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Off-line vs. Real-time physics
● In off-line physical simulation, the main concern is visual quality

– Computational efficiency is important because simulations are in high 
resolution.

– Visual quality of the output is more important than performance. 
– Require’s powerful computers which work for hours.

● Off-line simulations are also predictable 
– it is possible to re-run the process, adapt the time step in case of 

numerical instabilities or change parameters if the outcome does not 
meet the specifications or expectations.



  

Off-line vs. Real-time physics
● Real-time physics is useful in interactive systems 

– running at a fixed frame rate (e.g. 30 or 60 FPS)

● Strict time budget 
– ~30 or ~15 milliseconds per frame (which are shared with e.g. AI, rendering)
– Only a few milliseconds remain for physics. 

● In contrast to off-line simulations, the outcome of interactive scenarios is not predictable
● Contraints of real-time physics 

– Time: resolution and visual quality have to be adjusted to meet time constraints!
– Stability: it is essential that simulations are unconditionally stable, i.e. stable under all 

circumstances.



  

Intro. to Solids



  

Intro. to Solids
● Solid objects are typically divided into three main groups: 

– Cloth, Rigid bodies and Soft bodies 

● Makes sense to handle those three types separately from an algorithmic 
and simulation point of view. 

– E.g. treating objects made of stone as infinitely rigid leads to no 
visual artifacts but simplifies the handling and simulation of such 
objects significantly. 

– For cloth, simulating it as a 2D rather than a 3D object reduces 
simulation time and memory consumption.
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Particle Dynamics
● Particles in a velocity field
● Particles with mass
● Spring-mass systems



  

Particles in a velocity field
● Mass-less particles are advected (transferred) through velocity fields

– Simplest particle system: we only need to track the particle’s 
position through time.

● A particle’s position, which varies over time, is then the solution of an 
Initial Value Problem (IVP): 



  

Particles in a velocity field
● In the general case, we will need to use numerical integration to solve our IVP.

– Analytical solutions exist only for very simple velocity fields

● Euler Integration 

– Simplest numerical integration method, based on continous definition of derivative 

 

Position update rule



  

Particles with mass



  

Particles with mass
● Motion of real-world objects is governed by internal and 

external forces via Newton’s 2nd  law of motion:

● Thus to introduce forces, such as gravity, into our particle 
systems we must also introduce mass.

● Our IVP then becomes: Particle position

Particle mass



  

Particles with mass (updating the 
system)

● For convinience, we re-write our 2nd-order DE as a coupled system of 1st-order DEs:

● We can then (numerically) solve this IVP by integrating forward in time using Euler’s method:

● This particular integration scheme is commonly referred to as “Symplectic Euler”

new velocity

new position



  

Spring-mass systems



  

Spring-mass systems
● So far described, the particles can be subjected to a 

wide range of forces, but they do not interact
– Interaction between particles enables animation of a 

wide range of physical phenomena like hair and cloth



  

Spring-mass systems
● A mass-spring system is a set of N particles, where each particle has 

– mass mi, position xi and velocity vi

● Particles are connected by a set S of strings (p,q, r, ks, kd) where 

– p and q are indices of adjacent particles, r is the rest length, 
ks is the stiffness constant and kd is the damping coefficient

● The spring forces acting on the particles are

spring

direction

damping

From Newton’s  3rd law



  

Spring-mass systems
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Modelling Materials
● Rigid Bodies
● Soft Bodies



  

Rigid Bodies



  

Rigid Bodies
● In many circumstances, we interested in modeling very stiff objects for which we are 

not concerned with elastic deformation
● We use a rigid-body approximation since mass-spring system is relatively inefficient.

– Points in an object are constrained to be at a fixed distance from one another.

● The position of all points on the object can be described with six degrees of freedom
– Position: Center of mass can be at any point in three-dimensional space

– Rotation: Object can be oriented in any way about that center of mass



  

Rigid Bodies (state & linear velocity)

● Its convinient to work with two coordinate systems to describe motion

– A fixed “object space” transformation (located at centre of mass), and a 
“world space” transformation.

● The world space position of a particle at time t is given by

● The linear velocity of a particle is found by differentiating p(t):

Rotation about the 
centre of mass



  

Rigid Bodies (Angular velocity)
● Angular velocity

– For a rigid body that is rotating → 
● i.e. we have a non-zero component of motion of a particle (due to the 

instantaneous rotation of the body about its center of mass) 

– This instantaneous rotation is equivalent to a rotation about a 
single axis that runs through the center of mass.  



  

Rigid Bodies (Angular velocity)
● Thus, angular velocity is given by

– … where

●  Velocity of particle is therefore 

– Particle rotates ‖ω‖ radians/sec on a circle of radius r*sin(θ)
– Therefore, the speed of motion of the particle is ‖ω‖‖r‖*sin(θ), and direction 

of particle motion is perpendicular to ω and r.

 

Linear velocity

Angular velocity



  

Rigid Bodies (Linear Momentum)
● The concept of linear momentum lets us express the effect of the total force on a rigid body quite simply.

