HYPE: A Process Algebra for Compositional Flows and Emergent Behaviours

Vashti Galpin, University of Edinburgh

Luca Bortolussi, University of Trieste

Jane Hillston, University of Edinburgh

4 September 2009

Introduction

hybrid systems

- hybrid systems
 - discrete behaviour

Introduction Syntax Operational semantics Hybrid semantics Equivalence semantics

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs

Introduction Syntax Operational semantics Hybrid semantics Equivalence semantics

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
- hybrid automata
 - well known
 - graphical rather than textual
 - not very compositional

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
- hybrid automata
 - well known
 - graphical rather than textual
 - not very compositional
- process algebras for hybrid systems
 - compositional language
 - semantic equivalences

- hybrid systems
 - discrete behaviour
 - continuous behaviour, expressed as ODEs
- hybrid automata
 - well known
 - graphical rather than textual
 - not very compositional
- process algebras for hybrid systems
 - compositional language
 - semantic equivalences
- running example: temperature control for an orbiter

other process algebras

Introduction Syntax Operational semantics Hybrid semantics Equivalence semantics

- other process algebras
 - ► ACP^{srt} Bergstra and Middelburg
 - ► HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - lacktriangledown ϕ -calculus Rounds and Song

Introduction Syntax Operational semantics Hybrid semantics Equivalence semantics

- other process algebras
 - ► *ACP*^{srt}_{hs} Bergstra and Middelburg
 - ► HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - ightharpoonup ϕ -calculus Rounds and Song
- comparison

- other process algebras
 - ACP^{srt}_{hs} Bergstra and Middelburg
 - ▶ HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - ightharpoonup ϕ -calculus Rounds and Song
- comparison
 - differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim

- other process algebras
 - ACP^{srt}_{hs} Bergstra and Middelburg
 - ▶ HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - ightharpoonup ϕ -calculus Rounds and Song
- comparison
 - differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim
 - similarity: require full understanding of dynamic behaviour of subcomponents, ODEs appear in syntax

- other process algebras
 - ACP^{srt}_{hs} Bergstra and Middelburg
 - HyPA Cuijpers and Reniers
 - hybrid χ van Beek *et al*
 - ightharpoonup ϕ -calculus Rounds and Song
- comparison
 - differences: syntax, semantics, discontinuous behaviour, flow-determinism, theoretical results, tools – Khadim
 - similarity: require full understanding of dynamic behaviour of subcomponents, ODEs appear in syntax
- ► HYPE
 - more fine-grained approach, individual additive flows
 - ▶ influence of continuous semantics of PEPA

two types of action

- two types of action
- events instantaneous, discrete changes

$$\underline{a}\in\mathcal{E}$$

two types of action

- events instantaneous, discrete changes
 - $\mathsf{a} \in \mathcal{E}$
- activities influences on continuous aspects, flows

$$\alpha \in \mathcal{A} \qquad \qquad \alpha(\vec{X}) = (\iota, r, I(\vec{X}))$$
 influence name rate influence type with $\|I(\vec{X})\| = f(\vec{X})$

- two types of action
- events instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

activities — influences on continuous aspects, flows

$$\alpha \in \mathcal{A} \qquad \qquad \alpha(\vec{X}) = (\iota, r, I(\vec{X}))$$

$$\text{influence name} \qquad \text{rate} \qquad \text{influence type}$$

$$\text{with } \|I(\vec{X})\| = f(\vec{X})$$

two types of action

events — instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

activities — influences on continuous aspects, flows

$$\alpha \in \mathcal{A} \qquad \qquad \alpha(\vec{X}) = (\iota, r, I(\vec{X}))$$
 influence name rate influence type with $[\![I(\vec{X})]\!] = f(\vec{X})$

- two types of action
- events instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

activities — influences on continuous aspects, flows

$$\alpha \in \mathcal{A} \qquad \qquad \alpha(\vec{X}) = (\iota, r, I(\vec{X}))$$
 influence name rate influence type with $\|I(\vec{X})\| = f(\vec{X})$

- two types of action
- events instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

activities — influences on continuous aspects, flows

$$\alpha \in \mathcal{A} \qquad \qquad \alpha(\vec{X}) = (\iota, r, I(\vec{X}))$$
 influence name rate influence type with $\|I(\vec{X})\| = f(\vec{X})$

where \vec{X} is a formal parameter.

not stochastic

▶ subcomponents: $S ::= \underline{\mathbf{a}} : \alpha . C_s \mid S + S$ $\underline{\mathbf{a}} \in \mathcal{E}, \alpha \in \mathcal{A}$

- ▶ subcomponents: $S ::= \underline{\mathbf{a}} : \alpha . C_s \mid S + S$ $\underline{\mathbf{a}} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$

