HOKAGE: A Heuristic Lifted Planning Algorithm for Generating Diverse
Generalized Plans

Ugur Kuter and Robert P. Goldman
SIFT, LLC
email: {ukuter, rpgoldman } @sift.net

Abstract

This paper describes HOKAGE, a new planning algorithm
that (1) performs lifted search for generating solution plans
(grounding on the fly during planning and heuristic compu-
tations) (2) generates multiple diverse solutions, (3) gener-
ates plans with looping structures and patterns in them, and
(4) deals with numeric state facts and both numeric and tra-
ditional goals. We are currently designing and developing
HOKAGE and this paper provides a summary of our ongo-
ing work.

Introduction

Over the years, there have been great strides in auto-
mated planning algorithms and planning heuristics that
enable those algorithms to find high-quality plans very
quickly [e.g..](Gerevini, Saetti, and Serina 2003; Helmert
2006; Hoffmann and Nebel 2001). HOKAGE is a new ap-
proach that aims to combine the benefits of both modern
heuristic search methods and earlier lifted planning tech-
niques. By doing so, unlike existing heuristic search al-
gorithms, HOKAGE is able to perform arbitrary numeric
reasoning during planning and can plan for mixed propo-
sitional and numeric goals (i.e., the truck needs to be at
a particular location at any time less than 0900 hours). It
also generates generalized plans with limited looping struc-
tures. Finally, HOKAGE is also able to generate diverse
sets of generalized plans (Nguyen et al. 2012; Bryce 2014;
Roberts, Howe, and Ray 2014; Coman and Mufioz-Avila
2011; Sohrabi et al. 2016), including plan-to-plan diversity
measures over looping plan libraries.

The following is a high-level summary of the HOKAGE
algorithm: Given a planning domain definition D, a prob-
lem specification P, and the number k of diverse solutions
requested:

e Construct the first plan based on the relaxed planning
graph heuristic, generated via on-the-fly grounding

e Insert the plan into the diverse plan library

e Iterate for k times
— Randomly select a plan from the plan library
— Randomly select a point in the plan

Copyright (© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

— Keep the prefix of the plan given the selected point,
replan the postfix based on the relaxed planning graphs
generated via on- the-fly grounding

— Assess how much the new plan is different than the old
one

— If different by a threshold, then insert the new plan in
to the plan library

e Generalize plans based on the procedural structures in
them

e Return generalized plans

The subsequent sections provide a summary of the key
contributions that we anticipate in the above description.

Lifted heuristic planning

With a planning domain definition and problem as input,
which are typically described in a form of PDDL (Mc-
Dermott 1998; Fox and Long 2003), most state-of-the-art
methods first generate a fully-instantiated (ground) vari-
ant of those descriptions. This grounding process amal-
gamates properties of the domain with those of the par-
ticular planning problem and thereby create efficient data
structures for heuristic search. Although this approach has
been shown to be effective and scalable in planning bench-
marks, it is very limited in practical applications because
of the a priori grounding schemes used and the limited
expressivity those schemes require (Burstein et al. 2012;
Mueller et al. 2017).

On the other hand, several early planners (e.g..,
SNLP (McAllester and Rosenblitt 1991), SHOP2 (Nau et al.
2003), UCPOP (Penberthy and Weld 1992)) did not require
such a priori grounding. Although these planners lacked the
most recent and successful planning heuristics, they were
able to instantiate planning models, control knowledge, and
variables on the fly during the course of the planning pro-
cess. By doing so, such lifted planners avoid the need to enu-
merate all possible objects or constant symbols — and their
combinations — in the problem definition. One of the sub-
stantial benefits is that a lifted planner can perform arbitrary
numeric reasoning during because it can use the planning
state during search as a database as it grounds variables in
relevant contexts only.

HOKAGE uses a lifted relaxed planning graph method
(an earlier lifted planning graph was in McDermott’s

PEDESTAL planner (McDermott 1991)) as a heuristic
computation in a best-first search algorithm to generate
heuristically-good plans. Starting from the initial state of
an input planning problem, HOKAGE uses its lifted relaxed
planning graph heuristic to compute heuristic values for all
applicable actions in that state.

