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This report on work-in-progress considers semantic
equivalences for formalisms describing stochastic hy-
brid systems, i.e. systems that show stochastic, in-
stantaneous and continuous behaviour. The three for-
malisms investigated are stochastic HYPE (sHYPE)
models [1] based on HYPE [6], [5], Transition-Driven
Stochastic Hybrid Automata (TDSHA) [3], and Piece-
wise Deterministic Markov processes (PDMPs) [4].
The choice of these formalisms is not accidental. The
semantics of sHYPE models are given in terms of
TDHSA (as well as by means of a structured oper-
ational semantics) [1] and TDSHA were developed as
a formalism to reason about stochastic hybrid systems
without using the full complexity of PDMPs [2]. The
left side of Figure 1 shows this relationship, where T(.)
is the mapping from HYPE models to TDSHAs, and
P(.) is the mapping from TDSHAs to PDMPs.

Stochastic HYPE is a process algebra and a
bisimulation can be defined on the labelled transi-
tion system obtained from the operational semantics.
The syntax for (well-defined) individual subcompo-
nents is S(W)

def
=

∑n
j=1 aj :(ι, rj , Ij(W)).S(W) +

init:(ι, r, I(W)).S(W) where W is a subset of the
continuous system variables. The prefix operator is
a.(ι, r, I(W)).S where either a = a is an instantaneous
event or a = a is a stochastic event. Instantaneous
events have event conditions of the form (G,R) where
G is a guard or activation condition over variables,
and R is a conjunction of resets that affect variables.
Stochastic events have the form (f,R) where f de-
fines the rate of the transition (giving an exponential
distribution) and R is the same as above. The second
part of the prefix, called an influence, consists of an
influence name ι which is associated with exactly one
variable of the system; an influence strength r ∈ R and
an influence type I(W) with an associated function
over the variables W . Subcomponents are composed
in parallel by means of a multi-way synchronization
operator. They are also synchronized with a controller,
imposing causality on events.

The labelled transition system consists of configu-
rations which are pairs of models and states, where
elements of a state have the form ι 7→ (r, I(W)) which
get updated when an event fires. States define ODEs
for each configuration. An ODE is constructed for each
continuous variable of the model by summing over
the product of influence strength and influence type
function for each influence name that is associated with
the variable, where the influence is defined in the state.

System bisimulation (∼sm) is defined over sHYPE
models, and matches over transitions [5]. It also re-
quires that a pair of models in the relation have
identical states. We have also relaxed this condition
and allowed for an equivalence relation over states.
We plan to use a relation .

= which ensures identical
ODEs to define more interesting bisimulations (such
as ∼

.
=
sm; note that ∼sm=∼=

sm).
TDHSAs, by contrast, are a more direct formalism.

A TDSHA has a set of modes, and each mode has
associated continuous, instantaneous and stochastic
transitions. Unlike sHYPE, guards and resets in instan-
taneous and stochastic transitions are not determined
by the event of the transition. The continuous tran-
sitions are used to determine the flow at that mode.
A synchronised product for TDSHA synchronising on
event names has been defined [1]. The translation from
HYPE models to TDSHAs is compositional. Modes
are based on sets of influences, and influences can
be mapped to continuous transitions. A TDSHA is
defined for the uncontrolled system from products of
TDSHAs for subcomponents, and the product of it
and the TDHSA of the controller (with which event
conditions are associated) gives the final TDSHA.

PDMPs, in the same fashion as TDSHAs, have a
set of modes Q. The hybrid state space is defined by
D =

⋃
q∈Q{q}×Dq where each Dq ⊂ Rn is an open

set. Each mode q has an associated locally Lipschitz
continuous vector field which defines the evolution of
the continuous variables while in q. A functional jump
rate is defined over D and determines when stochastic



H: HYPE models

T(H) D: TDSHAs
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P1 ∼sm P2 P1 ∼
.
=
sm P2

⇓
T(P1) ∼l

T T(P2) T1 ≈u
T T2
⇓

P(T1) ≈u
M P(T2)

Figure 1. Relationships between formalisms and their bisimulations

jumps occur, using an exponential distribution. Instan-
taneous jumps occur when the boundary of the current
mode is hit. Additionally a reset kernel is defined
which determines probabilistically the change in mode
and continuous variables, when an instantaneous or
stochastic jump occurs.