- $a \in \mathcal{E}, \alpha \in \mathcal{A}$ • subcomponents: $S := a : \alpha . C_s \mid S + S$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$
- components: $P ::= C(\vec{X}) \mid P \bowtie P$ $L \subseteq \mathcal{E}$

- ▶ subcomponents: $S ::= a : \alpha . C_s \mid S + S$ $a \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{def}{=} P$ or subcomponent name

- ▶ subcomponents: $S ::= \underline{a} : \alpha . C_s \mid S + S$ $\underline{a} \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{\text{def}}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie_{L} P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{def}{=} P$ or subcomponent name
- ▶ uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie_L \Sigma$ $L \subseteq \mathcal{E}$

- ▶ subcomponents: $S ::= a : \alpha . C_s \mid S + S$ $a \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{def}{=} P$ or subcomponent name
- ▶ uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie \Sigma$ $L \subseteq \mathcal{E}$
- ▶ controller: $M := a.M \mid 0 \mid M + M$ $a \in \mathcal{E}$ $Con ::= M \mid Con \bowtie Con \qquad L \subseteq \mathcal{E}$

- ▶ subcomponents: $S ::= a : \alpha . C_s \mid S + S$ $a \in \mathcal{E}, \alpha \in \mathcal{A}$
 - subcomponent names: $C_s(\vec{X}) \stackrel{def}{=} S$
- ▶ components: $P ::= C(\vec{X}) \mid P \bowtie P$ $L \subseteq \mathcal{E}$
 - component names: $C(\vec{X}) \stackrel{def}{=} P$ or subcomponent name
- ▶ uncontrolled system: $\Sigma ::= C(\vec{V}) \mid \Sigma \bowtie \Sigma$ $L \subseteq \mathcal{E}$
- ▶ controller: $M := a.M \mid 0 \mid M + M$ $a \in \mathcal{E}$ $Con ::= M \mid Con \bowtie Con \qquad L \subseteq \mathcal{E}$
- ▶ controlled system: $ConSys := \Sigma \bowtie \underline{init}.Con$ $L \subset \mathcal{E}$

roduction Syntax Operational semantics Hybrid semantics Equivalence semantics

Orbiter Temperature Control in HYPE

orbiter, heater and shade to control temperature

- orbiter, heater and shade to control temperature
- environment

$$\begin{tabular}{lll} {\sf Time} & \stackrel{\sf def}{=} & \underline{{\sf light}}{:}(t,1,const). {\sf Time} + \underline{{\sf dark}}{:}(t,1,const). {\sf Time} + \\ & \underline{{\sf init}}{:}(t,1,const). {\sf Time} \\ \end{tabular}$$

Sun
$$\stackrel{\text{def}}{=} \frac{\text{light}}{\text{light}}: (s, r_s, const).\text{Sun} + \frac{\text{dark}}{\text{init}}: (s, 0, const).\text{Sun}$$

$$Cool(X) \stackrel{\text{def}}{=} \underline{init}: (c, -1, linear(X)).Cool(X)$$

Orbiter Temperature Control in HYPE (continued)

orbiter

Heat
$$\stackrel{\text{def}}{=} \underline{\text{on}}: (h, r_h, const). \text{Heat} + \underline{\text{off}}: (h, 0, const). \text{Heat} + \underline{\text{init}}: (h, 0, const). \text{Heat}$$

```
\stackrel{\textit{def}}{=} \underline{\text{up}}: (d, -r_d, const). \text{Shade} + \underline{\text{down}}: (h, 0, const). \text{Shade} +
Shade
                      init: (d, 0, const). Shade
```

orbiter

Heat
$$\stackrel{\text{def}}{=} \underline{\text{on}}: (h, r_h, const). \text{Heat} + \underline{\text{off}}: (h, 0, const). \text{Heat} + \underline{\text{init}}: (h, 0, const). \text{Heat}$$

Shade
$$\stackrel{\text{def}}{=} \underline{\text{up}}: (d, -r_d, const). \text{Shade} + \underline{\text{down}}: (h, 0, const). \text{Shade} + \underline{\text{init}}: (d, 0, const). \text{Shade}$$

uncontrolled system

$$\mathsf{Sys} \stackrel{\mathit{def}}{=} \big(\mathsf{Heat} \underset{\{\underline{\mathsf{init}}\}}{\bowtie} \mathsf{Shade}\big) \underset{\{\underline{\mathsf{init}}\}}{\bowtie} \big(\mathsf{Cool}(K) \underset{\{\underline{\mathsf{init}}\}}{\bowtie} \mathsf{Sun} \underset{\{\underline{\mathsf{init}},\underline{\mathsf{light}},\underline{\mathsf{dark}}\}}{\bowtie} \mathsf{Time}\big)$$

