in the same
direction - 1DOF is lost
• For example for rotation defined in the order of X-Y-

Z
• Gimbal lock occurs when rotating Y for 90 degrees.
• X and Z axis get pointed down the same axis

http://flashsandy.org/tutorials/eulerangles

X
y

Problem: Gimbal Lock

https://www.youtube.com/watch?v=zc8b2Jo7mn
o

Free joint
A ball joint
3 DOF
Do not have to worry about gimbal lock

Free joint: Quaternion

Do not have to worry about gimbal lock
The rotation is represented by a vector of four

components (qx, qy, qz, qw)

Free joint: Quaternion

Do not have to worry about gimbal lock
The rotation is represented by a vector of four

components (qx, qy, qz, qw)
A rotation about the unit vector q by an angle alpha

around an axis (ax, ay, az) makes a quaternion:

α

(ax, ay, az) (S, C are sin, cos)

Generalized Coordinates

A vector to specify the posture of the body

Usually, the first three numbers: location of the root
The next three numbers: orientation of root
The rest: the joint angles of the body

Overview
 Character Animation
 Posture representation
 Hierarchical structure of the body
 Joint types
Translational, hinge, universal, gimbal, free

 Euler angles
Gimbal lock

 Quaternions
 Coordinate Transformations

 Creating the animation (Keyframe animation)
 Interpolation
 Inverse Kinematics
 Analytical
 CCD
 Pseudo Inverse

Keyframe Animation
 The keyframe postures are designed by the

animator
 The inbetween motion is created by

interpolation

Keyframe Design
 Each postures are created by the user interface
 Forward Kinematics (FK, Virtual Track Ball)
 The user clicks the segment and rotates it around the joint

origin
 The movement of the mouse is mapped to the rotation of the

joint
 Example:

 Inverse Kinematics (IK)
 The user clicks the segment and drags it in the 3D coordinate
 The motion of the mouse is mapped to the translation in 3D

coordinate
 The movement of the segment is achieved by moving each

joint of the body
 Example:
 Interactive Demo: http://www.starke-consult.de/BioIK-Demo/index.html

http://www.youtube.com/watch?v=--5hWniftyI

https://www.youtube.com/watch?v=pGuR4xyi7MQ

http://www.starke-consult.de/BioIK-Demo/index.html
http://www.starke-consult.de/BioIK-Demo/index.html
http://www.starke-consult.de/BioIK-Demo/index.html
http://www.starke-consult.de/BioIK-Demo/index.html
http://www.starke-consult.de/BioIK-Demo/index.html
http://www.starke-consult.de/BioIK-Demo/index.html
http://www.youtube.com/watch?v=--5hWniftyI
https://www.youtube.com/watch?v=pGuR4xyi7MQ

Keyframe animation by Poser

 Poser is a commercial software to generate
human animation

 There is another free software called
MikuMikuDance

 Blender plugin called “Manuel Bastioni Labs”
 Unity3D In-Built IK & Keyframe-Animation

https://www.youtube.com/watch?v=QAXOdj8mr7s

https://www.youtube.com/watch?v=QAXOdj8mr7s

Interpolation

The generalized coordinates can be interpolated by
 Linear interpolation

 High-order polynomials (e.g. Bsplines, Bezier)
 Bezier: 2 end points, two points to control the

tangent vector

Linear interpolation

Bsplines

Interpolation of Quaternions

Interpolation of two rotations (SLERP)
Changing the orientation from q1 to q2 by rotating around a

single axis u
 angle of rotation around u to change from q1 to q2

Problems with interpolating the
generalized coordinates

 Important constraints might not be satisfied
→ The feet on the ground can slide
→ Mainly reasoned by interpolating the root wrong

 → “Error-propagation” along the hierarchy

 Solution
→Specify the position of the joints and use IK

 to calcualte the joint angles

Forward and Inverse Kinematics

 Forward kinematics solution is straightforward to
compute and unique. However, hard to control.

→ “We don’t know the joint angles to reach a location.”

 Inverse kinematics can have zero to infinite

solutions. Solutions tell us the joint angles.