Bisimulations for PDMPs [7] and TDSHAs, unlike
those for HYPE models, are constructed as a relation
over pairs of modes and vectors of reals. The relation
B must have equality over output functions defined
over the vectors of reals (this allows for some variables
to be ignored, for example), equality of exit rates
and equality of guards. Continuous flows must also
be related by B and the time point at which guards
become true must be the same. We require B to be
measurable in order for the reset kernels to be equal
over equivalence classes formed by B (in the case
of TDHSAs) or to be equivalent probability measures
with respect to the relation B (in the case of PDMPs).
As long as the reset kernels have the appropriate
properties, different length sequences of instantaneous
transitions can be matched, hence this is a weak notion
of bisimulation.

Since bisimulation for PDMPs does not take account
of event names, we have defined two bisimulations for
TDSHAs, ∼l

T which does consider event names and
≈u

P which does not consider these, and is weak in style,
since it allows matching of sequences of transitions.

The right side of Figure 1 illustrates the expected
relationships between the bisimulations mentioned
above. We have proved the implication between TD-
SHAs and PDMPs and are now focussing on the
implication from HYPE models to TDSHAs. This
requires a characterisation of the TDSHAs that are
obtained from HYPE models, but this is not straightfor-
ward because we need to consider multiple transitions
with the same event that can be generated by certain
controllers, for example Con

def
= a.Con + a.Con . The

importance of this equivalence over HYPE models is
that HYPE models can be checked for equivalence
without transformation to TDSHAs.

We do not limit ourselves to the equivalences in
Figure 1. We can define combinations of weak and
strong, and labelled and unlabelled bisimulation for
each formalism, and compare these across formalisms
and within formalisms. We already know certain obvi-
ous implications, for example T1 ∼l

T T2 ⇒ T1 ≈u
T T2.

We will also characterise the set T(H) (as mentioned
above) and P(M). First, because we wish to under-
stand what expressivity may have been lost in the two
mappings, and second, because we want to know if it
is possible to construct reverse implications from these
sets. If it is not the case that these reverse implications
hold, we can further characterise the subset for which
they do hold, and hence develop further understanding
of the two mappings.

Finally, we will illustrate the use of the bisimulations
on sufficiently large examples, with delay tolerant
networks and systems biology as possible application
domains, and demonstrate the utility of working with
higher level formalisms.

Acknowledgement: This research is supported by Royal
Society International Joint Project (JP090562).

References

[1] L. Bortolussi, V. Galpin, and J. Hillston, “HYPE with
stochastic events,” in Proceedings of QAPL 2011, 2011.

[2] L. Bortolussi and A. Policriti, “Hybrid semantics of
stochastic programs with dynamic reconfiguration,” in
Proceedings of CompMod 2009, 2009.

[3] ——, “Hybrid dynamics of stochastic programs,” Theo-
retical Computer Science, 411, pp. 2052–2077, 2010.

[4] M. Davis, Markov Models and Optimization. Chapman
& Hall, 1993.

[5] V. Galpin, L. Bortolussi, and J. Hillston, “HYPE: hybrid
modelling by composition of flows.” Journal version,
submitted for publication.

[6] ——, “HYPE: A process algebra for compositional flows
and emergent behaviour,” in Proceedings of CONCUR
2009, LNCS 5710, 2009, pp. 305–320.

[7] S. Strubbe and A.J. van der Schaft, “Bisimulation for
Communicating Piecewise Deterministic Markov Pro-
cesses,” in HSCC, LNCS 3414, 2005, pp. 623–639.


