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Abstract

This paper introduces an original framework for plan-
ning and acting with hierarchical input/output au-
tomata for systems defined by the parallel composition
of the models of their components. Typical applica-
tions are, for example, in harbor or warehouse automa-
tion. The framework extends the usual parallel com-
position operation of I/O automata with a hierarchical
composition operation that can refine a task. It de-
fines planning as the synthesis of a control component
to drive, through I/O interactions and task refinement,
the system toward desired states. A new nondetermin-
istic algorithm performs this synthesis. We tackle these
issues on a theoretical basis. We formally define the
representation and prove that the two operations of
parallel and hierarchical composition are distributive,
which is essential for the correctness and completeness
of the proposed planning algorithm.

Motivation

This paper introduces a knowledge representation
framework and an approach for planning and acting
for component-based interacting systems. We conform
to the position of (Ghallab, Nau, and Traverso 2014)
that planning and acting have to be tightly integrated
following two principles of a hierarchical and contin-
ual online deliberation. In this view, planned actions
are refined in a context-dependent way into executable
commands, which drive a system toward desired objec-
tives. We argue here that distributed domains add the
requirement of a third principle: interaction between
communicating components. The distribution consid-
ered here is not at the planning level. It is specifically
focused on systems defined by the composition of the
models of their components. We first explain our moti-
vation.

A planning domain is usually modeled through a
state-transition system Σ. Σ is almost never given ex-
tensively, but part of it is generated, along with the
search, following the specification of what an actor
can do: its actions define possible transitions in Σ.
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There is however another highly expressive and prac-
tical means of generating a very large state-transition
system: through the composition of the transition mod-
els of the elementary components that constitute the
entire system. Such a design method is more natu-
ral and appropriate when the system of interest is not
centralized into a unique platform but distributed over
numerous components. These components have their
own local sensors and actuators, evolve concurrently,
may be designed independently and can be assembled
by model composition in modular and possibly chang-
ing manners.

Consider a warehouse automation infrastructure such
as the Kiva system (D’Andrea 2012) that controls thou-
sands of robots moving inventory shelves to human
pickers preparing customers orders. According to (Wur-
man 2014), “planning and scheduling are at the heart of
Kiva’s software architecture”. Right now, however, this
appears to be done with extensive engineering of the
environment, e.g., fixed robot tracks and highly struc-
tured inventory organization. A more flexible approach,
dealing with contingencies, local failures, modular de-
sign and easier novel deployments, would model each
component (robot, shelf, refill and order preparation
stations, etc.) through its possible interactions with
the rest of the system. An automatically synthesized
controller coordinates these interactions.

The composition approach has been in use for a long
time in the area of system specification and verifica-
tion, e.g., (Harel 1987). Although less popular, it has
also been developed in the field of automated planning
for applications that naturally call for composition, e.g.,
planning in web services (Pistore, Traverso, and Bertoli
2005; Bertoli, Pistore, and Traverso 2010), or for the
automation of a harbor or a large infrastructure (Boese
and Piotrowski. 2009). The state-transition system
of a component, defined with the usual action schema,
evolves in its local states by interacting with other com-
ponents, i.e., by sending and receiving messages along
state transitions. Planning consists of deciding which
messages to send to which components and when in
order to drive the entire system toward desired states.

Such a problem can be formalized with input/output
automata. Planning for a system σ means generating a



control automaton σc that receives the output of σ and
sends input to σ such that the behavior of the controlled
pair, σ and σc, drives σ toward goal states. A system
composed of multiple components is defined by the par-
allel composition of their automata σ1‖ . . . ‖σn, which
describes all the possible evolutions of the n compo-
nents. A planner for that system synthesizes a control
automaton that interacts with the n σi’s such that the
system reaches certain goal states. The approach is de-
scribed in (Ghallab, Nau, and Traverso 2016, Section
5.8) for the purpose of performing refinements at the
acting level; it is shown to be solvable with nondeter-
ministic planning algorithms.