controllers

$$Con_h \stackrel{def}{=} on.off.Con_h$$
 $Con_d \stackrel{def}{=} up.down.Con_d$
 $Con_s \stackrel{def}{=} light.dark.Con_s$
 $Con \stackrel{def}{=} Con_h \bowtie Con_d \bowtie Con_s$

controlled system

$$OTC \stackrel{\text{def}}{=} Sys \bowtie \underline{init}.Con$$

with $M = \{init, on, off, up, down, light, dark\}$

▶ HYPE model: $(ConSys, V, X, IN, IT, \mathcal{E}, A, ec, iv, EC, ID)$

- ▶ HYPE model: $(ConSys, V, X, IN, IT, \mathcal{E}, A, ec, iv, EC, ID)$
 - ► *IN* influence names, *IT* influence types

- ► HYPE model: (ConSys, V, X, IN, IT, E, A, ec, iv, EC, ID)
 - ► *IN* influence names, *IT* influence types
 - ightharpoonup $ec: \mathcal{E}
 ightarrow \textit{EC}$, association of events with event conditions
 - ► *EC*, event conditions, (activation condition, reset)

HYPE syntax (continued)

- ► HYPE model: (ConSys, V, X, IN, IT, E, A, ec, iv, EC, ID)
 - ► *IN* influence names, *IT* influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $iv : IN \rightarrow V$, association of influence names with variables

HYPE syntax (continued)

- ► HYPE model: $(ConSys, V, X, IN, IT, \mathcal{E}, A, ec, iv, EC, ID)$
 - ► *IN* influence names, *IT* influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $iv : IN \rightarrow V$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,

- ► HYPE model: (ConSys, V, X, IN, IT, E, A, ec, iv, EC, ID)
 - ► *IN* influence names, *IT* influence types
 - ightharpoonup $ec: \mathcal{E}
 ightarrow \mathit{EC}$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $iv:IN \rightarrow \mathcal{V}$, association of influence names with variables
 - ► *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPE model

HYPE syntax (continued)

- ► HYPE model: $(ConSys, V, X, IN, IT, \mathcal{E}, A, ec, iv, EC, ID)$
 - ► IN influence names, IT influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $iv: IN \rightarrow \mathcal{V}$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPE model
 - subcomponents:

$$\mathcal{C}_s(\vec{X}) \stackrel{\text{def}}{=} \underline{\mathbf{a}}_1 : \alpha_1 . \mathcal{C}_s(\vec{X}) + \ldots + \underline{\mathbf{a}}_n : \alpha_n . \mathcal{C}_s(\vec{X}) \quad \underline{\mathbf{a}}_i \neq \underline{\mathbf{a}}_j$$

- \blacktriangleright HYPE model: (ConSys, $\mathcal{V}, \mathcal{X}, IN, IT, \mathcal{E}, \mathcal{A}, ec, iv, EC, ID)$
 - ► IN influence names, IT influence types
 - $ec: \mathcal{E} \to EC$, association of events with event conditions
 - EC, event conditions, (activation condition, reset)
 - $iv : IN \rightarrow V$, association of influence names with variables
 - ▶ *ID* influence descriptions, $[I(\vec{X})] = f(\vec{X})$,
- well-defined HYPF model
 - subcomponents:

$$C_s(\vec{X}) \stackrel{\text{def}}{=} \underline{\mathbf{a}}_1 : \alpha_1 \cdot C_s(\vec{X}) + \ldots + \underline{\mathbf{a}}_n : \alpha_n \cdot C_s(\vec{X}) \quad \underline{\mathbf{a}}_i \neq \underline{\mathbf{a}}_j$$

- $\underline{\text{init}}$: $(\iota, _, _)$ appears exactly once
- ightharpoonup $\underline{a}:(\iota, _, _)$ appears at most once

- ► HYPE model: (ConSys, V, X, IN, IT, E, A, ec, iv, EC, ID)
 - ► *IN* influence names, *IT* influence types
 - ightharpoonup $ec: \mathcal{E}
 ightarrow \textit{EC}$, association of events with event conditions
 - ► EC, event conditions, (activation condition, reset)
 - ightharpoonup iv : IN $ightharpoonup \mathcal{V}$, association of influence names with variables
 - ▶ *ID* influence descriptions, $\llbracket I(\vec{X}) \rrbracket = f(\vec{X})$,
- well-defined HYPE model
 - subcomponents:

$$C_s(\vec{X}) \stackrel{\text{def}}{=} \underline{\mathbf{a}}_1 : \alpha_1 \cdot C_s(\vec{X}) + \ldots + \underline{\mathbf{a}}_n : \alpha_n \cdot C_s(\vec{X}) \quad \underline{\mathbf{a}}_i \neq \underline{\mathbf{a}}_j$$