 Inverse Kinematics Problem

 Calculate the joint angles from the position of the
end effector

Inverse Kinematics

 Forward Kinematics: calculating the joint
positions from the joint angles

 Inverse Kinematics : Calculate the joint
angles based on the joint positions

 Many different approaches
 Analytical approaches (analytical solution exists)
 CCD (Cyclic Coordinate Descent)
 Jacobian-based methods (compute by optimization)


 Originated from robotics, but also essential in
animation. Main difference: speed vs. accuracy

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html

Analytical Approaches
 Using an analytical solver for

calculating the joint angles
 e.g. suppose the positions of

the wrist and shoulder are
given, calculate the elbow
angle

Cyclic-Coordinate Descent
 Moving the joints closest to the end effectors first and minimize the

distance between the end effector and the target
 Move up the hierarchy and move the next joint to minimize the distance

between the end effector and the target
 Repeat the process until the base is reached
 Move to the first joint again and repeat the same process until the end

effector reaches the target or max iterations reached
– This is needed to handle cases that the target is not reachable
– 2D Tutorial: http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-

2d/

Pseudo-inverse method

 The relationship between the end effector
position and the joint angles are non-linear
 e = f(q)

 But for small movements, their relation
 can be considered linear
 Δe = J Δq

Jacobian matrix

 Correlates the movement of the end
effector Δe with movements of the joints Δqi

 Each column describing how much Δe
changes when the Δqi is changed

Pseudo-inverse method

 The relationship between the end effector
position and the joint angles are non-linear

 e = f(q)
 But for small movements, their relation

can be considered linear
 Δe = J Δq

 This is Forward mapping
 Inverse mapping?

Δq Δe

Pseudo Inverse Matrix

 The minimal joint angle movements
that achieves the end effector
movement e can be computed by the
pseudo inverse matrix

Pseudo-inverse Method

 Iteratively updating the generalized
coordinates so that the position constraints
are satisfied

 e: end effector position
 g: target location

 while (Δe is too far from g) {

 compute the Jacobian matrix J

 compute the pseudoinverse of the Jacobian matrix J

 compute change in joint DOFs: Δq=J Δe
 apply the change to DOFs, move a small step of

 q=q+ Δq

 }

Δe =JΔq
+

+

Singularity Problem

 There can be postures that the end
effector cannot be moved to some
directions
• i.e. when all the joints are fully

extended
 The system becomes unstable
 Test:

 Solution: Damped Least Squares
(imposing soft constraints):

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html

Which method will be good for
controlling each of the below?

Cons and Pros of IK

 Analytical : Fast, but for most cases have
no analytical solution

 CCD : simple, fast, easy to implement,
can take into account the limit of the
joint angles, may have oscillation
problems

 Pseudo Inverse:
 Used in robotics often, can handle any

topological structure, multiple constraints
 Can incorporate physics
 Singularity problems (unstable when the limb

is fully extended) -> damped least squares

Summary

 Representation of the Posture
 Euler angles, generalized coordinates,

quaternions

 Character Animation by Interpolation

 Inverse Kinematics

 Analytical
 CCD
 Jacobian Pseudoinverse
 Damped-Least-Squares

Links, Readings
 Poser http://poser.smithmicro.com/poser.html
 MikuMikuDance

 https://sites.google.com/view/vpvp/
 About CCD http://graphics.cs.cmu.edu/nsp/course/15-

464/Fall09/assignments/asst2/jlander_gamedev_nov98.pdf
 IK introduction

– http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksu
rvey.pdf

 A robotics textbook (can be downloaded from within the university,
see chapter 3)
• http://link.springer.com/content/pdf/10.1007%2F978-1-84628-

642-1.pdf

http://poser.smithmicro.com/poser.html
https://sites.google.com/view/vpvp/
http://graphics.cs.cmu.edu/nsp/course/15-464/Fall09/assignments/asst2/jlander_gamedev_nov98.pdf
http://graphics.cs.cmu.edu/nsp/course/15-464/Fall09/assignments/asst2/jlander_gamedev_nov98.pdf
http://link.springer.com/content/pdf/10.1007%2F978-1-84628-642-1.pdf
http://link.springer.com/content/pdf/10.1007%2F978-1-84628-642-1.pdf

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30
	Slide Number 31
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Slide Number 35
	Slide Number 36
	Slide Number 37
	Slide Number 38
	Slide Number 39
	Slide Number 40
	Slide Number 43
	Slide Number 45
	Slide Number 46
	Slide Number 47
	Slide Number 48