In order to address planning and acting in a uniform
framework, we propose to further extend this represen-
tation. We augment the parallel composition operation,
used for the composition of the component models, with
a hierarchical task refinement operation. We call the
task refinement operation as hierarchical composition.
We formalize planning for distributed interacting sys-
tems in a new framework of hierarchical input/output
automata. The synthesis of control automaton is done
with a new nondeterministic planning algorithm.

The preceding issues, being novel in the field, re-
quired to be initially tackled at a theoretical basis,
which is developed in this paper (no application nor
experimental results are reported). Our contributions
are the following:
• We formally define the notion of refinement for hier-

archical communicating input/output automata, and
propose a formalization of planning and acting prob-
lems for component-based interacting systems in this
original framework.

• We prove the essential properties of this class of for-
mal machines, in particular that the operations of
parallel composition and refinement are distributive,
a critical feature needed for handling this representa-
tion, the proof of which required extensive develop-
ments.

• Distributivity allows us to show that the synthesis of
a controller for a set of hierarchical communicating
input/output automata can be addressed as a nonde-
terministic planning problem.

• We propose a new algorithm for solving that problem,
and discuss its theoretical properties.
The rest of the paper presents the proposed represen-

tation and its properties, the algorithm for synthesis of
control automaton through planning, a discussion of the
state of the art, and concluding remarks.

Representation

The proposed knowledge representation relies on a class
of automata endowed with composition and refinement
operations.

Automata. The building block of the represen-
tation is a particular input/output automata (IOA)
σ = 〈S, s0, I, O, T,A, γ〉, where S is a finite set of states,
s0 is the initial state, I,O, T and A are finite sets of la-

bels called respectively input, output, tasks and actions,
γ is a deterministic state transition function. The IOA
uses its inputs and outputs to communicate with other
IOAs and the environment. The semantics of an IOA
views inputs as uncontrollable transitions, triggered by
messages from the external world, while outputs, tasks,
and actions are controllable transitions, freely chosen
to drive the dynamics of the modeled system. An out-
put is a message sent to another IOA; an action has
some direct effects on the external world. No precon-
dition/effect specifications are needed for actions, since
a transition already spells out the applicability condi-
tions and the effects. A task is refined into a collection
of actions. We assume all transitions to be determinis-
tic.

States are defined as tuples of state variables’ val-
ues, i.e., if {x1, . . . , xk} are the state variables of σ,
and each has a finite range xi ∈ Di, then the set of
states is S ⊆

∏
i=1,kDi. We assume that for any state

s ∈ S, all outgoing transitions have the same type, i.e.,
{u | γ(s, u) is defined} consists solely of either inputs,
or outputs, or tasks, or actions. For simplicity we as-
sume s can have only one outgoing transition if that
transition is an output or an action. Alternative actions
or outputs can be modeled by a state that precedes s
and receives alternative inputs, one of them leading to
s.

Note that despite the assumption of deterministic
transitions, an IOA σ models queries to the external
world that can have nondeterminism outcomes through
its inputs. For example, a sensing action a in state s is
a transition 〈s, a, s′〉; several input transitions from s′

model the possible outcomes of a; these inputs to σ are
generated by the external world.

A run of an IOA is a sequence
〈s0, u0, . . . , si, ui, si+1, . . .〉 such that si+1 = γ(si, ui)
for every i. It may or may not be finite.

Example 1. The IOA in Figure 1 models a door with a
spring-loaded hinge that closes automatically when the
door is open and not held. To open the door requires un-
latching it, which may not succeed if it is locked. Then
it can be opened, unless it is blocked by some obstacle.
Whenever the door is left free, the spring closes it (the
“close” action shown in red).

Figure 1: A simple σspring-door model.