- $\underline{\text{init}}$: $(\iota, _, _)$ appears exactly once
- ▶ \underline{a} : $(\iota, -, -)$ appears at most once
- synchronisation on shared events

$$\mathcal{V} = \{T, K\}$$

$$\mathcal{V} = \{T, K\}$$

$$iv(t) = T$$

$$\mathcal{V} = \{T, K\}$$

$$iv(t) = T$$

$$iv(c) = K iv(s) = K$$

$$iv(c) = K$$
 $iv(s) = K$
 $iv(h) = K$ $iv(d) = K$

$$\mathcal{V} = \{T, K\}$$

$$iv(t) = T$$

$$iv(c) = K \quad iv(s) = K$$

$$iv(h) = K \quad iv(d) = K$$

$$ec(init) = (true, (T = 0 \land K = k_0))$$

$$\mathcal{V} = \{T, K\}$$

$$iv(t) = T$$

$$iv(c) = K \quad iv(s) = K$$

$$iv(h) = K \quad iv(d) = K$$

$$ec(\underline{init}) = (true, (T = 0 \land K = k_0))$$

$$ec(\underline{light}) = (T = 12, true) \quad ec(\underline{dark}) = (T = 24, T' = 0)$$

$$\mathcal{V} = \{T, K\}$$

$$iv(t) = T$$

$$iv(c) = K \quad iv(s) = K$$

$$iv(h) = K \quad iv(d) = K$$

$$ec(\underline{init}) = (true, (T = 0 \land K = k_0))$$

$$ec(\underline{light}) = (T = 12, true) \quad ec(\underline{dark}) = (T = 24, T' = 0)$$

$$ec(\underline{off}) = (K \ge t_1, true) \quad ec(\underline{on}) = (K \le t_2, true)$$

$$ec(\underline{up}) = (K \ge t_3, true) \quad ec(\underline{down}) = (K \le t_4, true)$$

$$\mathcal{V} = \{T, K\}$$

$$iv(t) = T$$

$$iv(c) = K \quad iv(s) = K$$

$$iv(h) = K \quad iv(d) = K$$

$$ec(\underline{\text{init}}) = (true, (T = 0 \land K = k_0))$$

$$ec(\underline{\text{light}}) = (T = 12, true) \quad ec(\underline{\text{dark}}) = (T = 24, T' = 0)$$

$$ec(\underline{\text{off}}) = (K \ge t_1, true) \quad ec(\underline{\text{on}}) = (K \le t_2, true)$$

$$ec(\underline{\text{up}}) = (K \ge t_3, true) \quad ec(\underline{\text{down}}) = (K \le t_4, true)$$

$$[const] = 1 \quad [linear(X)] = X$$

Operational semantics

> state: $\sigma: \mathit{IN} \to \mathbb{R} \times \mathit{IT}$

Operational semantics

- ▶ state: $\sigma: IN \to \mathbb{R} \times IT$
- ▶ configuration: $\langle ConSys, \sigma \rangle$, set \mathcal{F}

Operational semantics

- ▶ state: $\sigma: IN \to \mathbb{R} \times IT$
- configuration: $\langle ConSys, \sigma \rangle$, set \mathcal{F}
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$

- ▶ state: $\sigma: IN \to \mathbb{R} \times IT$
- configuration: $\langle ConSys, \sigma \rangle$, set \mathcal{F}
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subset \mathcal{F} \times \mathcal{E} \times \mathcal{F})$
- ▶ updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota \mapsto (r, I)](x) = \begin{cases} (r, I) & \text{if } x = \iota \\ \sigma(x) & \text{otherwise} \end{cases}$$

- ▶ state: $\sigma: IN \to \mathbb{R} \times IT$
- configuration: $\langle ConSys, \sigma \rangle$, set \mathcal{F}
- ▶ labelled transition system: $(\mathcal{F}, \mathcal{E}, \rightarrow \subseteq \mathcal{F} \times \mathcal{E} \times \mathcal{F})$
- ▶ updating function: $\sigma[\iota \mapsto (r, I)]$

$$\sigma[\iota \mapsto (r, I)](x) = \begin{cases} (r, I) & \text{if } x = \iota \\ \sigma(x) & \text{otherwise} \end{cases}$$

▶ change identifying function: $\Gamma : \mathcal{S} \times \mathcal{S} \times \mathcal{S} \to \mathcal{S}$

$$(\Gamma(\sigma, \tau, \tau'))(\iota) = \begin{cases} \tau(\iota) & \text{if } \sigma(\iota) = \tau'(\iota) \\ \tau'(\iota) & \text{if } \sigma(\iota) = \tau(\iota) \\ \text{undefined} & \text{otherwise} \end{cases}$$

Operational semantics (continued)

Prefix with influence:

$$\overline{\langle \underline{\mathtt{a}} : (\iota, r, I).E, \sigma \rangle \xrightarrow{\underline{\mathtt{a}}} \langle E, \sigma[\iota \mapsto (r, I)] \rangle}$$

Prefix without

influence: $\langle a.E.\sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E.\sigma \rangle$

Choice.

