Computer Animation

Lecture 2.

Basics of Character Animation

Taku Komura

Overview

\square Character Animation
■ Posture representation
■ Hierarchical structure of the body
■ Joint types
\square Translational, hinge, universal, gimbal, free

- Euler angles
-Gimbal lock
- Quaternions
- Coordinate Transformations

Creating the animation (Keyframe animation)

- Interpolation

■ Inverse Kinematics

- Analytical
- CCD

■ Pseudo Inverse

Characters include

\square Human models
\square Virtual characters
\square Animal models

Controlling the Skeleton

- We control the skeleton of the character
\rightarrow skeletal motion
- The skin follows the movement of the skeleton
\rightarrow skinning deformation

Representation of Postures

-The body has a hierarchical structure \bullet Many \& different types of joints

Hierarchical structure of the body

-The first joint is typically called the "root" of the character

- The position of the joints lower in the hierarchy are affected by those above it
- Each joints can have 1 to 6 degrees of freedom (DOF)
-For rotational joints, usually it is 1,2 , or 3
- The root of the body has 6 DOF in total (3 DOF for translation, 3DOF for rotation)

Joints

\square The Degrees of Freedom (DOF) is defined for various joints
\square There are several kinds of joints

- Translational joint (1,2,3 DOF)
- Hinge joints (1 DOF)
- Universal joint (2 DOF)
- Gimbal joint (3 DOF)
- Free joint (3 DOF)

Translational joint

\square A sliding joint
\square Can be 1,2 or 3 DOF

Hinge Joint

\square A 1 DOF rotational joint
\square Can be defined by the axis of rotation
\square Knee, elbow

Universal Joint

- 2DOF
- Rotation around 2 axes perpendicular to each other
\square Wrist joint

3DOF rotational joints

\square Shoulder, hip, neck
\square Two ways to represent the rotations

- Gimbal joint (Euler Angles)

■ Free joint (Quaternions)

Gimbal joint: Euler Angles

\square 3DOF joints
\square Comes from Robotics
\square 3DOF joints in robots were designed by connecting three motors pointing different axes

Gimbal joint: Euler Angles

\square Rotation defined by the three axes and the angle of rotation around them
\square the rotation order has to be specified such as $X-Y-Z, Z-X-Y, Y-Z-X$, etc
The one below is $Z-X$

Problem: Gimbal Lock

\square Two rotational axis of an object pointing in the same direction - 1DOF is lost

- For example for rotation defined in the order of $X-Y$ Z
- Gimbal lock occurs when rotating Y for 90 degrees.
- X and Z axis get pointed down the same axis

Problem: Gimbal Lock

https://www.youtube.com/watch?v=zc8b2Jo7mn

Free joint

\square A ball joint
$\square 3$ DOF
-Do not have to worry about gimbal lock

Free joint: Quaternion

\square Do not have to worry about gimbal lock
\square The rotation is represented by a vector of four components $\left(q_{x}, q_{v}, q_{z}, q_{w}\right)$

Free joint: Quaternion

\square Do not have to worry about gimbal lock
\square The rotation is represented by a vector of four components ($q_{x}, q_{v}, q_{z}, q_{w}$)
A rotation about the unit vector \boldsymbol{q} by an angle alpha around an axis (a_{x}, a_{y}, a_{z}) makes a quaternion:

$$
q_{a}(\alpha)=\left(q_{x}, q_{y}, q_{z}, q_{w}\right)=\left(a_{x} S \frac{\alpha}{2}, a_{y} S \frac{\alpha}{2}, a_{z} S \frac{\alpha}{2}, C \frac{\alpha}{2}\right)
$$

(S, C are sin, cos)

Generalized Coordinates

A vector to specify the posture of the body

$$
q=\left(q_{1}, q_{2}, q_{3}, q_{4}, q_{5}, q_{6}, q_{7}, \ldots, q_{n}\right)
$$

Usually, the first three numbers: location of the root The next three numbers: orientation of root
The rest: the joint angles of the body