Parallel Composition. Consider a system con-
sisting of n components Σ = {σ1, . . . , σn}, with each
σi modeled as an IOA. These components interact by
sending output and receiving input messages, while also
triggering actions and tasks. The dynamics of Σ can be
modeled by the parallel composition of the components,
which is a straightforward generalization of the paral-
lel product defined in (Bertoli, Pistore, and Traverso
2010) which is same as the asynchronous product of
automata. The parallel composition of two IOAs σ1
and σ2 is

σ1‖σ2 =

〈S1×S2, (s01 , s02), I1∪I2, O1∪O2, T1∪T2, A1∪A2, γ〉,

where γ((s1, s2), u) ={
γ1(s1, u)× {s2} if u ∈ I1 ∪O1 ∪A1 ∪ T1,
{s1} × γ2(s2, u) if u ∈ I2 ∪O2 ∪A2 ∪ T2.

By extension, σ1 ‖σ2 ‖σ3 ‖ . . .‖σn is the parallel com-
position of all of the IOAs in Σ. The order in which the
composition operations is done is unimportant, because
parallel composition is associative and commutative.1

We assume the state variables, as well as the input
and output labels, are local to each IOA. This avoids
potential confusion in the definition of the composed
system. It also allows for a robust and flexible design,
since components can be modeled independently and
added incrementally to a system.

If we restrict the n components of Σ to have no tasks
but only inputs, outputs and actions, then driving Σ
towards a set of goal states can be addressed with a
nondeterministic planning algorithm for the synthesis of
a control automaton σc that interacts with the parallel
composition σ1 ‖ σ2 ‖ σ3 ‖ . . . ‖ σn of the automata in
Σ. The control automaton’s inputs are the outputs of
Σ and its outputs are inputs of Σ. Several algorithms
are available to synthesize such control automata, e.g.,
(Bertoli, Pistore, and Traverso 2010).

Hierarchical Refinement. With each task we want
to associate a set of methods for hierarchically refining
the task into IOAs that can perform the task. This
is in principle akin to HTN planning (Erol, Hendler,
and Nau 1994), but if the methods refine tasks into
IOAs rather than subtasks, they produce a structure
that incorporates control constructs such as branches
and loops. This structure is like a hierarchical automa-
ton (see, e.g., (Harel 1987)). However, the latter relies
on a state hierarchy (a state gets expanded recursively
into other automata), whereas in our case the tasks to
be refined are transitions. This motivates the following
definitions.

A refinement method for a task t is a pair µt = 〈t, σµ〉,
where σµ is an IOA that has both an initial state s0µ

1The proof involves showing that every run
of σ1 ‖ σ2 is a run of σ2 ‖ σ1 and vice-
versa. Here is a link to the all the proofs:
https://umd.box.com/s/kxhikeu9lklxdwbw1c83f6orly0oc38k

and a finishing state sfµ. Unlike tasks in HTN plan-
ning (Nau et al. 1999), t is a single symbol rather than
a term that takes arguments. Note that σµ may recur-
sively contain other subtasks, which can themselves be
refined. Consider an IOA σ = 〈S, s0, I, O, T,A, γ〉 that
has a transition 〈s1, t, s2〉 in which t is a task. A method
µt = 〈t, σµ〉 with σµ = 〈Sµ, s0µ, sfµ, Iµ, Oµ, Tµ, Aµ, γµ〉
can be used to refine this transition by mapping s1 to
s0µ, s2 to sfµ and t to σt.

2 This produces an IOA

R(σ, s1, µt) =

〈SR, s0R, I ∪ Iµ, O ∪Oµ, T ∪ Tµ \ {t}, A ∪Aµ, γR〉,
where

SR = (S \ {s1, s2}) ∪ Sµ,

s0R =

{
s0 if s1 6= s0,

s0µ otherwise,

γR(s, u) =



γµ(s, u) if s ∈ Sµ,
s0µ if s ∈ S and γ(s, u) = s1,

sfµ if s ∈ S and γ(s, u) = s2,

γ(s, u) if s ∈ S \ {s1, s2} and

γ(s, u) /∈ {s1, s2},
γ(s1, u) if s = s0µ,

γ(s2, u) if s = sfµ.