$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{\langle E + F, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle} \qquad \frac{\langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}{\langle E + F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \sigma' \rangle}$$

Constant:

$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle}{\langle A, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \sigma' \rangle} (A \stackrel{\text{def}}{=} E)$$

Prefix with influence:

influence:

$$\frac{}{\left\langle \underline{\mathtt{a}} : (\iota, r, I) . \mathsf{E}, \sigma \right\rangle \xrightarrow{\underline{\mathtt{a}}} \left\langle \mathsf{E}, \sigma[\iota \mapsto (r, I)] \right\rangle}$$

Prefix without

 $\langle a.E, \sigma \rangle \xrightarrow{\underline{a}} \langle E, \sigma \rangle$

Choice:

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle}{\left\langle E+F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle} \qquad \frac{\left\langle F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}{\left\langle E+F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}$$

Constant:

$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle}{\langle A, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle} (A \stackrel{\text{def}}{=} E)$$

Parallel without
$$\frac{\langle E, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E', \sigma' \rangle}{\langle E \bowtie F, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle E' \bowtie F, \sigma' \rangle} \qquad \underline{a} \not\in M$$

$$\frac{\left\langle F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}{\left\langle E \bowtie_{M} F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E \bowtie_{M} F',\sigma'\right\rangle} \qquad \underline{a} \not\in M$$

Parallel with
$$\frac{\langle E, \sigma \rangle \xrightarrow{\underline{a}} \langle E', \tau \rangle \quad \langle F, \sigma \rangle \xrightarrow{\underline{a}} \langle F', \tau' \rangle}{\langle E \bowtie_{M} F, \sigma \rangle \xrightarrow{\underline{a}} \langle E' \bowtie_{M} F', \Gamma(\sigma, \tau, \tau') \rangle}$$

 $\underline{\mathbf{a}} \in M, \Gamma$ defined

Parallel without synchronisation:

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E',\sigma'\right\rangle}{\left\langle E \bowtie_{M} F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E' \bowtie_{M} F,\sigma'\right\rangle} \qquad \underline{a} \not\in M$$

$$\frac{\left\langle F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle F',\sigma'\right\rangle}{\left\langle E \bowtie_{M} F,\sigma\right\rangle \stackrel{\underline{a}}{\longrightarrow} \left\langle E \bowtie_{M} F',\sigma'\right\rangle} \qquad \underline{a} \not\in M$$

Parallel with synchronisation:

$$\frac{\left\langle E,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle E',\tau\right\rangle \quad \left\langle F,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle F',\tau'\right\rangle}{\left\langle E \bowtie_{M} F,\sigma\right\rangle \stackrel{\underline{\underline{a}}}{\longrightarrow} \left\langle E' \bowtie_{M} F',\Gamma(\sigma,\tau,\tau')\right\rangle}$$

 $a \in M, \Gamma$ defined

Orbiter Temperature Control – labelled transition system

8 configurations represent all possibilities with 8 distinct states

$$\sigma_{0} = \{h \mapsto (0, const), d \mapsto (0, const), s \mapsto (0, const)\} \cup D$$

$$\sigma_{1} = \{h \mapsto (0, const), d \mapsto (0, const), s \mapsto (r_{s}, const)\} \cup D$$

$$\sigma_{2} = \{h \mapsto (0, const), d \mapsto (-r_{d}, const), s \mapsto (0, const)\} \cup D$$

$$\sigma_{3} = \{h \mapsto (0, const), d \mapsto (-r_{d}, const), s \mapsto (r_{s}, const)\} \cup D$$

$$\sigma_{4} = \{h \mapsto (r_{h}, const), d \mapsto (0, const), s \mapsto (0, const)\} \cup D$$

$$\sigma_{5} = \{h \mapsto (r_{h}, const), d \mapsto (0, const), s \mapsto (r_{s}, const)\} \cup D$$

$$\sigma_{6} = \{h \mapsto (r_{h}, const), d \mapsto (-r_{d}, const), s \mapsto (0, const)\} \cup D$$

$$\sigma_{7} = \{h \mapsto (r_{h}, const), d \mapsto (-r_{d}, const), s \mapsto (r_{s}, const)\} \cup D$$

where $D = \{c \mapsto (-1, linear(K)), t \mapsto (1, k)\}$ \triangleright extract ODEs from each state σ in the lts of CS

$$extit{CS}_{\sigma} = \left\{ ext{ODE for variable } V \; \middle| \; V \in \mathcal{V}
ight\} \; ext{ where}$$

$$\frac{dV}{dt} = \sum \{ r[I(\vec{W})] \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \}$$

