

Computer Animation
and Visualisation

Physics-based Animation (Part 2)

Lecture 9

Floyd M. Chitalu

Lecture Overview
● Modelling Liquid
● Spatial Discretization
● Temporal Discretization

Lecture Overview
● Modelling Liquid
● Spatial Discretization
● Temporal Discretization

Modelling Liquid

Modelling Liquid
● Two approaches to simulating liquids

1) Lagrangian (Today)
• Particles carry data samples and travel with the flow
• i.e. Smoothed Particle Hydrodynamics (SPH)

2) Eulerian
• Samples are fixed in a grid, and information flows past.
• i.e. Grid-based view of fluid motion

Governing Equations
● We consider a fluid that consists of a set of small moving fluid

elements (particles)

– Each particle i has a mass mi and carries attributes such as
density ρi , pressure pi or volume Vi

– Over time t, particle positions xi and the respective attributes are
advected with the local fluid velocity vi

Governing Equations (Navier-
Stokes equation)

● The time rate of change of the velocity is governed by the
Navier-Stokes equation (Lagrange form)

Acceleration due to
pressure differences

Acceleration due to
friction forces
between particles

“viscosity”

Other accelerations
e.g. gravity, collisions
etc.

Smoothed Particle Hydrodynamics
(SPH)

● The SPH concept is used for two purposes
1)To interpolate fluid quantities at arbitrary positions.

2)To approximate the spatial derivatives in the Navier-
stokes equation.

SPH (interpolation)
● A quantity Ai at an arbitrary position xi is approximately computed with a set of known

quantities Aj at neighboring particle positions xj

● The number of adjacent particles that are considered is dependant on three factors

– 1) The dimensionality d; 2) the support of the kernel function; and 3) the particle
spacing which is typically close to h

● Three factors influencing the accuracy of the summation

– 1) Choice of the kernel function; 2) The number and 3) The disorder of considered
particles

Smoothing kernel

Smoothing length

SPH (Spatial derivatives)
● But how do we solve for variables like:

● Common solution

– … with:

Used to compute accelerations

Used to predict density changes

SPH Fluid Solver
● Three basic building blocks of SPH-based fluid

solvers
– Neighborhood search
– Pressure computation
– Time integration

SPH Fluid Solver (Neighborhood
search)

● The neighborhood search is typically accelerated by a spatial access
structure, e.g. a uniform grid

– cell size is normally equal to the kernel support, e.g., 2h

SPH Fluid Solver (Pressure
computation)

● Preasure is computed from density to compute the preasure gradient (in NS
eq.),

● In practice, a larger stiffness constant reduces the compressibility of the fluid,
but demands smaller integration time steps.

Desired rest density
of the fluid

Stiffness constant to
scale preasure (forces)

SPH Fluid Solver (Algorithm)

Lecture Overview
● Modelling Liquid
● Spatial Discretization
● Temporal Discretization

Spatial Discretization
● Lagrangian and Eulerian reference frames
● Spatial data structures
● Discretizing equations of motion

Lagrangian vs Eulerian view
● Lagrangian

– The reference frame moves with the material
– Often used for solids and employ tetrahedral meshes or particles and finite

element methods.
● Easier to construct the mapping (x(u)) from rest space to world space if we explicitly track

points in the material through time.

● Eulerian
– The point of measurement, the reference frame, is fixed in space
– Eulerian reference frames are often used for fluids and often employ regular grids

● No need for a `mapping`, and fixed reference frames offer many computational advantages

Grids
● The regular grid

– All edges have the same length, called the grid spacing
– Cubes in the grid are referred to as cells which have 8 vertices, 12

edges, and 6 faces
– Can be described by a few redundant parameters:

● The grid spacing, the grid resolution (i.e. the number of cells in each
dimension), and the upper and lower extent of the grid.

● Grids are typically fixed in space and do not change shape, thus
typically an Eulerian frame is adopted.

Meshes
● A mesh is a `simplicial complex`

– A simplicial complex is decomposes a domain into a set of disjoint ‘simplices’, e.g. triangles in 2D
and tetrahedra in 3D

– A k-simplex contains k + 1 vertices that are all connected.

– Useful if Lagrangian reference frame is adopted.

– Automatic (tetrahedral) meshing is a hard problem!

0-simplex 1-simplex 2-simplex 3-simplex

Interpolation
● Sometimes the value of the field is required at a

location other than the sample points.

Arbitrary location

Sample points

interpolation

Interpolation
Linear

Bilinear

Trilinear

Interpolation (barycentric)
● Triangles (and more generally simplicial complexes) are also used frequently in

physics-based animation
● To interpolate to a point p, we associate with the vertices a, b, and c the weights

α, β, and γ:

● For more efficient code, we can also write the following, which is useful for
methods like FEM

Interpolated values

Finite Element Method

Finite Element Method
● For animating elastic bodies we must compute the deformation gradient F from the

deformation function x(u)
–

● To compute F, we use a piecewise linear basis to represent the deformation
function. Two prerequsites:
– Breaking an object up into a finite set of disjoint elements.
– Defining the basis (shape) functions over these elements.