Note that we do not require every run in σµ to ac-
tually end in sfµ. Some runs may be infinite, some
other runs may end in a state different from sfµ. Such
a requirement would be unrealistic, since the IOA of a
method may receive different inputs from other IOA,
which cannot be controlled by the method. Intuitively,
sfµ represents the “nominal” state in which a run
should end, i.e., the nominal path of execution.3

Figure 2: An IOA for a robot going through a doorway.

Example 2. Figure 2 shows an IOA for a robot go-
ing through a doorway. It has two tasks: move and
cross door. It sends to σspring-door the input free if it
gets through the doorway successfully. The move task
can be refined using the σmove method in Figure 3.

2As a special case, if σ contains multiple calls to t or σµ
contains a recursive call to t, then the states of σµ must first
be renamed, in order to avoid ambiguity. This is analogous
to standardizing a formula in automated theorem proving.

3Alternatively, we may assume we have only runs that
terminate, and a set of finishing states Sfµ. We simply
add a transition from every element in Sfµ to the nominal
finishing state sfµ.

https://umd.box.com/s/kxhikeu9lklxdwbw1c83f6orly0oc38k


Figure 3: The IOA σmove of a method for the move task.

Example 3. Figure 3 shows the IOA of a refinement
method for the move task in Figure 2. σmove starts with
a start monitor output to activate a monitor IOA that
senses the distance to a target. It then triggers the task
get closer to approach the target. From state v2 it re-
ceives two possible inputs: close or far. When close, it
ends the monitor activity and terminates in v4, other-
wise it gets closer again.

Figure 4 shows the IOA of a method for the monitor
task. It waits in state m0 for the input start monitor,
then triggers the sensing action get-distance. In re-
sponse, the execution platform may return either far or
close. In states m5 and m6, the input continue monitor
transitions to m1 to sense the distance again, otherwise
the input end monitor transitions to the final state m7.

Figure 4: The IOA σmonitor of a monitoring method.

Planning Problem. We are now ready to define
the planning problem for this representation. Consider
a system modeled by Σ = {σ1, . . . , σn} and a finite col-
lection of methods M, such that for every task t in Σ
or in the methods of M there is at least one method
µt ∈ M for task t. An instantiation of (Σ,M) is ob-
tained by recursively refining every task in the compo-
sition (σ1 ‖ σ2 ‖ ...σn) with a method in M, down to
primitive actions. Let (Σ,M)∗ be the set of all possi-
ble instantiations of that system, which is enumerable
but not necessarily finite. Infinite instances are possi-
ble when the body of a method contains the same or
another task which can further be refined leading to
an infinite chain of refinements. A planning problem is
defined as a tuple P = 〈Σ,M, Sg〉, where Sg is a set
of goal states. It is solved by finding refinements for
tasks in Σ with methods in M. We mentioned earlier
that this is in principle akin to HTN planning. How-
ever, here we have IOAs that receive inputs from the
environment or from other IOAs, thus modelling non-

Figure 5: Control automaton for the IOAs in Figures 1
and 2. The inputs and outputs of the robot are preceded
with r: and the inputs and outputs to the door are
preceded by d:

determinism. We need to control the set of IOAs Σ in
order to reach (or to try to reach) a goal in Sg. For this
reason a solution is defined by introducing a control au-
tomaton that drives an instantiation of (Σ,M) to meet
the goal Sg. A control automaton drives an IOA σ by
receiving inputs that are outputs of σ and generating
outputs which act as inputs to σ. (Ghallab, Nau, and
Traverso 2016, Section 5.8)

Let σc be a control automaton for an IOA σf which
is an instantiation of (Σ,M), i.e., the inputs of σc
are the outputs of σf , and the outputs of σc are the
inputs of σf . A solution for the planning problem
P = 〈Σ,M, Sg〉 is an IOA σflat in (Σ,M)∗ and a con-
trol automaton σc such that some runs of the parallel
composition of σc with σflat reach a state in Sg. Note
that the notion of solution is rather weak, since it guar-
antees that just some runs reach a goal state. Other
runs may never end, or may reach a state that is not a
goal state.