Hybrid semantics

 \triangleright extract ODEs from each state σ in the lts of CS

$$extit{CS}_{\sigma} = \left\{ ext{ODE for variable } V \; \middle| \; V \in \mathcal{V}
ight\} \; ext{ where}$$

$$\frac{dV}{dt} = \sum \left\{ r[I(\vec{W})] \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$$

for any influence name associated with V

Hybrid semantics

 \blacktriangleright extract ODEs from each state σ in the lts of *CS*

$$\mathit{CS}_\sigma = \left\{ \mathsf{ODE} \ \mathsf{for} \ \mathsf{variable} \ V \ \middle| \ V \in \mathcal{V} \right\} \ \ \mathsf{where}$$

$$\frac{dV}{dt} = \sum \left\{ r[I(\vec{W})] \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$$

- ▶ for any influence name associated with *V*
- determine from σ its rate and influence type

 \triangleright extract ODEs from each state σ in the lts of CS

$$extit{CS}_{\sigma} = \left\{ ext{ODE for variable } V \; \middle| \; V \in \mathcal{V}
ight\} \; ext{ where}$$

$$\frac{dV}{dt} = \sum \left\{ \frac{r[I(\vec{W})]}{r[I(\vec{W})]} \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \right\}$$

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together

 \triangleright extract ODEs from each state σ in the lts of CS

$$extit{CS}_{\sigma} = \left\{ ext{ODE for variable } V \; \middle| \; V \in \mathcal{V}
ight\} \; ext{ where}$$

$$\frac{dV}{dt} = \sum \{ r[I(\vec{W})] \mid iv(\iota) = V \text{ and } \sigma(\iota) = (r, I(\vec{W})) \}$$

Hybrid semantics

- for any influence name associated with V
- determine from σ its rate and influence type
- multiply its rate and influence function together
- sum these over all associated influence names

Orbiter Temperature Control – ODEs

Consider the state with the sun shining and the shade up

$$\sigma_{3} = \{h \mapsto (0, const), d \mapsto (-r_{d}, const), \\ s \mapsto (r_{s}, const), c \mapsto (-1, linear(K)), t \mapsto (1, k)\}$$

The ODEs for this state are

$$\frac{dT}{dt} = 1 \qquad \frac{dK}{dt} = r_s - r_d - K$$

 $ightharpoonup (V, E, \mathbf{X}, \mathcal{E}, flow, init, inv, event, jump, reset, urgent)$

- $ightharpoonup (V, E, \mathbf{X}, \mathcal{E}, flow, init, inv, event, jump, reset, urgent)$
- ▶ $\mathbf{X} = \{X_1, \dots, X_n\}, \ \dot{X}_j, \ X'_j$

- \triangleright (V, E, X, \mathcal{E} , flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, ..., X_n\}, \dot{X}_j, X'_j$
- ightharpoonup control graph: G = (V, E)

- $(V, E, X, \mathcal{E}, flow, init, inv, event, jump, reset, urgent)$
- $ightharpoonup X = \{X_1, ..., X_n\}, \dot{X}_j, X'_j$
- ▶ control graph: G = (V, E)
- ▶ (control) modes: $v \in V$
 - associated ODEs: $\dot{\mathbf{X}} = flow(v)$
 - ▶ initial conditions: init(v)
 - ▶ invariants: inv(v)

- \triangleright (V, E, X, E, flow, init, inv, event, jump, reset, urgent)
- $ightharpoonup X = \{X_1, ..., X_n\}, X_j, X_i'$
- ightharpoonup control graph: G = (V, E)
- ▶ (control) modes: $v \in V$
 - associated ODEs: X = flow(v)
 - initial conditions: init(v)
 - invariants: inv(v)
- \blacktriangleright (control) switches: $e \in E$
 - events: $event(e) \in \mathcal{E}$
 - predicate on X: jump(e)
 - ▶ predicate on X ∪ X': reset(e)
 - boolean: urgent(e)

HYPE model to hybrid automaton

modes V: set of reachable configurations

- modes V: set of reachable configurations
- edges E: transitions between configurations

