
Assignment 1

In this assignment, you will use the Unity3D graphics engine to understand transformations, and
apply this to implementing forward and inverse kinematics (Jacobian transpose and pseudo inverse
methods) on the Kyle humanoid robot character. This assignment must be done with C# or
JavaScript. The students can start from the following tutorial.
https://unity3d.com/learn/tutorials/s/roll-ball-tutorial

Requirements.

• Show that you can move the Kyle humanoid robot character by changing the joint angles
(forward kinematics, FK) or the end effector positions (inverse kinematics, IK).

• You should try the Jacobian transpose and pseudo inverse method for the IK.
• Please attach a README file that explains about your source code and what

you have actually done.
• Place your files in a single directory, and call the informatics electronic

submission script for this course as follows :
submit cav 1 your_directory_name

Submit: Deadline 4:00PM, 22nd February, 2018. It must be submitted electronically.

Tutor : Sebastian Starke: sebastian.starke@ed.ac.uk

Follow the steps below for doing the assignment.

#1 Download & Install Unity:
Windows & Mac: https://unity3d.com/de/get-unity/download
Linux: https://forum.unity.com/threads/unity-on-linux-release-notes-and-known-

issues.350256 (Chose any version starting from Unity3d.2017. …)

#2 Create a new project and download the Kyle humanoid robot model from the asset store:
https://assetstore.unity.com/packages/3d/characters/robots/space-robot-kyle-4696
(Or simply search for it)

#3 Familarise yourself with the <Transform> class of Unity. Look at the online documentation and
explain the difference between Transform.position / Transform.localPosition etc., and describe how
one can be derived from another. Hint: You can easily validate via testing inside the Engine)

#4 Unity is component-based, where each component is a single script which is called automatically
inside the game-update-loop. To test this, simply add a new component script to any game object
inside the inspector field, and add some root transformation to Kyle with respect to the delta time.
Press the “Play” button to see what happens. (You can also have a look at any of the various online
tutorials)

#5 How do Quaternions work? How can the function Quaternion.Euler(…) be represented using an
Quaternion.AngleAxis notation?

#6 Set up a script which serialises an array of transformations (game objects or transform
components) for a serial kinematic chain (i.e. the arm or leg of the robot). Modify the transforms via
script.

https://unity3d.com/de/get-unity/download
https://assetstore.unity.com/packages/3d/characters/robots/space-robot-kyle-4696
https://forum.unity.com/threads/unity-on-linux-release-notes-and-known-issues.350256
https://forum.unity.com/threads/unity-on-linux-release-notes-and-known-issues.350256

#7 What’s the difference between forward and inverse kinematics (FK ↔ IK)? Give some examples
where one might be preferred over the other. Explain the term “Degree of Freedom” (DOF).

#8 Implement the angle axis respresentation to compute forward kinematics while using 3
unconstrained axes (full 3 DOF joint) for each segment / bone.

#9 Try to make your chain end effector move a circular line within the Z or X plane by using joint
values.

#10 Download the Matrix class from www.starke-consult.de/UoE/Matrix.cs, and import it
somewhere into your project. Implement inverse kinematics using the Jacobian Tranpose method.
Note: Position-only IK is sufficient, so you just need to solve the system for the end effector
position and can ignore the rotation.

#11 Extend your implementation to use the Jacobian Pseudoinverse method instead of the
Transpose. Why can’t the pure inverse be used for that task?

#12 Extend your implementation to use the Jacobian Damped Least Squares method, and explain
the new damping parameter.

#13 Compare those three method – what can you observe?
BONUS #1: Make your inverse kinematics usable for full-pose (position and orientation) goals.

BONUS #2: Extend your inverse kinematics solver to be usable for multi end effector systems.
General proof-of-concept results are sufficient here, but if you can get it working super well, the
better ;)

Readings:
Introduction to Inverse Kinematics with Jacobian Transpose, Pseudoinverse and Damped Least
Squares methods – Samuel R. Buss, 2004
https://groups.csail.mit.edu/drl/journal_club/papers/033005/buss-2004.pdf

http://www.starke-consult.de/UoE/Matrix.cs