Overview

\square Character Animation

- Posture representation
- Hierarchical structure of the body
- Joint types
\square Translational, hinge, universal, gimbal, free
- Euler angles
\square Gimbal lock
- Quaternions
- Coordinate Transformations

Creating the animation (Keyframe animation)

- Interpolation
- Inverse Kinematics
- Analytical
- CCD
- Pseudo Inverse

Keyframe Animation

\square The keyframe postures are designed by the animator
\square The inbetween motion is created by interpolation

Keyframe Design

\square Each postures are created by the user interface
■ Forward Kinematics (FK, Virtual Track Ball)
\square The user clicks the segment and rotates it around the joint origin
\square The movement of the mouse is mapped to the rotation of the joint
\square Example:

- Inverse Kinematics (IK)
\square The user clicks the segment and drags it in the 3D coordinate
\square The motion of the mouse is mapped to the translation in 3D coordinate
\square The movement of the segment is achieved by moving each joint of the body
\square Example:
\square Interactive Demo:

Keyframe animation by Poser

\square Poser is a commercial software to generate human animation
\square There is another free software called MikuMikuDance

- Blender plugin called "Manuel Bastioni Labs"
\square Unity3D In-Built IK \& Keyframe-Animation

https://www.youtube.com/watch?v=QAXOdj8mr7s

Interpolation

The generalized coordinates can be interpolated by - Linear interpolation

- High-order polynomials (e.g. Bsplines, Bezier) Bezier: 2 end points, two points to control the tangent vector

Linear interpolation

Bsplines

Interpolation of Quaternions

\square Interpolation of two rotations (SLERP)
\square Changing the orientation from q 1 to q 2 by rotating around a single axis \boldsymbol{u}
$\square \quad$ angle of rotation around \boldsymbol{u} to change from q1 to q2

Problems with interpolating the generalized coordinates

■ Important constraints might not be satisfied
\rightarrow The feet on the ground can slide
\rightarrow Mainly reasoned by interpolating the root wrong \rightarrow "Error-propagation" along the hierarchy

- Solution
\rightarrow Specify the position of the joints and use IK to calcualte the joint angles

Forward and Inverse Kinematics

■ Forward kinematics solution is straightforward to compute and unique. However, hard to control. \rightarrow "We don't know the joint angles to reach a location."

■ Inverse kinematics can have zero to infinite solutions. Solutions tell us the joint angles.

Inverse Kinematics Problem

\square Calculate the joint angles from the position of the end effector

Inverse Kinematics

\square Forward Kinematics: calculating the joint positions from the joint angles
\square Inverse Kinematics: Calculate the joint angles based on the joint positions

■ Many different approaches
\square Analytical approaches (analytical solution exists)
\square CCD (Cyclic Coordinate Descent)
\square Jacobian-based methods (compute by optimization)
\square
■ Originated from robotics, but also essential in animation. Main difference: speed vs. accuracy

Analytical Approaches

\square Using an analytical solver for calculating the joint angles
\square e.g. suppose the positions of the wrist and shoulder are given, calculate the elbow angle

$$
\theta=\arccos \frac{\mathrm{r}_{1}^{2}+\mathrm{r}_{2}^{2}-\mathrm{r}^{2}}{2 \mathrm{r}_{1} \mathrm{r}_{2}}
$$

Cyclic-Coordinate Descent

Moving the joints closest to the end effectors first and minimize the distance between the end effector and the target
Move up the hierarchy and move the next joint to minimize the distance between the end effector and the target
Repeat the process until the base is reached
Move to the first joint again and repeat the same process until the end effector reaches the target or max iterations reached

- This is needed to handle cases that the target is not reachable
- 2D Tutorial: http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-

figure 38.

FIGure 3 c.

figure 30.