We will use the same terminology as in (Ghallab,
Nau, and Traverso 2016, Section 5.2.3): a solution is
safe if all of its finite runs terminate in goal states, and a
solution is either cyclic or acyclic depending on whether
it has any cycles.4

Example 4. Figure 5 shows a control automaton for
the IOAs in Figures 1 and 2. This control automaton is
for the system when the move task has not been refined.

The control automaton in Figure 6 controls the door
IOA in Figure 1, the robot IOA in Figure 2, the move
IOA in Figure 3, and the monitor IOA in Figure 4.

Solving Planning Problems

This section describes our planning algorithm,
MakeControlStructure (Figure 7). It solves the planning
problem 〈Σ,M, Sg〉 where Σ is the set of IOAs, M is
the collection of methods for refining different tasks
and Sg is the set of goal states. The solution is a set
of IOAs Σset and a control automaton σc such that

4In the terminology of (Cimatti et al. 2003), a weak so-
lution is what we call a solution, a strong cyclic solution is
what we call a safe solution, and a strong solution is what
we call an acyclic safe solution.



Figure 6: A control automaton for the door compo-
nent(d:), refined robot component for going through a
doorway(r:), and the monitor component(m:).

Σset driven by σc reaches the desired goals states, Sg.
Depending on how one of its subroutines is configured,
MakeControlStructure can search either for acyclic safe
solutions, or for safe solutions that may contain cycles.

Before getting into the details of how MakeCon-
trolStructure works, we need to discuss a property
on which it depends. Given a planning problem,
MakeControlStructure constructs a solution by doing a
sequence of parallel composition and refinement opera-
tions. An important property is that composition and
refinement can be done in either order to produce the
same result. Thus the algorithm can choose the order
in which to do those operations (line (*) in Figure 7),
which is useful because the order affects the size of the
search space.

Theorem 1 (distributivity). Let σ1 and σ2 be IOAs,
〈s1, t, s2〉 be a transition in σ1, and µt = 〈t, σµ〉 be a
method for t. Then

R(σ1, s1, µt) ‖ σ2 = R(σ1 ‖ σ2, s∗1, µt),

where s∗1 = {(s1, s) | s ∈ Sσ2
}.

Algorithm. We now discuss our planning algorithm,
which is shown in Figure 7. MakeControlStructure’s two
main steps are as follows. First, it uses the MakeFlat
subroutine (described in the next paragraph) to build
an IOA σflat that is an instantiation of (Σ,M) and a set
of IOAs Σset that fully determine σflat. Next, MakeCon-
trolStructure uses the MakeControlAutomaton subroutine
to create a control automaton σc for Σ. We do not
include pseudocode for MakeControlAutomaton, because
it may be any of several planning algorithms published
elsewhere. For example, the algorithm in (Bertoli, Pis-
tore, and Traverso 2010) will generate an acyclic safe so-
lution if one exists, and (Bertoli, Pistore, and Traverso
2010) discusses how to modify that algorithm so that
it will find safe solutions that aren’t restricted to be
acyclic. Several of the algorithms in (Ghallab, Nau,
and Traverso 2016, Chapter 5) could also be used.