First HOKAGE creates a state level in the relaxed plan-
ning graph from the facts of the initial state. HOKAGE is
built on SHOP2’s generalized automated theorem prover
(Nau et al. 2003)," which provides Prolog-like functional-
ity, to identify the planning operators that are applicable in a
state and generate ground instantiations of those planning
operators as actions for a plan. HOKAGE uses the same
theorem-proving expressivity and capabilities as SHOP2.
Starting with the initial level, HOKAGE generates subse-
quent action and state levels of the relaxed planning graph,
until the goals of the planning problem are satisfied. Once
the relaxed planning graph is unfolded this way, the algo-
rithm uses the same techniques for the heuristic values for
every applicable action in the first state level of the graph.
The planner then greedily chooses the action that has the
highest heuristic value and the search continues with the
subsequent state that arises by applying that action in the
current state.

A state level in HOKAGE’s planning graphs is always
grounded. An action-level is created after a state-level by
applying the planning operators in that state level: that is,
HOKAGE generates most general-unifiers for the precondi-
tions of the action in the particular state level and applies
those unifiers to partially-ground the planning operator into
an action in the action level. Note that this approach allows
for (1) grounding an action on the fly in the context of state
level it is applied in and (2) having actions’ preconditions
contain free variables (i.e., variables that do not appear in
the parameters of the action as with the typical STRIPS as-
sumption in PDDL).

Numerical reasoning

A state level can contain predicates with arbitrary numbers
and HOKAGE can use them not just as symbols but values
in numeric computations during both planning and heuristic
computations. For example, the following is a snippet from
a state representation in HOKAGE:

(vehicle—-coords uavl 356536189N 1177322804W)
(vehicle—-altitude uavl 5000) ; feet
(have—-instrument uavl eo0l23)
(scanning—enabled uavl eol23 5000)
(monitor—-eta uavl 1500)

(deadline uavl 1530)

Here, the numeric arguments to the logical predicates
are not treated as symbolic objects as in some versions of
PDDL: instead, HOKAGE recognizes them as numbers and
performs reasoning/computation over them, such as geospa-
tial distance measures using the coordinate system or tem-
poral reasoning over the deadlines.

ISIFT researchers have generalized this theorem-prover and
made it available as an independent library for use outside the
SHOP?2 planner.

This expressivity allows both the planner and its heuris-
tics to evaluate arbitrary numeric formulas in the precon-
ditions or effects of the action. For example, the following
shows a planning operator, using SHOP2’s domain defini-
tion language, that models how a vehicle slows down given
the weather effects:

(:op (!slow-down ?vehicle ?orig-eta)

:precond ((monitor-eta ?vehicle ?orig-eta)

(weather-impact ?vehicle 7?force)
(assign ?delay (/ ?force 10.0))
(assign ?new-eta

(+ ?orig-eta ?delay)))

:delete ((monitor-eta ?vehicle ?orig-eta))

radd ((monitor—-eta ?vehicle ?new-eta)))

This operator computes the delay as a function of the
forces exerted by the weather event on the vehicle. It also
computes the new estimated time of arrival for the vehicle
at its destination based on that delay. With the new informa-
tion, the planning operator updates the state of the world.

Generating diverse plans

Unlike many existing approaches that are designed to gener-
ate the first good solution heuristically very fast, HOKAGE
is designed to generate many diverse solutions to an input
planning problem. We use a plan-adaptation approach as in
the LPG-d diverse planner (Nguyen et al. 2012): once HOK-
AGE generates the first heuristic plan, it uses local-search to
continually adapt it to find new, different plans.

The algorithm first selects a plan from the pool of solu-
tions it has generated so far as the candidate plan for adap-
tation. Note that since HOKAGE always generates a first
heuristically-good solution to the planning problem, there
is always an opportunity for diverse planning (if the prob-
lem is solvable). Then, the algorithm selects a point in the
plan and adapts the postfix of the plan from that point on. In
our current implementation, both the candidate plan and the
adaptation point are chosen randomly during local search.