–

● Linear momentum of the rigid body is given by the sum of the momenta of its constituent particles

–

● Thus, our linear momentum tells us nothing about the rotational velocity of a body, which is good, 
because force also conveys nothing about the change of rotational velocity of a body

Equates to zero since r
i
 

are defined relative to 
centre of mass!



  

Rigid Bodies (Angular Momentum)
● While the concept of linear momentum is pretty intuitive, angular momentum 

is not!

– But we need angular momentum because it lets us write simpler equations.

● The total angular momentum is given by

–  

● Inertia tensor I(t) describes mass distribution:

–

constant object-space 
inertia tensor



  

Rigid Bodies (Force and Torque)
● In the case of a rigid body, Newton’s second law takes the form

● If a force f is applied to a rigid body at its center of mass

– then the body responds as if it was a particle with mass M (its particles undergo an 
acceleration of               )

● When a force is applied to the body at a point other than its center of mass, this may generate a 
torque as well

–

● Torque has magnitude 

– Where θ is angle between r and f

Note: two ways to increase 
the magnitude of torque!



  

Rigid Bodies (simulation)
● Define the auxiliary quantities

● Then, update rigid body state by

Computed using Euler 
angles or quaternions



  

Soft bodies



  

Soft bodies (equation of motion)
● To model soft bodies we incorporate elastic and damping forces into 

Newton’s second law

● K is the stiffness matrix
– determines the magnitude of elastic forces
– encodes the elastic relationships between particles in the system

● Damping matrix
● Mass matrix

Newton’s 2nd lawNewton’s 2nd lawdisplacement



  

Soft Bodies (deformation gradient)
● The deformation function maps points in the 

rest/material space to world space.
– This mapping may be arbitrarily complicated, but 

we can always linearize about a point
–

● The deformation gradient F is the derivative of 
the deformation map
– It describes how infinitesimal vectors/ lengths/ 

displacements in rest space are mapped to world 
space

– It measures stretch, thus volume is conserved if

Our deformation function



  

Soft bodies (strain)
● Strain is a dimension-less (or unit-less) quantity that 

measures the amount of deformation
– Computed from the deformation gradient

● Three types of strain metrics commonly used in computer 
graphics
– Green’s finite strain (a.k.a Cauchy-Green strain)
– Cauchy’s infinitesimal strain
– Co-rotated strain

Recall our spring force equation..?
Spring strain



  

Soft bodies (Green’s finite strain)

● Advantages
– Straightforward and simple
– Accounts for world-space rotations without artefacts, which led to widespread early adoption in 

computer graphics.

● Disadvantages
– It is quadratic in positions 
– Always results in a non-constant stiffness matrix K, which makes various pre-computations 

invalid and results in significant computational cost



  

Soft bodies (Cauchy’s infinitesimal 
strain)

● Derived from Green’s finite strain.

● Let us re-write the deformation gradient as              . Then, 

● Advantages

– It is linear, which leads to faster computation

● Disadvantages

– Does not correctly account for world-space rotations, leading to a variety of unpleasant artifacts under large deformations

Displacements component



  

Soft bodies (co-rotated strain)
● The co-rotated strain metric is the most common strain model in computer graphics.

– Intuitively, this model is Cauchy’s linear strain with the rotation explicitly removed through the polar 
decomposition

● Once the deformation gradient, F, is computed, we compute the polar decomposition
–

● Then update the Cauchy’s infinitesimal strain to
–

● Advantages
– Accounts for world-space rotations without artefacts
– More efficient implementation since some pre-computation is still possible

● Disadvantages
– Requires Polar Decomposition



  

Soft bodies (stress)



  

Soft bodies (stress)
● Unlike strain, stress is not a dimension-less quantity.
● Instead of measuring the amount of deformation, it 

measures the materials reaction to that deformation.
● In graphics, we care mostly about linear material models 

(i.e. when relating to strain to stress)
–

● By making a few assumptions we arrive at
–



  

Summary
● Brief intro. to physics-based animation

– Off-line and real-time simulation

● Particles
– Velocity fields, Newton’s laws of motions, mass-spring systems 

● Materials
– Rigid body dynamics

● Linear and angular velocity, momentum, inertia.

– Soft body dynamics 
● Elasticity, deformation gradient, strain, stress.



  

Readings
● Eric Lengyel. 2011. Mathematics for 3D Game Programming and Computer Graphics, Third Edition (3rd. 

ed.). Course Technology Press, Boston, MA, USA.
● Bargteil, A., Shinar T. An introduction to physics-based animation, ACM SIGGRAPH 2018 Courses, 2018
● FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model 

reduction, ACM SIGGRAPH 2012 Courses
● David Baraff. 2001. Physically based modeling: Rigid body simulation. SIGGRAPH Course Notes, ACM 

SIGGRAPH 2, 1 (2001)
● Matthias Müller, Jos Stam, Doug James, and Nils Thürey. 2008. Real time physics: class notes. In ACM 

SIGGRAPH 2008 classes (SIGGRAPH ’08). Association for Computing Machinery
● Erwin Coumans. 2010. Bullet physics engine. Open Source Software: http://bulletphysics. Org 1 (2010)
● Rick Parent. 2012. Computer Animation: Algorithms and Techniques (3rd. ed.). Morgan Kaufmann 

Publishers Inc.
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