Pseudo-inverse method

- The relationship between the end effector position and the joint angles are non-linear

$$
\mathbf{e}=\mathrm{f}(\mathbf{q})
$$

- But for small movements, their relation can be considered linear
$\boldsymbol{\Delta} \mathbf{e}=\mathbf{J} \boldsymbol{\Delta} \mathbf{q}$

Jacobian matrix

- Correlates the movement of the end effector $\Delta \mathrm{e}$ with movements of the joints $\Delta \mathbf{q}_{\mathrm{i}}$ Each column describing how much $\Delta \mathbf{e}$ changes when the $\boldsymbol{\Delta q i}$ is changed

$$
\Delta e=\mathbf{J} \boldsymbol{\Delta} q
$$

Jacobian $J=\frac{\partial e}{\partial q} \approx\left|\begin{array}{lll}\frac{\Delta e_{x}}{\Delta q_{1}} & \frac{\Delta e_{x}}{\Delta q_{n}} \\ \frac{\Delta e_{y}}{\Delta q_{1}} & \cdots & \frac{\Delta e_{y}}{\Delta q_{n}} \\ \frac{\Delta e_{z}}{\Delta q_{1}} & \frac{\Delta e_{z}}{\Delta q_{n}}\end{array}\right|$

Pseudo-inverse method

- The relationship between the end effector position and the joint angles are non-linear

$$
\mathbf{e}=\mathrm{f}(\mathbf{q})
$$

- But for small movements, their relation can be considered linear

$$
\Delta \mathrm{e}=\mathbf{J} \boldsymbol{\Delta} \mathbf{q}
$$

This is Forward mapping Inverse mapping?
$\boldsymbol{\Delta} \mathbf{e} \longrightarrow \boldsymbol{\Delta} \mathbf{q}$

Pseudo Inverse Matrix

\square The minimal joint angle movements that achieves the end effector movement e can be computed by the pseudo inverse matrix

Pseudo-inverse Method

Iteratively updating the generalized coordinates so that the position constraints are satisfied
e: end effector position
g : target location
while ($\Delta \mathrm{e}$ is too far from \mathbf{g}) \{

compute the Jacobian matrix \mathbf{J}

$$
\Delta e=J \Delta q
$$

compute the pseudoinverse of the Jacobian matrix \mathbf{J}^{+}
compute change in joint DOFs: $\Delta \mathbf{q}=\mathbf{J}^{\boldsymbol{+}} \boldsymbol{\Delta} \mathbf{e}$
apply the change to DOFs, move a small step of

$$
\mathbf{q}=\mathbf{q}+\Delta \mathbf{q}
$$

Singularity Problem

\square There can be postures that the end effector cannot be moved to some directions

- i.e. when all the joints are fully extended
\square The system becomes unstable
\square Test:
\square Solution: Damped Least Squares
(imposing soft constraints): $J^{\star}=J^{T}\left(J J^{T}+k^{2} I\right)^{-1}$

Which method will be good for controlling each of the below?

Cons and Pros of IK

\square Analytical : Fast, but for most cases have no analytical solution
\square CCD : simple, fast, easy to implement, can take into account the limit of the joint angles, may have oscillation problems
\square Pseudo Inverse:

- Used in robotics often, can handle any topological structure, multiple constraints
- Can incorporate physics
- Singularity problems (unstable when the limb is fully extended) -> damped least squares

Summary

\square Representation of the Posture
\square Euler angles, generalized coordinates, quaternions
\square Character Animation by Interpolation
\square Inverse Kinematics
\square Analytical
\square CCD
\square Jacobian Pseudoinverse
\square Damped-Least-Squares

Links, Readings

\square Poser http://poser.smithmicro.com/poser.html
\square MikuMikuDance
\square https://sites.google.com/view/vpvp/
\square About CCD http://graphics.cs.cmu.edu/nsp/course/15464/Fall09/assignments/asst2/jlander gamedev nov98.pdf
\square IK introduction

- http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksu rvey.pdf
\square A robotics textbook (can be downloaded from within the university, see chapter 3)
- http://link.springer.com/content/pdf/10.1007\%2F978-1-84628-642-1.pdf