Aside from this initial implementation, generating diverse
plans, and comparing different approaches to doing so re-
quires a domain-independent, theoretically motivated defi-
nition of the diversity (distance) between plans. Previously
proposed diversity measures are not theoretically motivated,
provide inconsistent results on the same plan sets, and suffer
from a number of pathologies. As next steps beyond HOK-
AGE’s current random selections for diverse search, we plan
to incorporate our previous work on plan-to-plan distance
measure that we developed based on compression theory and
Kolmogorov complexity (Goldman and Kuter 2015). In that
work, we defined the diversity of plans in terms of how sur-
prising one plan is given another or, its inverse, the condi-
tional information in one plan given another. Kolmogorov
complexity provides a domain independent theory of con-
ditional information. While Kolmogorov complexity is not
computable, a related metric, Normalized Compression Dis-
tance (NCD), provides a well-behaved approximation. In
our previous paper, we exhibited a number of pathological
cases we have found in existing diversity measures, intro-
duced NCD as an alternative diversity metric, and demon-
strated that NCD does not admit those pathologies and that it

provides better diversity information. We plan to investigate
how NCD could be used incorporated in the heuristic selec-
tion mechanism of diverse planning: in our previous work it
was only used as a plan comparison metric.

Plans with looping behavior

Diverse planning has been typically limited to classical
plans: i.e., simple sequences of actions. However, in many
practical applications plans involve repeating actions or plan
segments in which some of the action parameters remain
the same and some change, until some criterion is achieved.
Such repeating actions or action subsequences constitute
looping behavior. When plans do not capture that structure,
they can be excessively long, and are not efficiently con-
structed by existing planners. In addition, existing measures
of plan diversity do not take repeated structure into account
in their assessments of how different plans are.

For example, the following is an example generated by
the planner in our weather scenario:

((!CLOUD-COVER-FORMED CLOUD-COVER
;7 Latitude and longitude
356536189N 1177322804W
3000) ; Altitude
(:LOOP
(:FOR ?LOOPVAR120995)
(:FROM 1500) ;; time
(:TO 1515.0)
(:DO
((! SLOW-DOWN UAV-1 ?LOOPVAR120995)))))

The above plan shows a weather event with cloud cover
forming at a particular location and causing delay to a UAV
in that location, over a certain time. A classical plan rep-
resents this plan with a series of SLOW-DOWN actions
whereas it is really a looping behavior.

Our work here is similar to Srivastava,et al.. (2008), how-
ever, HOKAGE like most planners, aims to solve individ-
ual planning problems, rather than generalize plans to cover
multiple situations. Our current implementation is a first step
in this approach. HOKAGE currently traverses a plan to rec-
ognize repeated patterns of actions. Once the repeated pat-
terns are found, HOKAGE identifies those parameters of the
actions that change value. These are posted as candidate
loop variables (e.g.., ?ZLOOPVAR120995 in the above ex-
ample). The grounded values in the plan actions constitute
the bounds for the loop; if the hypothesized loop variable
is a numeric one, HOKAGE generates the start and the end
values for that variable as seen in the plan. Otherwise, the
possible value domain for the loop variable is represented as
a set.

From a diverse planning perspective, different timelines
that could be exhibited by these kinds of plans could gener-
ate different lengths of actions. In our opinion, that should
not be seen as increasing the diversity of the plans because
in all of those cases, the looping behavior is essentially the
same. Our intent is for HOKAGE to take the generalized
plan structures into account during diverse planning seman-
tically and theoretically.

Conclusions and Ongoing Work

Our work with the HOKAGE system is just beginning.
HOKAGE is fully implemented, but we continue to work to
improve it. We are also working to provide a formal charac-
terization of the class of problems that HOKAGE can solve.
One of the interesting questions in HOKAGE is how to for-
malize and reason with secondary preconditions and condi-
tional effects.

After this process has been completed, we will begin con-
ducting experiments to probe HOKAGE’s efficiency, com-
paring it to state-of-the-art planners such as LPG-d (Nguyen
et al. 2012), on benchmark domains and problems relevant
to HOKAGE's capabilities.