MakeControlStructure (Σ,M, Sg)
select an IOA σ from Σ and remove it
(σflat,Σset)← MakeFlat(Σ, σ,M, {σ})
σc ← MakeControlAutomaton (σflat, Sg)
return (σc,Σset)

MakeFlat (Σ, σ0,M,Σ0
set)

σf ← σ0; Σset ← Σ0
set

loop
if σf ∈ (Σ,M)∗, then return (σf ,Σset)
choose which-first ∈ {compose, refine} (*)
if (which-first = compose)

select IOA σ from Σ that interacts with σf
and remove it
σf ← σf ‖ σ
Σset ← Σset ∪ {σ}

else
(σf ,Σ

′
set)← ComputeRefinement(Σ, σf ,M)

Σset ← Σset ∪ Σ′set

ComputeRefinement (Σ, σf ,M)
select a task t from Tσf

such that 〈s1, t, s2〉 is a
transition in σf

select a method, µt = 〈t, σµ〉 from M for refining t
S ← {IOA that interact with σµ}
tnew, σtnew ← new unique names for t and σµ
σ′µ ← σtnew ‖ (‖σ′∈Sσ

′)
σf ← R(σf , s1, 〈tnew, σ

′
µ〉)

return (σf , {σtnew
} ∪ S)

Figure 7: Pseudocode for our planning algorithm.

As discussed in the previous section, (Σ,M)∗ is the
set of all possible instantiations of our system, which
is enumerable but not necessarily finite. Among this
set, some instantiations are desirable with respect to
our goal. MakeFlat constructs an instantiation σflat

of (Σ,M) by doing a series of parallel and hierarchi-
cal compositions. It randomly selects an IOA from
Σ to start with and then goes through a loop which
makes the choice of whether to do a parallel com-
position or a refinement at each iteration. The size
of the search space depends on the order in which
the choices are made. In an implementation, the
choice would be made heuristically. We believe the
heuristics will be analogous to some of the heuris-
tics for constraint-satisfaction problems (Dechter 2003;
Russell and Norvig 2009). MakeFlat exits when the IOA
σf is an instantiation of (Σ,M) i.e., there are no more
tasks to be refined and all possible interactions have
been taken in account through parallel composition.

ComputeRefinement is a subroutine of MakeFlat which
does task refinement.

It applies a refinement method µt selected from M
to refine a task t. This involves doing both a refinement
and a parallel composition.

Once the task has been refined, ComputeRefinement re-
turns the resulting IOA σf from this hierarchical com-
position and a set of IOAs that uniquely determine σf .



At this step, we also rename the task t and body(µt) to
tnew and σtnew , where tnew is a new unique name for t.
This renaming is required to identify body(µt) uniquely
for each refinement and avoid name conflicts when µt
is used multiple times to refine different instances of t.

Theorem 2. MakeControlStructure is sound and com-
plete.

We note that completeness guarantees that we find
the control automaton when it exists, but does not
guarantee that our algorithm will terminate or return
“no” when there is no control automaton for the prob-
lem.

Planning and Acting
In order to synthesize a control automaton for a system,
(Σ,M), we need to choose among:
• alternative methods µt ∈M for refining a task t; and
• alternative inputs in a state s that is followed by dis-

tinct actions or outputs.
These decision steps are determined by the planning
algorithm through the synthesis of a pair (σflat, σc).

Acting with such a system once a solution has been
planned for means running its components {σ1, . . . , σn}
asynchronously, while (i) triggering the only action or
output associated to a state whose outgoing transition
is an action or an output, and (ii) following the received
input for a state whose outgoing transitions are inputs.
In some states, these received inputs are nondetermin-
istic outputs from the external world. Hence, the pair
(σflat, σc) can be viewed as a classical reactive system,
which interacts deterministically with a nondetermin-
istic external world. This is, in a way, equivalent to a
deterministic policy, and in our case, it is distributed
over n components.

Acting according to a deterministic automaton may
appear to be straightforward;but in the proposed frame-
work, it raises several important issues that still lie
ahead in our research agenda. Here is a brief overview
of the issues:

• Monitoring : planning for any solution is generally
easier than planning for a safe solution, which may
not exist. For unsafe solutions, it is important to
monitor the system to check whether the interaction
with the nondeterministic external world is driving
the system away from the intended goals and whether
replanning is needed. Furthermore, even if a safe so-
lution has been planned for, a system does not always
behave as modeled; acting needs to be coupled with
monitoring.