● F is constant over an element.
– And so will be stress and strain.

Finite Element Method
● Recall that an arbitrary point inside a triangle can be represented

with barycentric coordinates:

● Thus, we can write the deformation function as

● The gradient of this function w.r.t u, is the deformation gradient:

material/rest/undeformed space world/deformed space

Finite Element Method
● Finally the nodal forces are computed by

● ni is the area weighted normal of the edge (2D) or face
(3D) opposite the node the force is acting upon in the rest
configuration.
– This force is evenly distributed among the vertices of the edge

(2D) or face (3D).

Finite Element Method (Example
Algorithm)

Lecture Overview
● Modelling Liquid
● Spatial Discretization
● Temporal Discretization

Temporal Discretization
● Explicit Integration
● Implict Integration

Explicit Integration
● Explicit integration refers to integration techniques where the

updated state at time t + Δt is described solely in terms of
quantities computed at time t.

● Explicit Euler

Problem with Euler Method
● The system tends to blow up (diverge) very quickly when the

time step is too large.
– Can be mitigated with smaller timestep but there is a higher

computational cost!

Verlet Integration
● Instead of storing each particle’s position and velocity, store its

current position x and its previous position x*

● Very stable
– Velocity is implicitely given, thus velocity and position do not come out of

sync

● It’s fast

...= x + (x – x*): thus we are
approximating the current velocity

New position

Trapezoidal Rule
● Evaluate the velocity at the particle’s position, pretend to move

the particle a full timestep and evaluate the velocity again, then
use the average of these two evaluations to update the
particle’s position

Midpoint Method
● Evaluate the velocity at the particle’s position, pretend to move

the particle a half step and evaluate the velocity again, then use
the second evaluation to update the particle’s position

Trapezoidal Rule vs. Midpoint
Method

● The trapezoidal rule tends to produce a smoother
solution since it averages to velocity estimates.

● The midpoint method is more susceptible to noise or
aliasing

Explicit Euler Trapezoidal Rule Midpoint method

Symplectic Euler (revisited)

● The only difference is where the velocity is evaluated
– at the beginning of the step, end of the step, or an average of both.

● For some problems (e.g. pure elasticity), “improved Euler” may not converge at all.
– It is unconditionally unstable as the solution can diverge irrespective of timestep size.

● Symplectic Euler is the preferred explicit integrator
– despite its lower order accuracy

“Improved euler”

“Symplectic euler”

“Primitive euler”

Implicit Integration
● Sometimes we wish to solve ‘stiff’ problems

– materials that have very strong resistance to
deformation

● Explicit integrators require smaller and smaller
timesteps in order to remain stable (which is not
guarranteed!).

Implicit Integration
● Explicit symplectic Euler integrator

● The implicit formulation

● Since we can’t directly compute the forces at t+Δt without knowing
the system state at t+Δt the new state is defined implicitly as one
which satisfies this equation.

Linearly Implicit Euler
(1)

(2)

(3)

(1)(1)

(4)

(1)

(5)

Non-linear dynamic system
for soft bodies

Linearize system around
current state x

Our forces

Substitute forces and eq. of x(t + Δt) into eq. of v(t + Δt)

The linear system of the form Ax=b which we solve to find v(t + Δt)

Summary
● Modelling fluids with particles

– Lagrangian SPH is very common

● Spatial Discretization
– Two fundamental concepts when discussing spatial discretization are the Lagrangian and

Eulerian reference frames

– Mesh and grid data structures are common ways of storing simulation variables

– We can simulate elasticity by using FEM to discretize equations of motion (FEM)

● Temporal Discretization
– Explicit integration is fast and suitable for most simulations e.g. particles
– Implicit integration is unconditionally stable and thus useful for “stiff problems”

Reading
● Advanced Character Physics, Thomas Jakobsen (2001) : http://www.cs.cmu.edu/afs/cs/academic/class/15462-

s13/www/lec_slides/Jakobsen.pdf
● SPH Fluids in Computer Graphics M. Ihmsen, J. Orthmann, B. Solenthaler, A. Kolb, M. Teschner Proceedings

of Eurographics (Strasbourg, France, April, 2014), Computer Graphics Forum, vol. , no. , pp. 21-42
● Eric Lengyel. 2011. Mathematics for 3D Game Programming and Computer Graphics, Third Edition (3rd. ed.).

Course Technology Press, Boston, MA, USA.
● Bargteil, A., Shinar T. An introduction to physics-based animation, ACM SIGGRAPH 2018 Courses, 2018
● FEM Simulation of 3D Deformable Solids: A practitioner's guide to theory, discretization and model reduction,

ACM SIGGRAPH 2012 Courses
● David Baraff. 2001. Physically based modeling: Rigid body simulation. SIGGRAPH Course Notes, ACM

SIGGRAPH 2, 1 (2001)
● Matthias Müller, Jos Stam, Doug James, and Nils Thürey. 2008. Real time physics: class notes. In ACM

SIGGRAPH 2008 classes (SIGGRAPH ’08). Association for Computing Machinery

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41