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ightharpoonup variables $m m{X}$: variables $m m{\mathcal{V}}$

- modes V: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables V
- ightharpoonup if $v_i = \langle P_i, \sigma_i \rangle$ then

$$flow(v_j)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$$

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ightharpoonup variables $m m{X}$: variables $m m{\mathcal{V}}$
- ▶ if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[[I(\vec{W})]] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- ightharpoonup inv(v) = true

- modes V: set of reachable configurations
- edges E: transitions between configurations
- variables X: variables V
- ightharpoonup if $v_i = \langle P_i, \sigma_i \rangle$ then $flow(v_i)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_i(\iota) = (r, I(\vec{W}))\}$
- \triangleright inv(v) = true
- ▶ let e be an edge associated with a and let $ec(a) = (act_a, res_a)$

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ightharpoonup variables $m m{X}$: variables $m m{\mathcal{V}}$
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- ightharpoonup inv(v) = true
- ▶ let e be an edge associated with \underline{a} and let $ec(\underline{a}) = (act_{\underline{a}}, res_{\underline{a}})$
 - $event(e) = \underline{a}$ and $reset(e) = res_{\underline{a}}$
 - if $act_{\underline{a}} \neq \bot$ then $jump(e) = act_{\underline{a}}$ and urgent(e) = true else jump(e) = true and urgent(e) = false

- modes V: set of reachable configurations
- edges E: transitions between configurations
- ightharpoonup variables $m m{X}$: variables $m m{\mathcal{V}}$
- if $v_j = \langle P_j, \sigma_j \rangle$ then $flow(v_j)[X_i] = \sum \{r[I(\vec{W})] \mid iv(\iota) = X_i \text{ and } \sigma_j(\iota) = (r, I(\vec{W}))\}$
- ightharpoonup inv(v) = true
- ▶ let e be an edge associated with \underline{a} and let $ec(\underline{a}) = (act_{\underline{a}}, res_{\underline{a}})$
 - $event(e) = \underline{a}$ and $reset(e) = res_{\underline{a}}$
 - if $act_{\underline{a}} \neq \bot$ then $jump(e) = act_{\underline{a}}$ and urgent(e) = true else jump(e) = true and urgent(e) = false
- $init(v) = \begin{cases} res_{\underline{init}} & \text{if } v = \langle P, \sigma \rangle \text{ with primes removed} \\ false & otherwise \end{cases}$

Orbiter Temperature Control – hybrid automaton

Hybrid semantics

Orbiter Temperature Control – hybrid automaton

Orbiter Temperature Control – hybrid automaton

Hybrid semantics

Orbiter Temperature Control – hybrid automaton

Orbiter Temperature Control – without control

Orbiter Temperature Control – with control

- ▶ system bisimulation: relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $\langle P', Q' \rangle \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.

- ▶ system bisimulation: relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $\langle P', Q' \rangle \in B$.
 - 2. $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- system bisimilar: $P \sim_s Q$ if in a system bisimulation

- ▶ system bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright system bisimilar: $P \sim_s Q$ if in a system bisimulation
- ▶ Theorem 1: \sim_s is a congruence for all operators

- ▶ system bisimulation: relation B if for all $(P,Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$ and $\langle P', Q' \rangle \in B$.
 - 2. $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- lacktriangle system bisimilar: $P\sim_s Q$ if in a system bisimulation
- ▶ Theorem 1: \sim_s is a congruence for all operators
- ▶ Theorem 2: if Σ_1 and Σ_2 have the same prefixes then $\Sigma_1 \bowtie_{\iota} \underline{\text{init}}.Con \sim_s \Sigma_2 \bowtie_{\iota} \underline{\text{init}}.Con$, assuming well-defined systems

- ▶ system bisimulation: relation B if for all $(P, Q) \in B$ whenever
 - 1. $\langle P, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle P', \sigma' \rangle$, there exists $\langle Q', \sigma' \rangle$ with $\langle Q, \sigma \rangle \xrightarrow{\underline{a}} \langle Q', \sigma' \rangle$ and $(P', Q') \in B$.
 - 2. $\langle Q, \sigma \rangle \stackrel{\underline{a}}{\longrightarrow} \langle Q', \sigma' \rangle$, there exists $\langle P', \sigma' \rangle$ with $\langle P, \sigma \rangle \xrightarrow{\underline{a}} \langle P', \sigma' \rangle$ and $(P', Q') \in B$.
- \triangleright system bisimilar: $P \sim_s Q$ if in a system bisimulation
- ▶ Theorem 1: \sim_s is a congruence for all operators
- ▶ Theorem 2: if Σ_1 and Σ_2 have the same prefixes then $\Sigma_1 \bowtie \underline{\text{init.}} Con \sim_s \Sigma_2 \bowtie \underline{\text{init.}} Con$, assuming well-defined systems
- ▶ Theorem 3: if $P \sim_s Q$ then $P_{\sigma} = Q_{\sigma}$ for all σ , assuming well-defined systems