• Interleaving planning and acting, which is particu-
larly desirable given the hierarchical nature of our
framework and the interaction with a nondeterminis-
tic external world.

To handle the first issue of monitoring, the idea is to
synthesize, in the planning stage (our module MakeCon-
trolStructure), conditions which guarantee that a given

pair (σflat, σc) remains a solution, i.e., some runs will
reach a goal state. These conditions may be expressed
as a monitoring IOA which interact with the compo-
nents and σc, raising failure detection outputs when
needed. Such a monitoring IOA is shown in Figure 4.
The second issue of interleaving planning and acting
corresponds to one of the motivation of our proposed
framework. The idea here is to ignore some of the
tasks in Tσf

at the planning stage in ComputeRefinement
and refine these tasks at the acting stage only. Tasks
that have a single refinement method and whose recur-
sive refinement is an IOA without any decision step (as
summarized above) can safely be ignored in Tσf

while
planning. Even for these simple cases, postponing the
refinement may lead to retrials in the physical world
(instead of backtracking at the planning stage). This is
acceptable for some noncritical tasks and domains. A
postponed refinement may be addressed at the acting
stage with domain-dependent heuristics for the choice
of methods and inputs. It may also be addressed with a
look-ahead mechanism, basically an adaptation of plan-
ning approach to the ongoing solution.

Related Work
To the best of our knowledge, no previous approach
to planning has proposed a formal framework based on
hierarchical input/output automata. The idea of hi-
erarchical planning was proposed long time ago, see,
e.g., (Sacerdoti 1974; Tate 1977; Yang 1990). In these
works, high level plans are sequences of abstract actions
that are refined into sequences of actions at a lower
level of abstraction. In our work, plans are represented
with automata. This allows us to express plans with
rich control constructs, not only sequences of actions.
We can thus represent conditional and iterative plans
that are most often required when we refine plans at
a lower level of abstraction. Moreover, none of these
systems can represent components that interact among
each other, and that act by interacting with the ex-
ternal environment, like in our representation based on
input/output automata. These are also the main differ-
ences with more recent work, such as the work on an-
gelic hierarchical planning (Marthi, Russell, and Wolfe
2007) and its extension with optimal and online algo-
rithms (Marthi, Russell, and Wolfe 2008).

Some approaches manage plans with rich control
constructs, see, e.g., the PRS (Georgeff, Lansky, and
Bessière 1985) and Golog (McIlraith and Fadel 2002)
systems. However, PRS does not provide the ability
to reason about alternative refinements. Some lim-
ited planning capabilities were added to PRS by (De-
spouys and Ingrand 1999) to anticipate execution paths
leading to failure by simulating the execution of proce-
dures and exploring different branches. In Golog, it
is possible to specify plans with complex actions and
to reason about them in a logical framework. How-
ever, the formal framework is not hierarchical and the
notion of refinement is not formalized. Moreover, nei-
ther PRS nor Golog allows for an explicit representa-



tion of interactions among different systems or compo-
nents. Hierarchical and procedure based frameworks
(similar to PRS) have been used in robotic systems,
see, e.g., RAP (Firby 1987), TCA (Simmons 1992;
Simmons and Apfelbaum 1998), XFRM (Beetz and Mc-
Dermott 1994), and the survey (Ingrand and Ghallab
2014). All these works have addressed the practical
problem of providing reactive systems for robotics, but
none of them is based on a formal account as the one
provided in this paper.

Our approach shares some similarities with the hier-
archical state machines (Harel 1987), which has been
used to address problems different from planning and
acting, like the problem of the specification and ver-
ification of reactive systems. Our work is based on
the theory of input/output automata (see, e.g., (Lynch
and Tuttle 1988)), which has been used to specify dis-
tributed discrete event systems, and to formalize and
analyse communication and concurrent algorithms.

