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Overview 
 Character Animation 
 Posture representation 
 Hierarchical structure of the body 
 Joint types 
Translational, hinge, universal, gimbal, free 

 Euler angles 
Gimbal lock 

 Quaternions 
 Coordinate Transformations 

 Creating the animation (Keyframe animation) 
 Interpolation 
 Inverse Kinematics 
 Analytical 
 CCD 
 Pseudo Inverse 

 



Characters include  

Human models 
Virtual characters 
Animal models 



Controlling the Skeleton 

 We control the skeleton 
of the character 

→ skeletal motion 
 
 The skin follows the 
  movement of the 
  skeleton 

  → skinning deformation 



Representation of Postures 

The body has a hierarchical structure 
Many & different types of joints  
 



Hierarchical structure of the body 

The first joint is typically called  
the “root” of the character 
 
The position of the joints lower  
in the hierarchy are affected by  
those above it 
 
Each joints can have 1 to 6  
degrees of freedom (DOF) 
 
For rotational joints, usually it  
is 1, 2, or 3 
 
The root of the body has 6 DOF 
in total (3 DOF for translation, 
3DOF for rotation) 



Joints 

 The Degrees of Freedom (DOF) is defined 
for various joints 

 
 There are several kinds of joints 
 Translational joint (1,2,3 DOF)  
 Hinge joints (1 DOF)  
 Universal joint (2 DOF)  
 Gimbal joint (3 DOF)  
 Free joint (3 DOF)  



Translational joint 

 A sliding joint 
 Can be 1,2 or 3 DOF 



Hinge Joint 

 A 1 DOF rotational joint 
 Can be defined by the 

axis of rotation 
 Knee, elbow 



Universal Joint 

 2DOF  
 Rotation around 2 axes 

perpendicular to each 
other  

 Wrist joint  



3DOF rotational joints 

 Shoulder, hip, neck 
 Two ways to represent the rotations 
 Gimbal joint (Euler Angles)  
 Free joint (Quaternions)  



Gimbal joint: Euler Angles 

 3DOF joints 
 Comes from Robotics 
 3DOF joints in robots were designed by 

connecting three motors pointing different 
axes 

 



Gimbal joint: Euler Angles 
 Rotation defined by the three axes and the 

angle of rotation around them 
 the rotation order has to be specified such as   
    X-Y-Z,  Z-X-Y, Y-Z-X, etc  
The one below is Z-X 
 



Problem: Gimbal Lock 

 Two rotational axis of an object pointing in the same 
direction - 1DOF is lost 
• For example for rotation defined in the order of X-Y-

Z  
• Gimbal lock occurs when rotating Y for 90 degrees. 
• X and Z axis get pointed down the same axis 

 

http://flashsandy.org/tutorials/eulerangles 

X 
y 



Problem: Gimbal Lock 

https://www.youtube.com/watch?v=zc8b2Jo7mn
o 



Free joint 
A ball joint  
3 DOF  
Do not have to worry about gimbal lock 
 



Free joint: Quaternion 

Do not have to worry about gimbal lock 
The rotation is represented by a vector of four 

components (qx, qy, qz, qw) 
 



Free joint: Quaternion 

Do not have to worry about gimbal lock 
The rotation is represented by a vector of four 

components (qx, qy, qz, qw) 
A rotation about the unit vector q by an angle alpha 

around an axis (ax, ay, az) makes a quaternion: 
 

 

 

α

(ax, ay, az)  (S, C are sin, cos)  



Generalized Coordinates  

A vector to specify the posture of the body 
 
 
 
Usually, the first three numbers: location of the root 
The next three numbers: orientation of root 
The rest:  the joint angles of the body 
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Keyframe Animation 
 The keyframe postures are designed by the 

animator 
 The inbetween motion is created by 

interpolation  



Keyframe Design 
 Each postures are created by the user interface 
 Forward Kinematics (FK, Virtual Track Ball) 
 The user clicks the segment and rotates it around the joint 

origin 
 The movement of the mouse is mapped to the rotation of the 

joint 
 Example:  
 

 Inverse Kinematics (IK)  
  The user clicks the segment and drags it in the 3D coordinate 
 The motion of the mouse is mapped to the translation in 3D 

coordinate 
 The movement of the segment is achieved by moving each 

joint of the body 
 Example: 
 Interactive Demo: http://www.starke-consult.de/BioIK-Demo/index.html 

 

http://www.youtube.com/watch?v=--5hWniftyI 

https://www.youtube.com/watch?v=pGuR4xyi7MQ 
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Keyframe animation by Poser  

 Poser is a commercial software to generate 
human animation 

 There is another free software called 
MikuMikuDance 

 Blender plugin called “Manuel Bastioni Labs” 
 Unity3D In-Built IK & Keyframe-Animation 



https://www.youtube.com/watch?v=QAXOdj8mr7s 

https://www.youtube.com/watch?v=QAXOdj8mr7s


Interpolation 

The generalized coordinates can be interpolated by 
 Linear interpolation 
 
 
 
 High-order polynomials (e.g. Bsplines, Bezier) 
    Bezier: 2 end points, two points to control the 

tangent vector  



Linear interpolation 

Bsplines 



Interpolation of Quaternions  
 
Interpolation of two rotations (SLERP)  
Changing the orientation from q1 to q2 by rotating around a 

single axis u 
      angle of rotation around  u to change from q1 to q2 
     



Problems with interpolating the 
generalized coordinates 

  
 Important constraints might not be satisfied 
→ The feet on the ground can slide 
→ Mainly reasoned by interpolating the root wrong 

 → “Error-propagation” along the hierarchy 
 
 
 Solution 
→Specify the position of the joints and use IK 

 to calcualte the joint angles  



Forward and Inverse Kinematics 

 Forward kinematics solution is straightforward to 
compute and unique. However, hard to control. 