Further work and conclusions

- further work
 - other equivalences
 - more modelling
 - addition of stochasticity

Further work and conclusions

- further work
 - other equivalences
 - more modelling
 - addition of stochasticity
- conclusions
 - HYPE for modelling hybrid systems
 - applied to orbiter, fan system, tanks system, bottling line, Repressilator
 - use of flows to obtain ODEs
 - separation of modelling concerns

Thank you

Orbiter in ACP_{hs}^{srt}

different style of modelling, uses explicit ODEs

Orbiter in ACP_{hs}

different style of modelling, uses explicit ODEs

Orbiter in ACP_{hs}^{srt}

Start
$$\stackrel{\text{def}}{=} (K = k_0) \land DOD$$

$$DOD \stackrel{\text{def}}{=} (dK/dt = -K) \curvearrowright \sigma_{\text{rel}}^* \Big(((K^{\bullet} = {}^{\bullet}K) \sqcap \text{light} \cdot LOD) + ((K \leq t_2) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \sqcap \text{on} \cdot DND)) \Big)$$

$$LOD \stackrel{\text{def}}{=} (dK/dt = r_s - K) \curvearrowright \sigma_{\text{rel}}^* \Big(((K^{\bullet} = {}^{\bullet}K) \sqcap \text{dark} \cdot DOD) + ((K \geq t_3) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \sqcap \text{up} \cdot LOU)) \Big)$$

$$DND \stackrel{\text{def}}{=} (dK/dt = r_h - K) \curvearrowright \sigma_{\text{rel}}^* \Big(((K^{\bullet} = {}^{\bullet}K) \sqcap \text{light} \cdot LND) + ((K \geq t_1) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \sqcap \text{off} \cdot DND)) \Big)$$

$$LOU \stackrel{\text{def}}{=} (dK/dt = r_s - r_d - K) \curvearrowright \sigma_{\text{rel}}^* \Big(((K^{\bullet} = {}^{\bullet}K) \sqcap \text{dark} \cdot DOU) + ((K \leq t_4) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \sqcap \text{down} \cdot LOD)) \Big)$$

Orbiter in ACP_{hs}^{srt}

Start
$$\stackrel{\text{def}}{=} (K = k_0) \land DOD$$
 $DOD \stackrel{\text{def}}{=} (dK/dt = -K) \land \sigma_{\text{rel}}^* ((K^{\bullet} = {}^{\bullet}K) \land \text{light} \cdot LOD) + ((K \leq t_2) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \land \text{on} \cdot DND)))$
 $LOD \stackrel{\text{def}}{=} (dK/dt = r_s - K) \land \sigma_{\text{rel}}^* (((K^{\bullet} = {}^{\bullet}K) \land \text{on} \cdot DND))) + ((K \geq t_3) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \land \text{up} \cdot LOU)))$
 $DND \stackrel{\text{def}}{=} (dK/dt = r_h - K) \land \sigma_{\text{rel}}^* (((K^{\bullet} = {}^{\bullet}K) \land \text{light} \cdot LND) + ((K \geq t_1) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \land \text{vol} \cdot \text{off} \cdot DND)))$
 $LOU \stackrel{\text{def}}{=} (dK/dt = r_s - r_d - K) \land \sigma_{\text{rel}}^* (((K^{\bullet} = {}^{\bullet}K) \land \text{oth} \cdot DOU) + ((K \leq t_4) : \rightarrow ((K^{\bullet} = {}^{\bullet}K) \land \text{vol} \cdot DOU)))$

two types of actions

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

▶ activities: influences on continuous aspect of system, flows

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

▶ influence name $\iota \in IN$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- ▶ influence name $\iota \in IN$
- ▶ rate $r \in \mathbb{R}$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- ▶ influence name $\iota \in IN$
- ▶ rate $r \in \mathbb{R}$
- influence type $I(\vec{X})$ with $[I(\vec{X})] = f(\vec{X})$

- two types of actions
- events: instantaneous, discrete changes

$$\underline{\mathsf{a}} \in \mathcal{E}$$

$$\alpha \in \mathcal{A}$$
 $\alpha(\vec{X}) = (\iota, r, I(\vec{X}))$

- ▶ influence name $\iota \in IN$
- ▶ rate $r \in \mathbb{R}$
- influence type $I(\vec{X})$ with $[I(\vec{X})] = f(\vec{X})$
- parameterised by formal variables \vec{X}