I/O automata have been used to formalize interac-
tions among web services and to plan for their com-
position (Pistore, Traverso, and Bertoli 2005; Bertoli,
Pistore, and Traverso 2010). That work was the ba-
sis for the approach described in (Ghallab, Nau, and
Traverso 2016, Section 5.8). In our paper, beyond pro-
viding a framework that is independent of the web
service domain, we extend the representation signifi-
cantly with hierarchical input/output automata, that
contain compound tasks. Moreover, we provide a
theory that formalizes the refinement of tasks. Fi-
nally, we describe a novel planning algorithm for syn-
thesizing control automata, that can deal with hier-
archical refinements. Our work is also significantly
different from the work in (Bucchiarone et al. 2012;
Bucchiarone et al. 2013), where abstract actions are
represented with goals, and where (online) planning can
be used to generate interacting processes that satisfy
such goals.

Our framework has some similarities with HTN plan-
ning (Nau et al. 1999), since tasks can be refined with
different methods. However, our methods are signif-
icantly different from HTN ones in at least two fun-
damental aspects: (i) our methods are automata that
can encode rich control constructs rather than simple
sequences of primitive tasks; (ii) our methods can in-
teract among themselves. This allows us to represent
interacting and distributed systems and components.
This is also a main difference with the work proposed
in extensions of HTN planning to deal with nondeter-
ministic domains (Kuter et al. 2009).

There has been some work on synthesizing controllers
for MDPs/POMDPs (Hansen and Zhou 2003). But
for modeling any component as a MDP/POMDP, we
need the information of the state transition probabili-
ties, which might not be always available. Further, the
controllers synthesized in that work are policies rather
than automata. A control automaton is a richer struc-
ture, because its transitions depend not only on the
state of the world but also the state of the automaton

(which depends on the history of previous transitions).
There is also a vast amount of literature on controllers

for discrete-event systems, e.g., (Wong and Wonham
1996; Mohajerani et al. 2011). But they do verifica-
tion and do not synthesize controllers to the best of our
knowledge. Also, they don’t consider hierarchical re-
finement and alternate choices, and the controller syn-
thesized is limited in terms of the execution structure it
leads to. The work by Mikaelian (Mikaelian, Williams,
and Sachenbacher 2005) models hardware and software
systems as automata and is limited to monitoring and
fault diagnosis in the systems, and does not design a
controller for it.

Conclusions and Future Work
We have developed a formalism for synthesizing systems
that are composed of communicating components. This
synthesis is done by combining parallel composition of
input/output automata with hierarchical refinement of
tasks into input/output automata. This approach can
be used to synthesize plans that are not just sequences
of actions, but include rich control constructs such as
conditional and iterative plans. For synthesis of such
plans, we describe a novel planning algorithm for syn-
thesizing control automaton, that can deal with hierar-
chical refinements.

We believe this work will be important as a ba-
sis for algorithms to synthesize real-time systems for
web services, automation of large physical facilities
such as warehouses or harbors, and other applications.
In our future work, we intend to implement our al-
gorithm and test it on representative problems from
such problem domains. For that purpose, an impor-
tant topic of future work will be to extend our al-
gorithm for use in continual online planning. As an-
other topic for future work, recall that Theorem 1 (Dis-
tributivity) shows that parallel and hierarchical com-
position operations can be done in either order and
produce the same result. The size of the planner’s
search space depends on the order in which these op-
erations are done, and we want to develop heuristics
for choosing the best order. Some of these heuris-
tics are likely to be similar to the heuristics used to
guide constraint-satisfaction algorithms (Dechter 2003;
Russell and Norvig 2009).

Finally, there are several ways in which it would be
useful to generalize our formalism. One is to allow tasks
and methods to have parameters, so that a method can
be used to refine a variety of related tasks. Another is
to extend the formalism to support cases where two or
more methods can collaborate to perform a single task.
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