→ “We don’t know the joint angles to reach a location.” 

 
 Inverse kinematics can have zero to infinite 

solutions. Solutions tell us the joint angles. 



 Inverse Kinematics Problem  

 Calculate the joint angles from the position of the 
end effector  
 



Inverse Kinematics 

 Forward Kinematics:  calculating the joint 
positions from the joint angles 

 Inverse Kinematics : Calculate the joint 
angles based on the joint positions 

 
 Many different approaches  
 Analytical approaches (analytical solution exists)  
 CCD (Cyclic Coordinate Descent) 
 Jacobian-based methods (compute by optimization) 
   

 Originated from robotics, but also essential in 
animation. Main difference: speed vs. accuracy  

 

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html 

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html


Analytical Approaches 
 Using an analytical solver for 

calculating the joint angles  
 e.g. suppose the positions of 

the wrist and shoulder are 
given, calculate the elbow 
angle 

 



Cyclic-Coordinate Descent 
 Moving the joints closest to the end effectors first and minimize the 

distance between the end effector and the target 
 Move up the hierarchy and move the next joint to minimize the distance 

between the end effector and the target 
 Repeat the process until the base is reached 
 Move to the first joint again and repeat the same process until the end 

effector reaches the target or max iterations reached 
– This is needed to handle cases that the target is not reachable 
– 2D Tutorial: http://www.ryanjuckett.com/programming/cyclic-coordinate-descent-in-

2d/ 



Pseudo-inverse method 

 The relationship between the end effector   
position and the joint angles are non-linear 
                 e =  f(q)  
  
 But for small movements, their relation     
 can be considered linear   
                 Δe = J Δq 
 
 
  



Jacobian matrix 

 Correlates the movement of the end 
effector Δe with movements of the joints Δqi  

 Each column describing how much Δe 
changes when the Δqi is changed  

 
 



Pseudo-inverse method 

 The relationship between the end effector 
position and the joint angles are non-linear 

                 e =  f(q)  
  But for small movements, their relation 

can be considered linear   
                 Δe = J Δq 
 
 
  

 This is Forward mapping 
  Inverse mapping?  

Δq Δe 



Pseudo Inverse Matrix  

 The minimal joint angle movements 
that achieves the end effector 
movement e can be computed by the 
pseudo inverse matrix 

 



Pseudo-inverse Method 

   Iteratively updating the generalized 
coordinates so that the position constraints 
are satisfied   

   e: end effector position 
   g: target location  
 
 while ( Δe is too far from g) { 

  compute the Jacobian matrix J 

  compute the pseudoinverse of the Jacobian matrix J    

  compute change in joint DOFs: Δq=J   Δe 
  apply the change to DOFs, move a small step of 

               q=q+ Δq 

 } 

 

Δe =JΔq  
+ 

+ 



Singularity Problem  

 There can be postures that the end 
effector cannot be moved to some 
directions 
• i.e. when all the joints are fully 

extended 
 The system becomes unstable 
 Test: 
 
 Solution: Damped Least Squares  
(imposing soft constraints):  
 

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html 

http://thewanderingtech.50webs.com/Flash/IK%20Comparison%20Application/IKCompare.html


Which method will be good for 
controlling each of the below? 

       



Cons and Pros of IK 

 Analytical :  Fast, but for most cases have 
no analytical solution 

 CCD :  simple, fast, easy to implement, 
can take into account the limit of the 
joint angles,  may have oscillation 
problems 

 Pseudo Inverse:    
 Used in robotics often, can handle any 

topological structure, multiple constraints 
 Can incorporate physics 
 Singularity problems (unstable when the limb 

is fully extended) -> damped least squares 
 



Summary 

 Representation of the Posture 
 Euler angles, generalized coordinates, 

quaternions 
 

 Character Animation by Interpolation 
 
 Inverse Kinematics 

 Analytical 
 CCD 
 Jacobian Pseudoinverse 
 Damped-Least-Squares 

 
 



Links, Readings 
 Poser http://poser.smithmicro.com/poser.html 
 MikuMikuDance 

 https://sites.google.com/view/vpvp/ 
 About CCD http://graphics.cs.cmu.edu/nsp/course/15-

464/Fall09/assignments/asst2/jlander_gamedev_nov98.pdf 
 IK introduction 

– http://www.math.ucsd.edu/~sbuss/ResearchWeb/ikmethods/iksu
rvey.pdf 

 A robotics textbook (can be downloaded from within the university, 
see chapter 3)  
• http://link.springer.com/content/pdf/10.1007%2F978-1-84628-

642-1.pdf 
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