Acknowledgments. This work was supported in part
by the AFRL Information Directorate through contract
FA8750-16-C-0148. Approved for Public Release, Distribu-
tion Unlimited. The views expressed are those of the authors
and do not reflect the official policy or position of the De-
partment of Defense or the U.S. Government.

References

Bryce, D. 2014. Landmark-based plan distance measures
for diverse planning. In Proceedings of the International
Conference on Automated Planning and Scheduling.

Burstein, M.; Goldman, R.; Robertson, P.; Laddaga, R.;
Balzer, R.; Goldman, N.; Geib, C.; Kuter, U.; McDonald, D.;
Maraist, J.; Keller, P.; and Wile, D. 2012. Stratus: Strategic
and tactical resiliency against threats to ubiquitous systems.
In Proceedings of SASO-12.

Coman, A., and Muifioz-Avila, H. 2011. Generating diverse
plans using quantitative and qualitative plan distance met-
rics. In Proceedings AAAL

Fox, M., and Long, D. 2003. PDDL2.1: An extension to
PDDL for expressing temporal planning domains. Journal
of Artificial Intelligence Research.

Gerevini, A.; Saetti, A.; and Serina, I. 2003. Plan-
ning through Stochastic Local Search and Temporal Action
Graphs. Journal of Artificial Intelligence Research 20:239—
290.

Goldman, R. P, and Kuter, U. 2015. Measuring plan di-
versity: Pathologies in existing approaches and a new plan
distance metric. In Proceedings of AAAI Conference. Menlo
Park, CA: Proc. National Conf. on Artificial Intelligence
(AAAI).

Helmert, M. 2006. The fast downward planning system.
Journal of Artificial Intelligence Research 26:191-246.

Hoffmann, J., and Nebel, B. 2001. The FF planning system:
Fast plan generation through heuristic search. Journal of
Artificial Intelligence Research 14:253-302.

McAllester, D., and Rosenblitt, D. 1991. Systematic nonlin-
ear planning. In Proceedings of the Ninth National Confer-
ence on Artificial Intelligence, 634—639. Cambridge, MA:
MIT Press.

McDermott, D. V. 1991. Regression planning. International
Journal of Intelligent Systems 6(4):357-416.

McDermott, D. 1998. PDDL, the planning domain defini-
tion language. Technical report, Yale Center for Computa-
tional Vision and Control.

Mueller, J. B.; Miller, C. A.; Kuter, U.; Rye, J.; and Hamell,
J. 2017. A human-system interface with contingency
planning for collaborative operations of unmanned aerial
vehicles. In AIAA Information Systems-AIAA Infotech@
Aerospace (2017-1296). AIAA Press.

Nau, D.; Au, T.-C.; Ilghami, O.; Kuter, U.; Murdock, W.;
Wu, D.; and Yaman, F. 2003. SHOP2: An HTN planning
system. JAIR 20:379-404.

Nguyen, T. A.; Do, M. B.; Gerevini, A.; Serina, I.; Srivas-
tava, B.; and Kambhampati, S. 2012. Generating diverse
plans to handle unknown and partially known user prefer-
ences. Artificial Intelligence 190:1-31.

Penberthy, J. S., and Weld, D. S. 1992. UCPOP: a sound,
complete, partial order planner for ADL. In Nebel, B.; Rich,
C.; and Swartout, W., eds., Principles of Knowledge Repre-
sentation and Reasoning:Proceedings of the Third Interna-
tional Conference, 103—114. Waltham, MA: Morgan Kauf-
mann.

Roberts, M.; Howe, A.; and Ray, I. 2014. Evaluating diver-
sity in classical planning. In Proceedings ICAPS.

Sohrabi, S.; Riabov, A.; Udrea, O.; and Hassanzadeh, O.
2016. Finding diverse high-quality plans for hypothesis gen-
eration. In Proceedings of the 22nd European Conference on
Artificial Intelligence (ECAI).

Srivastava, S.; Immerman, N.; and Zilberstein, S. 2008.
Learning generalized plans using abstract counting. In Fox,
D., and Gomes, C. P, eds., Proceedings AAAI, 991-997.
AAALI Press.

